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1. Introduction

One knows by the Riemann-Hilbert correspondence [6] that there is a general equivalence be-
tween the category consisting of regular holonomic Dy-modules with characteristic variety X and
the category consisting of perverse sheaves on V (where V is a complex manifold) with microsup-
port X. This gives a classification of regular holonomic Dy-modules theoretically, but in practice the
classification of perverse sheaves is not always much simpler. A more accessible problem is as follows:
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given a complex manifold V on which a Lie group acts with finitely many orbits (V) je;; the problem
is to classify regular holonomic Dy -modules whose characteristic variety is contained in the union of
conormal bundles (X' :=J;¢, T;;jV) to these orbits. These modules form a full category which we

denote by ModrEh(Dv).

In this paper we consider the action of GL(N, C) on skew-symmetric tensors. This last induces
a natural action on V := A%(CV), which we will think of as the space of complex skew-symmetric
matrices of size N. There are (L%J + 1) orbits Vo := {X € V, rank(X) = 2k} the set of rank 2k-skew-
symmetric matrices in V (0 <k < [ 5] where [§] is the integer part of §). This study is done here
for N =2m even which is the most interesting case (see [17]).

The main ingredient to get the classification is the extension of the action of GL(2m,C) on V to
the action of its universal covering SL(2m, C) x C on regular holonomic Dy -modules in Modr)fl(Dv)
(see Remark 5). In particular we take a closer look on the action of SL(2m, C) on these objects. It
turns out that such Dy-modules are generated by finitely many global sections which are invariant
by SL(2m, C) (see Theorem 9).

Let us point out that here there is a natural C-algebra associated to this situation: the graded
algebra A of (polynomial coefficients) invariant differential operators acting on polynomials of the
pfaffian. It is precisely the quotient of A := I"(V, Dy)t@™0) the Weyl algebra of SL(2m, C)-invariant
differential operators on V, by an ideal described in Section 3 (see Proposition 6 and Corollary 8).

The main result of this paper is Theorem 18 saying that there is an equivalence of categories
between the category Mod%’(Dv) consisting of regular holonomic Dy -modules as above and the cat-
egory Mod®"(A) consisting of graded .4-modules of finite type for the Euler vector field on V. Actually
the image by this equivalence of a regular holonomic Dy-module is its set of global homogeneous
sections (i.e. global sections of finite type for the Euler vector field on V) which are invariant under
the action of SL(2m, C). Note that we establish here one more case of the conjecture by T. Levasseur
(see [12, p. 508, Conjecture 5.17]).

The C-algebra A is described simply by generators and relations (see Corollary 8) thanks to skew-
Capelli identities constructed by R. Howe and T. Umeda (see [5, p. 592, Corollary (11.3.19)]) and
explicitly calculated by K. Kinoshita and M. Wakayama [11]. This leads to the description of the latter
category Mod® (A) as an “elementary” category consisting of diagrams of finite-dimensional com-
plex vector spaces and linear maps between them satisfying certain relations (quiver category, see
Section 6).

We should note that, even before our study, several authors, notably L. Boutet de Monvel [1] gave,
very elegantly, a description of regular holonomic D-modules in one variable by using pairs of finite-
dimensional C-vector spaces and certain linear maps. Galligo, Granger and Maisonobe [3] obtained,
using the Riemann-Hilbert correspondence, a classification of regular holonomic Dgn-modules with
singularities along the hypersurface x1 - --x, = 0 by 2"-tuples of C-vector spaces with a set of linear
maps. L. Narvaez Macarro [18] treated the case y? = xP using the method of Beilinson and Verdier and
generalized this study to the case of reducible plane curves. R. Macpherson and K. Vilonen [13] treated
the case with singularities along the curve y"™ = x™ etc. Finally let us mention that the author has
obtained similar results for holonomic D-modules on M, (C) the space of complex square matrices
associated to the action of GL(n, C) x GL(n, C) (see [14,16]) and on C" associated to the action of the
orthogonal group (see [15]).

Throughout the paper we assume that the reader is familiar with all basic notions of D-modules
theory (see [2,7-9]).

2. Preliminary results

As in the Introduction V denotes the complex vector space of 2m x 2m-skew-symmetric matrices.
We denote a typical element of the space by X, with entries x;; (1 <1i, j < 2m) with the understanding
that xj; = —x;; and x;; = 0. The action of GL(2m, C) on skew-symmetric matrices X is given by g- X :=
gXgt for g € GL(2m, C). The orbits for this action are the set of skew-symmetric matrices X in V of
rank exactly 2k (0 < k < m) which we will denote by V5 := {X € V,rank(X) = 2k}. We have the
following proposition:
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Proposition 1. For k < m the GL(2m, C)-orbits V5 are simply connected.

