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1. INTR~DLJ~TI~N 

Throughout this paper rings will mean associative rings with identity 
and all modules are assumed to be unitary. 

As is well known, cyclic modules play an important role in ring theory. 
Many nice properties of rings can be characterized by their cyclic modules, 
see for example [ 1, 2, 9-111. One of the most important results in this 
direction is the result of Osofsky [S, Theorem] which says that a ring R 
is semisimple (i.e., R is right Artinian with zero Jacobson radical) if and 
only if every cyclic right R-module is injective. Starting from this and in 
connection with a result of Vamos [ 1 l] the following result has been 
recently obtained in [2, Theorem 1.11: 

A ring R is right Artinian if and only if every cyclic right R-module is a 
direct sum of an injective module and a finitely cogenerated module. 

In the present paper we follow this investigation and aim to show a 
similar result for rings with Krull dimension. We consider the following 
condition about a ring R: 

(P) Every cyclic right R-module is a direct sum of an injective 
module and a module containing an essential submodule with Krull 
dimension at most CC. 

We shall prove that a ring satisfying (P) has right Krull dimension at 
most c( (Theorem 7). 
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2. PRELIMINARIES 

Let R be a ring. For a module M, M, means that M is a right R-module. 
To say that M has finite uniform dimension means that M does not 
contain an infinite direct sum of non-zero submodules. In this case there 
exists a smallest positive integer k such that every direct sum of non-zero 
submodules of M in M has at most k terms. This k is called the uniform 
dimension of M. A submodule K of M is called essential in M if for each 
non-zero submodule H of M, K n H # 0. M is called uniform if every 
non-zero submodule of M is essential in M. For a ring R and x E R we set 
r(x)= {rER,xr=O}. The set Z(R)= { XE R, r(x) is essential in RR} is an 
ideal of R which is called the right singular ideal of R. In case Z(R) = 0, 
R is called right non-singular. 

For a module M, the Krull dimension of M is defined in [6]. In case M 
has Krull dimension we denote it by K dim M. Let CY be an ordinal and M 
be a non-zero module. Then M is called cc-critical if K dim M = 01 and for 
each proper homomorphic image M’ of M, K dim M’ < CI. A critical 
module is a module which is a-critical for some CI. 

3. RESULTS 

We start our investigation by giving the following easy but useful lemma. 

LEMMA 1. Let R be a ring with the property (P) and K be an ideal of R. 
Then the factor ring R/K also has the property (P). 

LEMMA 2. Let R be a von Neumann regular, right self-injective ring such 
that every cyclic right R-module is a direct sum of an injective module and 
a module with finite untform dimension. Then R is semisimple. 

Proof We use the argument in the proof of [2, Theorem 1.11 which 
showed that the ring B considered there is semisimple. 

LEMMA 3. Let R be a semiprime, right non-singular ring and A # 0 be a 
right ideal of R such that A, is indecomposable and injective. Then A is a 
minimal right ideal of R. 

Proof: Let T be a maximal right quotient ring of R. Since R is right 
non-singular, T has the following properties (see for example [3] or 
[S, Chap. 23): 

(a) If X is a submodule of T, then X, is essential in (XT), . 

(b) T is a von Neumann regular, right self-injective ring. 

(c) T, is injective. 
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By (a), A, is essential in (AT),. Since A, is injective by assumption 
A = AT, therefore A is a right ideal of T. Moreover it is easy to see that A 
is a minimal right ideal of T. Hence A = eT= eR for some idempotent e in 
A. It follows that eTe=eRe. But eTe is a skew field, so we get that A is 
a minimal right ideal of R by the semiprimeness of R, completing the proof. 

Lemma 3 has the following immediate consequence. 

COROLLARY 4. For a right ideal A of a semiprime right Goldie ring R the 
following conditions are equivalent: 

(a) A, is semisimple (i.e., a direct sum of simple modules). 

(b) A, is quasi-injective. 

(c) A, is injective. 

LEMMA 5. Let R be a semiprime ring, A and B be right ideals of R with 
Bc A such that B, is essential in A,. If B, has Krull dimension so also has 
A,andKdim A.=KdimB,. 

ProojI Our proof is similar to the argument proving [6, Theorem 3.31. 
Let B, be essential in A, and have Krull dimension. We will show that 
there is a c in B such that r(c)n A =O. Then A,E (CA). c B, and it 
follows that K dim A, exists with Kdim A, = K dim B,. 

