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1. Introduction

One knows by the Riemann–Hilbert correspondence [6] that there is a general equivalence be-
tween the category consisting of regular holonomic DV -modules with characteristic variety Σ and
the category consisting of perverse sheaves on V (where V is a complex manifold) with microsup-
port Σ . This gives a classification of regular holonomic DV -modules theoretically, but in practice the
classification of perverse sheaves is not always much simpler. A more accessible problem is as follows:
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given a complex manifold V on which a Lie group acts with finitely many orbits (V j) j∈ J ; the problem
is to classify regular holonomic DV -modules whose characteristic variety is contained in the union of
conormal bundles (Σ :=⋃ j∈ J T ∗

V j
V ) to these orbits. These modules form a full category which we

denote by Modrh
Σ(DV ).

In this paper we consider the action of GL(N,C) on skew-symmetric tensors. This last induces
a natural action on V := Λ2(CN ), which we will think of as the space of complex skew-symmetric
matrices of size N . There are (� N

2 � + 1) orbits V 2k := {X ∈ V , rank(X) = 2k} the set of rank 2k-skew-
symmetric matrices in V (0 � k � � N

2 � where � N
2 � is the integer part of N

2 ). This study is done here
for N = 2m even which is the most interesting case (see [17]).

The main ingredient to get the classification is the extension of the action of GL(2m,C) on V to
the action of its universal covering SL(2m,C) × C on regular holonomic DV -modules in Modrh

Σ(DV )

(see Remark 5). In particular we take a closer look on the action of SL(2m,C) on these objects. It
turns out that such DV -modules are generated by finitely many global sections which are invariant
by SL(2m,C) (see Theorem 9).

Let us point out that here there is a natural C-algebra associated to this situation: the graded
algebra A of (polynomial coefficients) invariant differential operators acting on polynomials of the
pfaffian. It is precisely the quotient of A := Γ (V ,DV )SL(2m,C) , the Weyl algebra of SL(2m,C)-invariant
differential operators on V , by an ideal described in Section 3 (see Proposition 6 and Corollary 8).

The main result of this paper is Theorem 18 saying that there is an equivalence of categories
between the category Modrh

Σ(DV ) consisting of regular holonomic DV -modules as above and the cat-
egory Modgr(A) consisting of graded A-modules of finite type for the Euler vector field on V . Actually
the image by this equivalence of a regular holonomic DV -module is its set of global homogeneous
sections (i.e. global sections of finite type for the Euler vector field on V ) which are invariant under
the action of SL(2m,C). Note that we establish here one more case of the conjecture by T. Levasseur
(see [12, p. 508, Conjecture 5.17]).

The C-algebra A is described simply by generators and relations (see Corollary 8) thanks to skew-
Capelli identities constructed by R. Howe and T. Umeda (see [5, p. 592, Corollary (11.3.19)]) and
explicitly calculated by K. Kinoshita and M. Wakayama [11]. This leads to the description of the latter
category Modgr(A) as an “elementary” category consisting of diagrams of finite-dimensional com-
plex vector spaces and linear maps between them satisfying certain relations (quiver category, see
Section 6).

We should note that, even before our study, several authors, notably L. Boutet de Monvel [1] gave,
very elegantly, a description of regular holonomic D-modules in one variable by using pairs of finite-
dimensional C-vector spaces and certain linear maps. Galligo, Granger and Maisonobe [3] obtained,
using the Riemann–Hilbert correspondence, a classification of regular holonomic DCn -modules with
singularities along the hypersurface x1 · · · xn = 0 by 2n-tuples of C-vector spaces with a set of linear
maps. L. Narvaez Macarro [18] treated the case y2 = xp using the method of Beilinson and Verdier and
generalized this study to the case of reducible plane curves. R. Macpherson and K. Vilonen [13] treated
the case with singularities along the curve yn = xm etc. Finally let us mention that the author has
obtained similar results for holonomic D-modules on Mn(C) the space of complex square matrices
associated to the action of GL(n,C) × GL(n,C) (see [14,16]) and on Cn associated to the action of the
orthogonal group (see [15]).

Throughout the paper we assume that the reader is familiar with all basic notions of D-modules
theory (see [2,7–9]).

2. Preliminary results

As in the Introduction V denotes the complex vector space of 2m × 2m-skew-symmetric matrices.
We denote a typical element of the space by X , with entries xij (1 � i, j � 2m) with the understanding
that x ji = −xij and xii = 0. The action of GL(2m,C) on skew-symmetric matrices X is given by g · X :=
g X gt for g ∈ GL(2m,C). The orbits for this action are the set of skew-symmetric matrices X in V of
rank exactly 2k (0 � k � m) which we will denote by V 2k := {X ∈ V , rank(X) = 2k}. We have the
following proposition:
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Proposition 1. For k < m the GL(2m,C)-orbits V 2k are simply connected.

Proof. Note that for k < m the SL(2m,C) and GL(2m,C)-orbits are the same. If the skew-symmetric
matrices are thought of as the skew-symmetric bilinear forms, then the SL(2m,C)-orbits V 2k are
represented by the forms ω2k := e1 ∧ e2 + · · · + e2k−1 ∧ e2k (where {e1, . . . , e2m} is a basis of C2m).