Proof. Note that for k <m the SL(2m, C) and GL(2m, C)-orbits are the same. If the skew-symmetric
matrices are thought of as the skew-symmetric bilinear forms, then the SL(2m, C)-orbits V,, are
represented by the forms woy :=e! Ae? + .-+ e2k~1 A e2k (where {el,...,e2™} is a basis of C2™),

Denote by Hy,, C SL(2m,C) the stabilizer of the form wy, then Vy can be identified with the
space of cosets SL(2m, C) /Hy,, under the correspondence gwyx —> gHy,,. Now, since SL(2m, C) is
simply connected, the fundamental group of the homogeneous space SL(2m,C), Hy,, is mwo(Hy,,)
the component group of the stabilizer Hy,, :

(Vo) = 711 (SL2m, C) /Huy, ) = 7o(Hwy,). (1)
It remains to determine the stabilizer for the SL(2m, C)-action. Here
Hy,, = Sp(2k, C) x SL(2m — 2k, C) x exp Hom(C?"~2 %) 2)
is a connected group i.e. wo(Hw,,) = {1}. Hence, from (1) we get

m1(Var) = mo(Hwy,) = {1}, (3)
that is, for k <m the orbits V,; are simply connected. O

As usual Dy denotes the sheaf of rings of differential operators on V with holomorphic coef-
ficients. We denote by 0 := Y1 «;_j<om xij% the Euler vector field on V. We note the following

definition:

Definition 2. Let M be a Dy-module.

(i) M is said to be homogeneous if it has a good filtration stable under the action of the Euler
vector field 6.

(ii) A section u in M is homogeneous if dimc C[0]u < oco. u is homogeneous of degree A € C, if
there exists j € N such that (6 — A)Ju =0.

We recall the following useful theorem (see [15, Theorem 1.3]):

Theorem 3. Let M be a coherent Dy -module equipped with a good filtration (My)recyz stable under the
action of 6. Then

i) M is generated over Dy by finitely many homogeneous global sections.

ii) Forany k e N, A € C, the vector space I (V , M) N [UpEN ker(6 — 1)P] of homogeneous global sections
in My of degree A is finite-dimensional.

Remark 4. We will describe a holomorphic classification of regular holonomic Dy-modules in
Modr)?(Dv) but Theorem 3 permits to reduce these objects to algebraic (homogeneous) Dy -modules.

Now recall that the universal covering of GL(2m, C) is SL(2m,C) x C: the morphism being de-
scribed by SL(2m, C) x C —GL(2m, C), (X,t) —> e!X. We denote G :=SL(2m,C) x C and Gg :=
SL(2m, C). We have the following useful remark:

Remark 5. From [15, Proposition 1.6.] we see that the infinitesimal action of GL(2m, C) on M lifts to
an action of its universal covering G on M. In particular Go acts on M.
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3. Invariant differential operators on alternating matrices

Recall that the connected (reductive) Lie group GL(2m,C) acts on the vector space of skew-
symmetric matrices V by g - X := gXg' where X = (x;j) is a 2m x 2m-skew-symmetric matrix in V
and g € GL(2m, C). This defines a finite-dimensional linear representation (GL(2m, C), V). This action
extends to the algebra C[V] of polynomial functions on V and to the algebra I"(V, Dy )P of differen-
tial operators with coefficients in C[V] by g- D := (gf)~'Dg~'. We thus obtain algebras of invariant
C[V]eL@n.©) and (V, Dy)CL@m-O) Recall that Gg := SL(2m, C) is the derived subgroup of GL(2m, C)
(i.e. the subgroup of commutators SL(2m, C) = [GL(2m, C), GL(2m, C)]). In this section we describe
A:=T'(V,Dy)% the C-algebra of Go-invariant differential operators with polynomial coefficients
on V (see formula (15)) and its quotients by some ideals (see Proposition 6 and Corollary 8).

Let X = (x;j) be a 2m x 2m-skew-symmetric matrix in V, the pfaffian pf(X) for X is defined by

1 .
pf(X):= Sl > sign(0)Xo ()0 )Xo 3)o @)+ Xo @m-1)o @m) (4)

’ 0€Soum

(Som is the symmetric group and sign(o) is the signature of o) and satisfies det(X) = pf (X)2.

The action of GL(2m, C) on the pfaffian is g - pf(X) = pf(gXg') = det(g)pf(X) where X € V and
g € GL(2m, C); in particular, if g € Go we have pf(gXg') = pf(X). Then the pfaffian is a relative
invariant of the representation (GL(2m, C), V) (i.e. there exists a character x : GL(2m, C) — C such
that g - pf(X) = x(g)pf(X) for all g € GL(2m, C)) and an invariant for Gy.

Note that the algebra of Gp-invariant polynomial functions is generated by the pfaffian pf(X) that
is

C[V1® =C[pf(X)] suchthat pf(X)¢C[V]LZmO), (5)

In that case the representation (GL(2m, C), V) is said to be with one-dimensional quotient (see T. Lev-
asseur [12]).