By [6, Theorem 2.11, B, contains a critical submodule C, Since R is 
semiprime, [6, Corollary 2.5, Lemma 3.21 shows the existence of a ci in C, 
such that r(c,) n C, = 0. If r(c,) n A = 0, we are done. If not, there is a 
critical submodule C, in r(c,) A B and a c2 in C, such that r(cz) n C, = 0. 
Clearly C, n C, = 0 and r(cl @ c2)n (C, @ C,) = 0. In this way we get for 
example after i steps a direct sum of i critical submodules Ci,..., C, of B,. 
But since B, has finite uniform dimension, there exists a positive integer m 
such that c = c, + + c, E B and r(c) n A = 0. 

The next lemma is implicit in [6, pp. 16, 331 but we give a proof for 
completeness. We use a technique of [7]. 

LEMMA 6. Let R be a ring, M be a right R-module, and u be an ordinal. 
Then M has Krull dimension at most GC if and only if every homomorphic 
image of M has an essential submodule with Krull dimension at most GI. 

Proof The necessity is clear. Conversely, suppose that every 
homomorphic image of M contains an essential submodule with Krull 
dimension at most ~1. It is clear that there exists an ascending chain of 
submodules 

O=BocB,c . . . cB,cB,+~c . . . cB,=M 



RINGS WITH KRULL DIMENSION 107 

such that for each ordinal 0 3 0, B,, ,/B, is an essential submodule of 
M/B, with K dim( B, + JBo) d CI, and 

B,= t.) Br (1) 
os_r<u 

if CJ is a limit ordinal. Suppose that K dim M & CI. Let CJ denote the least 
ordinal such that K dim B, & CY. If (T is not a limit ordinal, then 
K dim B, _ i 6 CI and hence K dim B, < CI by [6, Lemma 1.11, a contradic- 
tion. Thus (T is a limit ordinal and hence ( 1) holds. Because K dim B, 4 tl, 
there exists an infinite descending chain 

B,=M,IM,x ... (2) 

of submodules M, of B, such that K dim(Mi/Mi+ 1) C u - 1 for all i. By ( 1) 
there exists 0 < p < o such that B, e M,. Let A, = 0, A, = B, and note 
that 

M,nA,=B, g M,=A,+M,. 

Consider the descending chain 

A,nM,~A,nM,~A,nM,~ . . . . 

Because K dim A, 6 a, there exists k > 1 such that K dim[(A, n Mk)/ 

(A1nMk+Jd@- 1. Suppose that MkzA,+Mk+,. Then Mk= 
(A1nM,)+M,+,, and hence Mk/Mk+,~(A,nMk)/(A1nMk+,), which 
gives the contradiction K dim(M,/M,+ ,) < CI - 1. Thus M, g A, + Mk+ , . 
It follows that M, g A 1 + M, + I, so that without loss of generality we can 
assume that k = 1. By (1) there exists 0 < v < 0 such that 

M,nB,, $Z A,+M,. (3) 

Let A, = B,. Note that if A, E A,, then (3) is contradicted. Thus A, c A,. 
Repeating this argument we obtain an ascending chain of submodules 
of B,, 

O=AocA,cA2c . . . . (4) 

such that MinAj+, g Ai+Mi+, for all i. Now we use (2) and (4) to 
show that there is a submodule N of B, such that BJN does not have finite 
uniform dimension. 

Let N= xi,, (Ain Mi) and let cp: B, --, BJN denote the canonical 
epimorphism. Then B,/N has no finite uniform dimension. To prove this 
we note first that cp(A,n Mi_ i) # 0 for each i > 1. Suppose on the contrary 
that cp(A,n Mip ,) = 0 for some ib 1. There exists a j3 1 such that 
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AjnMi~,~(A,nMi)+ ... +(A,nM,). Let xeAinMip,. Then x= 
3?1+ . . + y, for some y, E A, n M, (t = 1, . . . . j). Suppose j > i. Then 

yj=x-y,- . . . --j~,EA,_,nM,EAi~,nMj_,. 

Thus without loss of generality we can suppose that j = i. It follows 

x=y,+ ‘.. +yj=(y,+ ... +y[-,)+y,EA;-1+M,. 

Thus cp(Ain Mj- ,) = 0 implies A,n M,-, c A,_ I -t- Mi, a contradiction. 
Hence we have cp(A, n Mip ,) # 0 for each i3 1. Second we have to check 
that cp(A,)+cp(A2nM,)+cp(A3nM,)+ ... is a direct sum in B,/N. 
Suppose aj~AjnMip, (i=l,...,k) and ~(a,)+ ... +~(a,)=0 for some 
positive integer k. Then there exist a positive integer n and elements 
bj E Ai n Mi (i = 1, . . . . n) such that 

a,+ ... +a,=b, + ... +b,. 