Denote by H w2k ⊂ SL(2m,C) the stabilizer of the form ω2k , then V 2k can be identified with the
space of cosets SL(2m,C)�H w2k under the correspondence gω2k −→ g H w2k . Now, since SL(2m,C) is
simply connected, the fundamental group of the homogeneous space SL(2m,C)�H w2k is π0(H w2k )

the component group of the stabilizer H w2k :

π1(V 2k) 	 π1
(
SL(2m,C)�H w2k

) ∼−→ π0(H w2k ). (1)

It remains to determine the stabilizer for the SL(2m,C)-action. Here

H w2k = Sp(2k,C) × SL(2m − 2k,C) × exp Hom
(
C2m−2k,C2k) (2)

is a connected group i.e. π0(H w2k ) = {1}. Hence, from (1) we get

π1(V 2k) 	 π0(H w2k ) = {1}, (3)

that is, for k < m the orbits V 2k are simply connected. �
As usual DV denotes the sheaf of rings of differential operators on V with holomorphic coef-

ficients. We denote by θ :=∑1�i< j�2m xij
∂

∂xi j
the Euler vector field on V . We note the following

definition:

Definition 2. Let M be a DV -module.
(i) M is said to be homogeneous if it has a good filtration stable under the action of the Euler

vector field θ .
(ii) A section u in M is homogeneous if dimCC[θ]u < ∞. u is homogeneous of degree λ ∈ C, if

there exists j ∈N such that (θ − λ) ju = 0.

We recall the following useful theorem (see [15, Theorem 1.3]):

Theorem 3. Let M be a coherent DV -module equipped with a good filtration (Mk)k∈Z stable under the
action of θ . Then

i) M is generated over DV by finitely many homogeneous global sections.
ii) For any k ∈ N, λ ∈ C, the vector space Γ (V ,Mk)∩[⋃p∈N ker(θ −λ)p] of homogeneous global sections

in Mk of degree λ is finite-dimensional.

Remark 4. We will describe a holomorphic classification of regular holonomic DV -modules in
Modrh

Σ(DV ) but Theorem 3 permits to reduce these objects to algebraic (homogeneous) DV -modules.

Now recall that the universal covering of GL(2m,C) is SL(2m,C) × C: the morphism being de-
scribed by SL(2m,C) × C−→GL(2m,C), (X, t) −→ et X . We denote G := SL(2m,C) × C and G0 :=
SL(2m,C). We have the following useful remark:

Remark 5. From [15, Proposition 1.6.] we see that the infinitesimal action of GL(2m,C) on M lifts to
an action of its universal covering G on M. In particular G0 acts on M.
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3. Invariant differential operators on alternating matrices

Recall that the connected (reductive) Lie group GL(2m,C) acts on the vector space of skew-
symmetric matrices V by g · X := g X gt where X = (xij) is a 2m × 2m-skew-symmetric matrix in V
and g ∈ GL(2m,C). This defines a finite-dimensional linear representation (GL(2m,C), V ). This action
extends to the algebra C[V ] of polynomial functions on V and to the algebra Γ (V ,DV )pol of differen-
tial operators with coefficients in C[V ] by g · D := (gt)−1 Dg−1. We thus obtain algebras of invariant
C[V ]GL(2m,C) and Γ (V ,DV )GL(2m,C) . Recall that G0 := SL(2m,C) is the derived subgroup of GL(2m,C)

(i.e. the subgroup of commutators SL(2m,C) = [GL(2m,C),GL(2m,C)]). In this section we describe
A := Γ (V ,DV )G0 the C-algebra of G0-invariant differential operators with polynomial coefficients
on V (see formula (15)) and its quotients by some ideals (see Proposition 6 and Corollary 8).

Let X = (xij) be a 2m × 2m-skew-symmetric matrix in V , the pfaffian pf (X) for X is defined by

pf (X) := 1

2mm!
∑

σ∈S2m

sign(σ )xσ (1)σ (2)xσ (3)σ (4) · · · xσ (2m−1)σ (2m) (4)

(S2m is the symmetric group and sign(σ ) is the signature of σ ) and satisfies det(X) = pf (X)2.
The action of GL(2m,C) on the pfaffian is g · pf (X) = pf (g X gt) = det(g)pf (X) where X ∈ V and

g ∈ GL(2m,C); in particular, if g ∈ G0 we have pf (g X gt) = pf (X). Then the pfaffian is a relative
invariant of the representation (GL(2m,C), V ) (i.e. there exists a character χ : GL(2m,C) −→ C such
that g · pf (X) = χ(g)pf (X) for all g ∈ GL(2m,C)) and an invariant for G0.

Note that the algebra of G0-invariant polynomial functions is generated by the pfaffian pf (X) that
is

C[V ]G0 = C
[

pf (X)
]

such that pf (X) /∈C[V ]GL(2m,C). (5)

In that case the representation (GL(2m,C), V ) is said to be with one-dimensional quotient (see T. Lev-
asseur [12]).

We know from R. Howe and T. Umeda [5, p. 589, (11.3.4)] that the canonical generators for the
algebra Γ (V ,DV )GL(2m,C) of GL(2m,C)-invariant differential operators on V are the following skew
Capelli operators defined with the pfaffian:

Γk :=
∑

|I|=2k

pf (XI )pf (D I ) (6)

(1 � k � m). Here XI and D I indicate the submatrices XI = (xij)i, j∈I and D I = ( ∂
∂xi j

)i, j∈I for I ⊆
{1,2, . . . ,2m} respectively. This last algebra is known to be commutative (see [5, p. 581, (10.3) (the
abstract Capelli problem) and p. 612, Table (15.1)] or [23]):

Γ (V ,DV )GL(2m,C) = C[Γ1, . . . ,Γm]. (7)

Note that here Γ1 = θ :=∑1�i< j�2m xij
∂

∂xi j
is the Euler vector field on V .