By the above argument we can suppose without loss of generality that 
n=k. In this case a,-bb,=b,+ ... +b,_,-a,- ... -a,-,EAk-,, and 
hence ak -b, E A,- I n M,- , . Thus cp(a,) = 0. By induction on k, ~(a,) = 0 
for i = 1, . . . . k- 1. Thus the sum cp(A,)+ cp(A,nM,)+ ... is direct, so the 
factor module B,/M has no finite uniform dimension. By hypothesis there 
exists a submodule K of M containing N such that K/N is an essential 
submodule of M/N and K/N has Krull dimension. It follows that M/N, and 
hence B,/N, has finite uniform dimension. This contradiction proves that 
M has Krull dimension at most c(. 

Note that Lemma 6 generalizes a result of Vamos, who proved it in the 
case CI = 0 (see [ 11, Proposition 2*]). 

Now we are in a position to prove the main result of the paper. 

THEOREM 7. Every ring satisfying (P) has right Krull dimension at 
most ci. 

Prooj We consider first the case that R is semiprime. In this case we 
first show that R is right non-singular. Assume on the contrary that the 
right singular ideal 2 of R contains a non-zero element X. By (P), 
xR = Z@ K, where I, is injective and K, contains an essential submodule 
with Krull dimension. Since Z cannot contain non-zero idempotents, it 
follows that Z= 0 and xR = K. Hence xR contains a critical submodule C. 
We have C2 # 0 since R is semiprime. Therefore C contains a d with 
dC # 0. Since r(d) # 0, dC is a proper homomorphic image of C,. Hence 
K dim dC< K dim C by the definition of critical modules. On the other 
hand, since dC is a non-zero submodule of C, we have K dim dC = K dim C 
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by [6, Proposition 2.31. This is a contradiction. Hence 2 = 0, i.e., R is right 
non-singular. 

Now, we have by (P) 

RR=I@K, (1) 

where I, is injective and K, contains an essential submodule with Krull 
dimension at most ~1. If K, is injective, R is right self-injective. Moreover, 
by the above, R is right non-singular. Hence by [3, Corollary 19.281 R is 
von Neumann regular. By Lemma 2, R is semisimple. 

We consider now the case that KR is not injective. By Lemma 5, K, has 
Krull dimension at most ~1. Since the uniform dimension of K, is finite, by 
(1) we can, without loss of generality, assume that K, does not contain 
non-zero injective submodules. Let U #O be a uniform submodule in K, 
and for this U let B(U) be the sum of all such uniform submodules V of 
R, which are R-isomorphic to U,. By [4, Lemma 5.11 for a uniform 
submodule l’ of R, and an XER, if r(x)n V=O, then xVr V,, and if 
T(X) n V# 0, XV= 0. From this B(U) is a (two-sided) ideal of R. We shall 
show that B(U) G K. 

By (1) we have 

B(U)=(ZnB(U))@(KnB(U)). (2) 

Suppose that In B(U) # 0. Then there are finitely many uniform sub- 
modules Vi, . . . . I/, of R, such that Vjr U, and 

V=(V,+ ... +V,)nZ#O. 

Then it is clear that V, has Krull dimension. Therefore V contains a 
uniform submodule W # 0. Denote by E( W) the injective hull of W in I,. 
Then Lemma 3 shows that E(W) is a minimal right ideal of R. Hence 
E(W) = W, so W, is a simple injective right R-module. Now let 0 # w  E W. 
As we have mentioned above, if WU # 0, then WU g UR, implying the injec- 
tivity of U,, a contradiction to the assumption about U. Hence WU = 0 for 
each w  E W, i.e., WU = 0. By the semiprimeness of R we have also UW = 0. 
Now let X be a right ideal of R such that there is an R-isomorphism c1 of 
X, onto U,. Then a(XW)=a(X) W=UW=O; therefore XW~kera=O. 
From this it follows that B(U) W = 0, in particular W2 = 0, a contradiction 
to the semiprimeness of R. Hence Z n B(U) = 0, so by (2), B(U) is actually 
contained in K. In conclusion, if K, is not injective, then K, contains a 
non-zero ideal of R. 

By Zorn’s Lemma there is an ideal F of R which is maximal with respect 
to the condition FG K. The factor ring R = R/F satisfies (P) by Lemma 1. 
Let A be an ideal of R such that Ak c F for some positive integer k. Then 
by ( 1 ), (Zn A)k = 0, therefore In A = 0, implying that A G K. Hence A c F 
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by the maximality of F in K. This shows that R is semiprime, so R is right 
non-singular. From (1) we have 

where f= (I+ F)/F, R= K/F. It is not diffkult to show that 1, is injective 
and R,- has Krull dimension. 

Now, if Ri7 is not injective, then by the above, KR contains a non-zero 
ideal of i?, a contradiction to the maximality of F in K. Hence R,- is injec- 
tive, i.e., R is a right self-injective, semiprime ring satisfying (P). As in the 
beginning of the proof we can conclude that R is semisimple. Since FR has 
Krull dimension at most a, it follows that R has right Krull dimension at 
most ~1. 

Now we consider the general case. Let R be a ring satisfying (P) and N 
be the prime radical of R. By Lemma 1 and the result above, R/N has right 
Krull dimension at most CZ. Since N is a nil ideal of R, it follows that 
R,=e,RQ ... 0 e, R, where { ej }y=, is a system of orthogonal primitive 
idempotents of R. By (P) each e,R is injective or contains an essential sub- 
module with Krull dimension at most U. Suppose that for some e,, e,R is 
injective. If e,R n N = 0, e,R has Krull dimension at most c(. If eiR n N # 0, 
let x be a non-zero element in e,R n N. Clearly xR does not contain non- 
zero injective submodules, therefore xR contains an essential submodule 
with Krull dimension at most LY. Thus R contains an essential right ideal 
with Krull dimension at most CI. This together with Lemma 1 shows that 
any homomorphic image of R contains an essential right ideal with Krull 
dimension at most c(. Now using [6, Corollary 5.101 we easily see that the 
prime radical N is nilpotent. 

Let k be a positive integer such that Nk = 0 and Nk ~ ’ # 0. By induction 
on k we can assume that R/Nkp i has right Krull dimension at most CI. Let 
M be a cyclic injective right R-module and L = {x E M, xN = O}. Since 
Nk = 0, it follows that L is an essential submodule of M. Moreover, M/L 
is a cyclic right R/Nkp ‘-module, hence K dim(M/L) <IX. By [6, Proposi- 
tion 1.43, M/L has finite uniform dimension, n say. We show that L 
has finite uniform dimension. First we see that L is an injective right 
R/N-module. Suppose on the contrary that L contains an infinite direct 
sum K of non-zero submodules K,, K,, . . . . Without loss of generality we 
can assume that K is essential in L. One can easily see that there exist 
submodules Q j of K (i = 1, . . . . n + 1) such that 

K=QlO ... QQn,, 

and each Qj is an infinite direct sum of some K, (i = 1, 2, . ..). Denote by Ej 
the R/N-injective hull in L of Q,. Then 

L=E,@ ..’ BE,,,,. (3) 
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Let Fj denote the R-injective hull of E, in M. Then 

M=F,@ ... OF,,,,. (4) 

If for any j, E, = Fj, then E, is a direct summand of M. It follows that E, 
is a cyclic right R/N-module; therefore E, has Krull dimension at most CL. 
In particular, Ej has finite uniform dimension by [6, Proposition 1.41, a 
contradiction. Hence for each j, E, # F,. But by (3) and (4) we have 

WL=‘F,IE,)O ... @(Fn+,IE,+,), 

which shows that the uniform dimension of M/L is at least n + 1, a 
contradiction. Thus L has finite uniform dimension. There exist a positive 
integer t and elements xi (i = 1, . . . . t) in L such that x,R@ ... Ox,R is 
essential in L. But note that for each i, K dim x, R < a since LN = 0. Thus 
every cyclic injective right R-module contains an essential submodule with 
Krull dimension at most a. By (P) it follows that every cyclic right 
R-module has an essential submodule with Krull dimension at most a. 
Now Lemma 6 shows that R has right Krull dimension at most a. 

The proof of Theorem 7 is complete. 
Note that for a = 0 we obtain the main result of [Z] mentioned in the 

Introduction. 
In [ 1, Theorem 4.11 Chatters proves that if a ring R has the property 

that there exists an ordinal a such that every cyclic right R-module is a 
direct sum of a projective module and a module with Krull dimension at 
most a then R has right Krull dimension at most a + 1. The ring of integers 
is an example for the fact that in this result of Chatters, a + 1 cannot be 
replaced by a. Also in [ 1, Theorem 3.11 Chatters characterized right 
Noetherian rings as rings whose cyclic right modules are a direct sum of a 
projective module and a Noetherian module. A question arises naturally 
whether or not the same statement holds also if “projective” is replaced by 
“injective.” Using Theorem 7 and Corollary 4 we can answer this question 
positively in case of semiprime rings. 

PROPOSITION 8. A semiprime ring R is right Noetherian if every cyclic 
right R-module is a direct sum of an injective module and a Noetherian 
module. 

ProoJ Since every Noetherian module has Krull dimension, we can use 
Theorem 7 to see that R has right Krull dimension (at most a for some 
ordinal a). Then, as is well known, R is right Goldie. By assumption, 
R, = Z@ A4, where I, is injective and M, is Noetherian. By Corollary 4, I, 
is semisimple. Thus R is right Noetherian, completing the proof. 

481.13?‘1-8 
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