Let us recall (see T. Levasseur [12, p. 508, Appendix, (3)] or Sato and Kimura [22, p. 145, (3)]) that
(GL(2m,C), V ) is an irreducible finite-dimensional linear representation which is “multiplicity free”
that is the associated representation of GL(2m,C) on polynomial functions C[V ] decomposes with-
out multiplicities. More precisely each irreducible representation of GL(2m,C) occurs at most once
in C[V ] (see T. Levasseur [12, p. 484, Definition 4.1] or Howe and Umeda [5] for details). Moreover
the representation (GL(2m,C), V ) has an open dense orbit and is called a prehomogneous vector
space (see T. Kimura [10, Chap. 2]). Note that the complement S of this dense orbit is a hypersurface
defined by the pfaffian S : X ∈ V , pf (X) = 0. In that case the representation (GL(2m,C), V ) is called
regular (see T. Kimura [10, Theorem 2.28, p. 43]).
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Now, following H. Rubenthaler [19, p. 1346; 3] or [20, p. 5, 6; 2.2], we need more information on
the irreducible regular prehomogeneous vector space (GL(2m,C), V ) to get the algebra of G0-invariant
differential operators A. Indeed, let us choose the matrix of the quadratic form on C2m to be J =[ 0 I2m

I2m 0

]
with I2m the 2m by 2m identity matrix. Identify End(C2m) to the space M2m(C) of 2m × 2m-

matrices and let g be the orthogonal Lie algebra so(C2m, J ) i.e.

g = {M ∈ End
(
C2m): t M J + J M = 0

}
. (8)

Let M ∈ g and write M = [ α β

γ η

]
with α,β,γ ,η ∈ M2m(C). Then we have

tη = −α, tβ = −β, tγ = −γ . (9)

Thus

M = B− + A + B+, (10)

where

A =
[
α 0
0 −tα

]
, B+ =

[
0 β

0 0

]
, B− =

[
0 0
γ 0

]
. (11)

With an obvious notation, it follows that g decomposes as

g = n− ⊕ l⊕ n+ (12)

where l ∼= gl(2m,C) and n± are commutative. Moreover, the adjoint action of l on n+ identifies with
the natural action of gl(2m,C) on the space of 2m × 2m-skew-symmetric matrices V . Going to the
associated Lie group L associated to l gives the representation(

L,n+)∼= (GL(2m,C), V
)
. (13)

For H. Rubenthaler [19, p. 1346, 3], such a (multiplicity free) irreducible regular prehomogeneous
vector space with one-dimensional quotient (GL(2m,C), V ) satisfying (12)–(13) is said to be of “com-
mutative parabolic type”.

In that case, according to H. Rubenthaler [19, Proposition 3.1, 3), p. 1346] or [20, Theorem 5.3.3,
p. 24] by adding the following pfaffian operators

δ := pf (X) and � := pf (D) (14)

to the list of the Capelli operators (6): Γ1, . . . ,Γm−1 above, we obtain the generators for the noncom-
mutative algebra of G0-invariant differential operators A that is:

A = C〈δ,�,Γ1,Γ2, . . . ,Γm−1〉.1 (15)

More precisely, denote by

J := {Q ∈ A/Q f = 0 ∀ f ∈C[δ]}⊂ A

the annihilator of G0-invariant polynomials C[δ]. In the following proposition, we give relations that
hold in the quotient algebra A/J .

1 In (15) the brackets 〈 〉 indicate the noncommutativity of A.
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Proposition 6. The following relations hold in the quotient algebra A/J :

(a) [θ, δ] = m · δ, [θ,�] = −m · �,

(b) [Γk,Γl] = 0 ∀k, l = 1, . . . ,m − 1,

(c) δ� =
m−1∏
j=0

(
θ

m
+ 2 j

)
,

(d) �δ =
m−1∏
j=0

(
θ

m
+ 2 j + 1

)
,

(e) Γk =
(

m

k

) k−1∏
j=0

(
θ

m
+ 2 j

)
,

(f) [Γk, δ] =
(

m

k

)
δ

{
k−1∏
j=0

(
θ

m
+ 2 j + 1

)
−

k−1∏
j=0

(
θ

m
+ 2 j

)}
,

(g) [Γk,�] =
(

m

k

){ k−1∏
j=0

(
θ

m
+ 2 j + 1

)
−

k−1∏
j=0

(
θ

m
+ 2 j

)}
�.

Remark 7. Let B denote the quotient of the free associative algebra on δ, θ = Γ1,Γ2, . . . ,Γm−1,� by
the ideal generated by the relations above. The above proposition says there is a natural surjective
map B −→A/J , but it is not claimed that the map is an isomorphism.

Before starting the proof of Proposition 6, we recall the explicit eigenvalues of the Capelli opera-
tors Γl (1 � l � m) obtained by K. Kinoshita and M. Wakayama [11]. From [11, p. 463, formula (3.10)]
we deduce that, for 1 � l � m, k ∈ Z,

Γlδ
k =
(

m

l

)( l−1∏
j=0

(k + 2 j)

)
δk. (16)

In particular for l = m (Γm = δ�) we get the (simplest) Cayley-type formula or more generally the
Bernstein–Sato polynomial (b-function) attached to V :

�δk =
(

m−1∏
j=0

(k + 2 j)

)
δk−1 (see [11, p. 463, Corollary 3.13]

)
. (17)

Proof of Proposition 6. The proof is devoted to demonstrating that the equations (a)–(g) hold in A/J .
The formula (a) are the well-known homogeneity relations since the pfaffian δ (resp. �) is a homo-
geneous polynomial of degree m (resp. −m). (b) holds because the GL(2m,C)-invariant operators
commute (see (7)). Now, we should note that the algebra A acts on the ring C[δ] of polynomials of
the pfaffian. In particular �δ (resp. δ�), homogeneous of degree 0 (i.e. [θ,�δ] = 0), acts on C[δ]. This
implies that the differential operator �δ (resp. δ�) is a polynomial of δ, ∂

∂δ
, that is, �δ ∈ C[δ, ∂

∂δ
]
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with δ ∂
∂δ

= 1
m θ . Thus �δ (resp. δ�) is a polynomial in θ . Letting the polynomial δ act from the left

of � in the first member and in the second member of the Bernstein–Sato formula (17) yields

δ�δk =
(

m−1∏
j=0

(k + 2 j)

)
δk ∀k ∈ Z. (18)

Since the pfaffian polynomial function δ (resp. δk) is a homogeneous function of degree m (resp. mk)
the second member of (18) can be written as follows:

m−1∏
j=0

(
θ

m
+ 2 j

)
δk =
(

m−1∏
j=0

(k + 2 j)

)
δk. (19)

Then, from (18) and (19), we deduce(
δ� −

m−1∏
j=0

(
θ

m
+ 2 j

))
δk = 0. (20)

This last means that the operator (δ� −∏m−1
j=0 ( θ

m + 2 j)) annihilates any polynomial function in C[δ].
Thus (δ�−∏m−1

j=0 ( θ
m + 2 j)) belongs to J that is we get the relation (c): δ� =∏m−1

j=0 ( θ
m + 2 j) mod J .

In the same way, by the Bernstein–Sato polynomial (17) we have

�δk+1 =
(

m−1∏
j=0

(k + 2 j + 1)

)
δk, (21)

�δδk =
(

m−1∏
j=0

(k + 2 j + 1)
)
δk, (22)

and the homogeneity of the pfaffian polynomial gives

m−1∏
j=0

(
θ

m
+ 2 j + 1

)
δk =
(

m−1∏
j=0

(k + 2 j + 1)

)
δk. (23)

So from (22) and (23), we have

�δδk =
m−1∏
j=0

(
θ

m
+ 2 j + 1

)
δk (24)

and the relation (d) is deduced. Next, we get the relation (e) from the formula (16) and the following
equality obtained thanks to the homogeneity of the polynomial function δ:

Γlδ
k =
(

m

l

)( l−1∏
j=0

(
θ

m
+ 2 j

))
δk. (25)

Therefore (f) and (g) are obtained from (e). �
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Now, denote by J the preimage in A of the ideal in A/J defined by the relations (a), (c), (d) of
Proposition 6. Put A :=A/J the quotient algebra of A by J .

Corollary 8. The quotient algebra A is generated by δ, θ , � satisfying the relations

[θ, δ] = m · δ,
[θ,�] = −m · �,

δ� =
m−1∏
j=0

(
θ

m
+ 2 j

)
,

�δ =
m−1∏
j=0

(
θ

m
+ 2 j + 1

)
.

Actually, this corollary is a particular case of T. Levasseur’s result in [12, Theorem 3.9, p. 483] or
H. Rubenthaler [19, Theorem 2.8, p. 1345], [20, Theorem 7.3.2, p. 37].

Proof of Corollary 8. Let P be an operator in A, we decompose it into homogeneous components
(P =∑ j∈Z P j ) P j of degree jm (i.e. [θ, P j] = jmP j) so that if j = 0 then P0 = ϕ(θ) is a polynomial

in θ . Indeed, P0 acts on C[δ] then P0 ∈ C[δ, ∂
∂δ

] with δ ∂
∂δ

= 1
m θ . If j > 0 then � j P j = ψ(θ) is a

polynomial in θ because � j P j is homogeneous of degree 0. Likewise if j < 0 then δ− j P j = φ(θ) is a
polynomial in θ . Thus for any P j homogeneous of degree jm, its class modulo J is of the form

P j mod J =
{

δ jφ j(θ) if j � 0,

δ− jψ j(θ) if j � 0
(26)

where φ j(θ), ψ j(θ) are (polynomials) homogeneous of degree 0. �
4. Invariant sections of DV -modules

This section is devoted to the main general argument of the paper. The idea is to show that the
DV -modules studied here are generated by their invariant global sections under the action of G0. The
proof makes use of DV -modules with support in the closure of the orbits V 2k (0 � k � m).

Theorem 9. A DV -module M in Modrh
Σ(DV ) is generated by its G0-invariant global sections.

To prove this key Theorem 9, we need some preliminary results.

4.1. A description of DV -modules supported by the closure of the GL(2m,C)-orbits V 2k (0 � k � m)

Let us denote by V 2k :=⋃ j�k V 2 j the closure of the GL(2m,C)-orbit V 2k , that is, V 2k := {X ∈ V :=
Λ2C2m/ rank(X)� 2k} the set of 2m × 2m-skew-symmetric matrices of rank 2k or less for 0 � k � m.
Then V 2m−2 is the hypersurface defined by the equation pf (X) = 0 where pf : V −→C, X −→ pf (X)

is the pfaffian mapping. Here we study DV -modules with support on V 2k . These modules will be used
in the sequel to prove the central Theorem 9.
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4.1.1. Invariant sections of O( 1
δ
)

Recall that we have denoted by δ := pf (X) and its dual � := pf (D) the pfaffians for X ∈ V and
D = ( ∂

∂xi j
) ∈DV respectively.

In this subsection we describe the subquotient modules for F := OV ( 1
δ
). Put ek := δ−k (k � 0).

Actually F is generated by its G0-invariant homogeneous sections ek satisfying the following relations
deduced from formulas (17)–(16):

δ.ek = ek−1, θek = −mkek, (27)

�ek =
(

m−1∏
j=0

(2 j − k)

)
ek+1, (28)

Γlek =
(

m

l

)( l−1∏
j=0

(2 j − k)

)
ek (29)

for 1 � l � m.

4.1.2. Characterization of quotient modules for O( 1
δ
)

We consider the submodules Fk := DV δ−k of F generated respectively by ek := δ−k (0 � k � 2m)
in OV ( 1

δ
):

F0 := OV ⊂ F1 := DV δ−1 ⊂ F2 := DV δ−2 ⊂ · · · ⊂ F2m := DV δ−2m. (30)

Remark 10. The Bernstein–Sato equation (17)

�δk =
(

m−1∏
j=0

(k + 2 j)

)
δk−1

guarantees the following equalities

F2k+1 = F2k+2 (0 � k � m − 1). (31)

Then we will use in the sequel the modules F2k and its quotient F2k/F2k−2 (1 � k � m).

Denote by

F 2k := F2k/F2k−2 = DV δ−2k/DV δ−(2k−2) (32)

the quotient module associated with F2k (1 � k � m).

Proposition 11. The quotient module F 2k is a simple holonomic DV -module of multiplicity 1 which is sup-
ported by V 2m−2k for 1 � k � m.

Indeed the relation (31) of the preceding Remark 10 implies the following equalities

F 0 = OV , F 2 := DV δ−2/OV = DV δ−1/OV , (33)

F 2k := DV δ−2k/DV δ−(2k−2) = DV δ−(2k−1)/DV δ−(2k−2), (34)
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and the following description for the quotient module F 2k := F2k/F2k−2 (1 � k � m):

F 2k :=
⎧⎨⎩

one generator e2k := e2k mod δ−(2k−2),

θe2k = −2mke2k,

pf (XI )e2k = 0 for |I| = (2m − 2k) + 2.

Then the quotient modules F 2k are generated by invariant sections e2k . They are simple DV -modules
supported by V 2m−2k .

Now we are interested in the following quotient modules for OV ( 1
δ
) by the F2k−2 which will be

used in the sequel:

R2k := OV

(
1

δ

)
/F2k−2 = OV

(
1

δ

)
/Dδ−(2k−2). (35)

They are generated by finitely many global homogeneous invariant sections and there exists the fol-
lowing Jordan–Hölder sequence:

OV

(
1

δ

)
/F2k−2, F2k−2/F2k−4, F2k−4/F2k−6, . . . , F2/F0, F0

supported respectively by

V 2m−2k, V 2m−(2k−2), V 2m−(2k−4), . . . , V 2m−2, V 2m.

Then we can see that the R2k are supported by the closure V 2m−2k for 1 � k � m.

Lemma 12. The DV -modules R2k := O( 1
δ
)/F2k−2 are generated by finitely many global invariant sections

and they are supported by V 2m−2k (1 � k � m) the closure of GL(2m,C)-orbits.

4.1.3. Sections of R2k extended
In this subsection we show that any section u of the DV -module R2k in the complement of

V 2m−2k−2 extends to the whole V .

Proposition 13. A section u ∈ Γ (V \V 2m−2k−2, R2k) of the DV -module R2k in the complement of V 2m−2k−2
extends to the whole V (k = 1, . . . ,m − 1).

Proof. First, note that the hypersurface V 2m−2 is smooth out of V 2m−4 and it is a normal variety
along V 2m−4 (smooth). Likewise the variety V 2m−2k is smooth out of V 2m−2k−2 and normal along
V 2m−2k−2 for k = 1, . . . ,m − 1.

Next, the DV -module R2k is the union of modules OV e2 j (k � j � m) such that the associated
graded modules gr(R2k) is the sum of modules OT ∗

V 2m−2k−2
V e2 j (k � j � m). In this case the prop-

erty of extension here is true for functions because V 2m−2k is normal along V 2m−2k−2 (k = 1, . . . ,

m − 1). �
Actually for the proof of Theorem 9, we need more information about the DV -module R2

that is a more precise statement as that the restriction of R2 to V − V 2m−4 is isomorphic to
OV −V 2m−4

(1/δ)/OV −V 2m−4
.

Lemma 14. The restriction of R2 to V − V 2m−4 is isomorphic to the quotient OV −V (1/δ)/OV −V .

2m−4 2m−4
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Proof. Let j : V − V 2m−4 −→ V be an open embedding and recall that we have denoted R2 :=
OV (1/δ)/OV . We have the following exact sequence 0 −→ OV −→ OV (1/δ) −→ R2 −→ 0. Since
the inverse image j+ is an exact functor we obtain the following exact sequence:

0 −→ j+(OV ) −→ j+
(
OV (1/δ)

)−→ j+(R2) −→ 0.

Thus we have the isomorphism

j+(R2) 	 j+
(
OV (1/δ)

)
/ j+(OV ) 	 OV −V 2m−4

(1/δ)/OV −V 2m−4
. �

Next, we will also need the following remark, which will be used in the algebraic context, in the
proof of Theorem 9.

Remark 15. (See [4,21].) Here V is an algebraic variety under the action of G0 = SL(2m,C).
i) For F a quasi-coherent sheaf on the algebraic variety V , U the complement of the closed set

defined by an equation f = 0 and s ∈ Γ (U ,F) a section of F on U , for all large enough n ∈ N, the
multiplication by the n-th power of f that is s∗ f n2 extends from the open set U to the whole V (i.e.
s∗ f n ∈ Γ (V ,F));

ii) If s′ , s′′ ∈ Γ (V ,F) are two extensions of the above section s ∈ Γ (U ,F), then for all large
enough k ∈ N, we have the equality

s′ ∗ f k = s′′ ∗ f k. (36)

This, on V × G0, gives the G0-invariance of the extension.

Now we embark on the proof of Theorem 9.

4.2. Proof of Theorem 9

Recall F := OV ( 1
δ
) and R2k := O( 1

δ
)/Dδ−(2k−2) for 1 � k � m (see Section 4.1.2). The D-module F

is generated by its G0-invariant homogeneous sections ek = δ−k where k � 0 subject to the relations
(27)–(29). In particular, F has subquotient modules R2k with support in V 2m−2k for 1 � k � m (see
Lemma 12).

Denote by M̃ ⊂ M the submodule generated over DV by G0-invariant homogeneous global sec-
tions i.e.

M̃ := DV
{

u ∈ Γ (V ,M)G0 , dimCC[θ]u < ∞}. (37)

We will see successively that the quotient module M�M̃ is supported by the closure of the
GL(2m,C)-orbits V 2m−2k (1 � k � m), and the monodromy is trivial since V 2m−2k\V 2m−2k−2 = V 2m−2k
is simply connected (see Proposition 1).

To begin with, M/M̃ is supported by V 2m−2: this will be proved in the algebraic context since
the result in the algebraic context implies all in the C-analytic context.

Denote by U := V \V 2m−2 (the complement of the pfaffian hypersurface) the algebraic variety,
and by U (C) the set of its complex points with its usual topology. On the Zariski open set U , the
given M is equivalent to that of a local system F on U (i.e. on U (C)). Since G0 is simply connected,
such a local system F is (only) an inverse image by the pfaffian map δ of a local system L on
Gm := P1\{0,∞} (i.e. on C∗) (one has a fiber bundle with connected and simply connected fibers):

F = δ−1L with δ : U −→ Gm. (38)

2 Here ∗ is the multiplication of sections of the structural sheaf O.
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The corresponding D-module N on Gm is generated by its sections σ1, . . . , σp ∈ Γ (Gm,N ) (Gm is
affine):

N = DGm 〈σ1, . . . , σp〉. (39)

The inverse images on U of these sections are G0-invariant and on U they generate M:

δ−1(σ1), . . . , δ
−1(σp) ∈ Γ (U ,M)G0 (40)

and

M|U = DU
〈
δ−1(σ1), . . . , δ

−1(σp)
〉

(41)

(because the action of G0 on the inverse image comes from the action of G0 on U , which is com-
patible with the projection δ : U −→ Gm (i.e. δ : U −→ C∗) and compatible with the trivial action
on Gm).

Note that each of these invariant sections δ−1(σ1), . . . , δ
−1(σp) extends from U to the whole

space V after a multiplication by a large enough power of the pfaffian δ (see Remark 15 i)):

δ−1(σ1), . . . , δ
−1(σp) ∈ Γ (V ,M). (42)

Moreover, after a multiplication by another power of δ, the extension is G0-invariant (see Re-
mark 15 ii)):

δ−1(σ1), . . . , δ
−1(σp) ∈ Γ (V ,M)G0 . (43)

Now taking the quotient of M by M̃ the module generated by G0-invariant sections, we then deduce
from (41) and (43) that

M/M̃ = 0 on U . (44)

This means that M/M̃ is supported by V 2m−2.
Next, if M is supported by V 2m−2, it is isomorphic out of V 2m−4 to a direct sum of a certain

number of copies of R2 (see Lemma 14), then there is a morphism v : M −→ Rq
2 whose sections

extend from V \V 2m−4 to the whole V (see Proposition 13). Here, the image v(M) is a submodule
of R2 then it is generated by its invariant homogeneous section (see Lemma 12) so that M/M̃ is
supported by V 2m−4.

In the same way by induction on k, if M is with support on V 2m−2k (1 � k � m) then there is a
morphism M −→ Rq

2k which is an isomorphism out of V 2m−2k−2, such that M/M̃ is with support
on V 2m−2k−2 because the submodules of R2k are also generated by their invariant homogeneous
sections. Finally, if M is supported by V 0 (the Dirac module with support at the origin) then the
result is obvious. This completes the proof of Theorem 9.

5. Equivalence of categories

In this section we establish the main result of this paper: Theorem 18.
Recall that A := C〈δ,�, θ,Γ2, . . . ,Γm−1〉 is the algebra of G0-invariant differential operators. Since

the Euler vector field θ belongs to A, we can decompose the algebra A under the adjoint action of θ :

A =
⊕

A[k], A[k] = {P ∈ A: [θ, P ] = kP
}

(45)

k∈N
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and we can check that

∀k, l ∈ N, A[k] ·A[l] ⊂ A[k + l] (46)

so A is a graded algebra.
Recall also that J ⊂ A is the annihilator of C[δ]. We have denoted J the preimage in A of the

ideal in A/J defined by the relations (a), (c), (d) of Proposition 6:

[θ, δ] = m · δ,
[θ,�] = −m · �,

δ� =
m−1∏
j=0

(
θ

m
+ 2 j

)
,

�δ =
m−1∏
j=0

(
θ

m
+ 2 j + 1

)
.

We put A the quotient of A by J : A :=A/J (see Corollary 8).
Now, since J is an ideal of A it decomposes also under the adjoint action of θ :

J =
⊕
k∈N

J [k], J [k] = J ∩A[k]. (47)

Note that J is a homogeneous ideal of the graded algebra A, thus the quotient algebra A = A/J is
naturally graded by

A[k] := (A/J )[k] = A[k]/J [k]. (48)

As in the Introduction we denote by Modgr(A) the category consisting of graded A-modules T
of finite type such that dimCC[θ]u < ∞ for any u in T . In other words, T is a direct sum of finite-
dimensional C-vector spaces:

T =
⊕
λ∈C

Tλ, Tλ :=
⋃
p∈N

ker(θ − λ)p (with dimC Tλ < ∞) (49)

equipped with the endomorphisms δ, θ , � of degree m, 0, −m, respectively and satisfying the rela-
tions (a), (c), (d) with (θ − λ) being a nilpotent operator on each Tλ .

Recall that Modrh
Σ(DV ) stands for the category consisting of regular holonomic DV -modules whose

characteristic variety is contained in Σ the union of conormal bundles to the orbits for the action of
GL(2m,C) on skew-symmetric matrices.

Let M be an object in the category Modrh
Σ(DV ), denote by Ψ (M) the submodule of Γ (V ,M)

consisting of G0-invariant homogeneous global sections u in M such that dimCC[θ]u < ∞:

Ψ (M) := {u ∈ Γ (V ,M)G0 , dimCC[θ]u < ∞}. (50)

We are going to show that Ψ (M) is an object in Modgr(A).
Let (σ1, . . . , σp) ∈ Γ (V ,M)G0 be a finite family of homogeneous invariant global sections gener-

ating the DV -module Ψ (M) (see Theorem 9):

Ψ (M) := DV 〈σ1, . . . , σp〉. (51)
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We are going to see that the family (σ1, . . . , σp) generates also Ψ (M) as an A-module: indeed, an
invariant section σ ∈ Ψ (M) can be written as

σ =
p∑

j=1

q j(X, D)σ j where q j ∈ DV . (52)

Denote by q̃ j := ∫SU(2m)
g · q j dg the average of q j over SU(2m) (compact maximal subgroup of G0).

Then the average q̃ j belongs to the algebra A (i.e. q̃ j ∈ A). Now denote by f j the class of q̃ j mod-
ulo J :

f j := q̃ j mod J that is f j ∈ A. (53)

Therefore we also have

σ =
p∑

j=1

q̃ jσ j =
p∑

j=1

f jσ j with f j ∈ A. (54)

This last means that

Ψ (M) := A〈σ1, . . . , σp〉, (55)

and Ψ (M) is an A-module. Moreover, according to Theorem 3 ii), we have

Ψ (M) =
⊕
λ∈C

Ψ (M)λ (56)

where

Ψ (M)λ := [Ψ (M)
]∩ [ ⋃

p∈N
ker(θ − λ)p

] (
with dimC Ψ (M)λ < ∞) (57)

is the finite-dimensional C-vector space of homogeneous global sections of degree λ ∈ C in Ψ (M).
Finally we can check that

A[k]Ψ (M)λ ⊂ Ψ (M)λ+k for all k ∈N, λ ∈C. (58)

So Ψ (M) is a graded A-module of finite type for the Euler vector field θ thanks to (55)–(58). This
means that Ψ (M) is an object in Modgr(A).

Conversely, let T be an object in the category Modgr(A), one associates to it the DV -module

Φ(T ) := M0

⊗
A

T (59)

where M0 :=DV /J . Then Φ(T ) is an object in the category Modrh
Σ(DV ).

Thus, we have defined two functors

Ψ : Modrh
Σ(DV ) −→ Modgr(A), Φ : Modgr(A) −→ Modrh

Σ(DV ). (60)

We need the two following lemmas:
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Lemma 16. The canonical morphism

T −→ Ψ
(
Φ(T )
)
, t −→ 1 ⊗ t (61)

is an isomorphism, and defines an isomorphism of functors IdModgr(A) −→ Ψ ◦ Φ .

Proof. As above M0 := DV /J . Denote by ε (the class of 1D modulo J ) the canonical generator
of M0. Let h ∈ DV , denote by h̃ ∈ A its average on SU(2m)(C) and by ϕ the class of h̃ modulo J ,
that is, ϕ ∈A.

Since ε is G0-invariant, we get h̃ε = h̃ε = εϕ . Moreover, we have h̃ϕ = 0 if and only if h̃ ∈ J ,
in other words ϕ = 0. Therefore the average operator (over SU(2m)) DV −→ A, h −→ h̃ induces
a surjective morphism of A-modules v : M0 −→ A. More generally, for any A-module T in the
category Modgr(A) the morphism v ⊗ 1T is surjective

vT : M0

⊗
A

T −→ A
⊗
A

T = T (62)

which is the left inverse of the morphism

uT : T −→ M0

⊗
A

T , t −→ ε ⊗ t, (63)

that is, (v ⊗ 1T ) ◦ (ε ⊗ 1T ) = v(ε) = 1T . This means that the morphism uT is injective. Next, the
image of uT is exactly the set of invariant sections of M0

⊗
A T = Φ(T ), that is, Ψ (Φ(T )): indeed if

σ =∑p
i=1 hi ⊗ ti is an invariant section in M0

⊗
A T , we may replace each hi by its average h̃i ∈ A,

then we get

σ =
p∑

i=1

h̃i ⊗ ti = ε ⊗
p∑

i=1

h̃iti ∈ ε ⊗ T , (64)

that is,
∑p

i=1 h̃iti ∈ T . Therefore the morphism uT is an isomorphism from T to Ψ (Φ(T )) and defines
an isomorphism of functors. �

Next we note the following

Lemma 17. The canonical morphism

w : Φ(Ψ (M)
)−→ M (65)

is an isomorphism and defines an isomorphism of functors Φ ◦ Ψ −→ IdModrh
Σ (DV )

.

Proof. As in Theorem 9 the DV -module M is generated by a finite family of invariant sections
(σi)i=1,...,p ∈ Ψ (M) so that the morphism w is surjective. Now consider Q the kernel of the mor-
phism w : Φ(Ψ (M)) −→ M. It is also generated over DV by its invariant sections, that is, by Ψ (Q).
Then we get

Ψ (Q) ⊂ Ψ
[
Φ
(
Ψ (M)
)]= Ψ (M) (66)

where we used Ψ ◦Φ = IdModgr(A) (see the preceding Lemma 16). Since the morphism Ψ (M) −→M
is injective (Ψ (M) ⊂ Γ (V ,M)) we obtain Ψ (Q) = 0. Therefore Q = 0 (because Ψ (Q) gener-
ates Q). �
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This section ends by Theorem 18 established by means of the preceding lemmas.

Theorem 18. The functors Φ and Ψ induce equivalence of categories

Modrh
Σ(DV )

∼−→ Modgr(A). (67)

6. Description of A-modules by certain kinds of quivers

This section consists in the description of objects in the category Modgr(A) by certain kinds of
quivers. Note that a graded A-module T in Modgr(A) defines an infinite diagram consisting of finite-
dimensional vector spaces Tλ (with (θ − λ) being a nilpotent operator on each Tλ , λ ∈ C) and linear
maps between them deduced from δ, θ , �:

· · · Tλ

δ

Tλ+m
�

· · · (68)

satisfying the following (θ − λ)Tλ ⊂ Tλ ,

δ� =
m−1∏
j=0

(
θ

m
+ 2 j

)
, (69)

�δ =
m−1∏
j=0

(
θ

m
+ 2 j + 1

)
. (70)

These diagrams are determined by finite subsets of objects and arrows:
a) For σ ∈ C/mZ, denote by T σ ⊂ T the submodule T σ =⊕λ=σ mod mZ

Tλ . Then T is generated
by the finite direct sum of T σ ’s

T =
⊕

σεC/mZ

T σ =
⊕

σεC/mZ

( ⊕
λ=σ mod mZ

Tλ

)
. (71)

b) If σ �= 0 mod mZ then the linear maps δ and � are bijective. Therefore T σ is determined by
one Tλ with the nilpotent action of (θ − λ).

c) If σ = 0 mod mZ then T σ is determined by one diagram of 2m elements

T−(2m−1)m

δ

T−(2m−2)m · · ·
�

T−m

δ

T0.
�

(72)

In the other degrees δ or � are bijective. Indeed, we have

T0 	 δk T0 	 Tmk (73)

and

T−(2m−1)m 	 �k T−(2m−1)m 	 T−(2m−1+k)m (k ∈N) (74)

thanks to relations (69)–(70). The operator δ� (resp. �δ) on Tλ has only one eigenvalue λ
m ( λ

m +
2)( λ

n + 4) × · · · × ( λ
m + 2m − 2) (resp. ( λ

m + 1)( λ
m + 3) × · · · × ( λ

m + 2m − 1)) so that Eqs. (69)–(70)
have each of them a unique solution θ of eigenvalue λ if λ is not a critical value. Here λ = 0,−2m,

−4m, . . . ,−(2m − 2)m or λ = −m, . . . ,−(2m − 1)m thus it is always the case.
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6.1. Examples of diagrams

Example 19. The irreducible DV -module OV is generated by e0 := 1V a homogeneous section of
degree 0 such that θe0 = 0 and �e0 = 0. This yields a graded A-module of finite type in Modgr(A)

with a basis (eq) where q = mk (k ∈ N) such that �e0 = 0 and satisfying the following system:

S0 =
⎧⎨⎩

θeq = qeq (q = mk, k ∈N),

δeq = eq+m,

�eq =∏m−1
j=0 (

q
m + 2 j)eq−m.

(75)

Since �e0 = 0 (i.e. �T0 = 0), the arrows on the left of T0 in the diagram vanish, that is,

0 T0

δ

Tm
�

· · · . (76)

Example 20. The Dirac module supported by {0}: B{0}|V . It is the Fourier transform of OV and
is generated by e−(2m−1)m a homogeneous section of degree −(2m − 1)m satisfying the equations:
θe−(2m−1)m = −(2m − 1)me−(2m−1)m and δe−(2m−1)m = 0.

This yields a graded A-module with basis (eq) where q = −(2m − 1)m − mk (k ∈ N) such that
δe−(2m−1)m = 0 satisfying the system:

S1 =
{

θeq = qeq (q = −(2m − 1)m − mk, k ∈ N),

δeq =∏m−1
j=0 (

q
m + 2 j + 1)eq+m.

(77)

Since δe−(2m−1)m = 0 (i.e. T−(2m−1)m = 0), the arrows on the right of T−(2m−1)m in the diagram vanish,
that is,

· · · T−2m2

δ

T−(2m−1)m
�

0. (78)
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