We know from R. Howe and T. Umeda [5, p. 589, (11.3.4)] that the canonical generators for the
algebra I'(V, Dy)®L@m-C) of GL(2m, C)-invariant differential operators on V are the following skew
Capelli operators defined with the pfaffian:

==Y pf(Xnpf(D) (6)

[|=2k

(1 <k <m). Here X; and D; indicate the submatrices X; = (xjj)i je; and D; = (%)i,jel for I C

{1,2,...,2m} respectively. This last algebra is known to be commutative (see [5, p. 581, (10.3) (the
abstract Capelli problem) and p. 612, Table (15.1)] or [23]):

'V, D)0 —Crry, ..., Il (7)

Note that here It =6 :=} 1 <;_j<om x,-jﬁu is the Euler vector field on V.

Let us recall (see T. Levasseur [12, p. 508, Appendix, (3)] or Sato and Kimura [22, p. 145, (3)]) that
(GL(2m,C), V) is an irreducible finite-dimensional linear representation which is “multiplicity free”
that is the associated representation of GL(2m, C) on polynomial functions C[V] decomposes with-
out multiplicities. More precisely each irreducible representation of GL(2m, C) occurs at most once
in C[V] (see T. Levasseur [12, p. 484, Definition 4.1] or Howe and Umeda [5] for details). Moreover
the representation (GL(2m,C), V) has an open dense orbit and is called a prehomogneous vector
space (see T. Kimura [10, Chap. 2]). Note that the complement S of this dense orbit is a hypersurface
defined by the pfaffian S: X € V, pf(X) =0. In that case the representation (GL(2m, C), V) is called
regular (see T. Kimura [10, Theorem 2.28, p. 43]).
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Now, following H. Rubenthaler [19, p. 1346; 3] or [20, p. 5, 6; 2.2], we need more information on
the irreducible regular prehomogeneous vector space (GL(2m, C), V) to get the algebra of Go-invariant
differential operators A. Indeed, let us choose the matrix of the quadratic form on C?" to be | =

[ 120 %’"] with I, the 2m by 2m identity matrix. Identify End(C2™) to the space My, (C) of 2m x 2m-

matrices and let g be the orthogonal Lie algebra so(C?™, J) i.e.

g={M € End(C*"): ‘M ] + JM =0}. (8)
Let M € g and write M = [;‘j ‘z] with «, 8, ¥, n € My, (C). Then we have
‘m=-a, 'B=—B, 'y=-y 9)
Thus
M=B"+A+B", (10)
where
a0 . Jo B __Jo o
R N Y N R

With an obvious notation, it follows that g decomposes as
g:nf@lﬂarﬁ (12)
where [ = gl(2m, C) and n* are commutative. Moreover, the adjoint action of [ on nt identifies with

the natural action of gl(2m, C) on the space of 2m x 2m-skew-symmetric matrices V. Going to the
associated Lie group L associated to [ gives the representation

(L,n") = (GL(2m,C), V). (13)
For H. Rubenthaler [19, p. 1346, 3], such a (multiplicity free) irreducible regular prehomogeneous
vector space with one-dimensional quotient (GL(2m, C), V) satisfying (12)-(13) is said to be of “com-
mutative parabolic type”.

In that case, according to H. Rubenthaler [19, Proposition 3.1, 3), p. 1346] or [20, Theorem 5.3.3,
p. 24] by adding the following pfaffian operators

§:=pf(X) and A :=pf(D) (14)

to the list of the Capelli operators (6): I7,..., Im-1 ab(ye, we obtain the generators for the noncom-
mutative algebra of Go-invariant differential operators A that is:

A=C(8, A, T, oy, Tne1)! (15)
More precisely, denote by
J={QeA/Qf =0VfeC[§]}cA

the annihilator of Go-invariant polynomials C[6]. In the following proposition, we give relations that
hold in the quotient algebra A/.J.

1 In (15) the brackets ( ) indicate the noncommutativity of A.
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Proposition 6. The following relations hold in the quotient algebra A/ 7 :

(@) [6,6]=m-§, [0, Al=—m-A,

() [ I1=0 Vk,iI=1,....m—1,
m—1 9 .

(© 8A g(mHJ)’
m—1

d As= H<%+21+1),

j=0

k—1

© n<=(':>1'[<%+21),
j=0
m k—1 0 k—1 9
(f) [Fk,é]:<k>8:H(E+2j+1>—n<a+2j)},

j=0 j=0
m k—1 0 k—1 0
® [Fk,A]=<k){Jl;[)(a—l—ZJ—i-l)—E)(E—i—ZJ)}A.

Remark 7. Let 3 denote the quotient of the free associative algebra on 8,0 =TI, I, ..., Ilhn—1, A by
the ideal generated by the relations above. The above proposition says there is a natural surjective
map B — A/J, but it is not claimed that the map is an isomorphism.

Before starting the proof of Proposition 6, we recall the explicit eigenvalues of the Capelli opera-
tors I7 (1 <1< m) obtained by K. Kinoshita and M. Wakayama [11]. From [11, p. 463, formula (3.10)]
we deduce that, for 1<I<m, keZ,

1-1
nisk= (T) (ﬂ(/< + 21‘))8"- (16)

j=0

In particular for [ =m (I, = 8A) we get the (simplest) Cayley-type formula or more generally the
Bernstein-Sato polynomial (b-function) attached to V:

m—1
ASk = ( []k+2 j)>5’<—1 (see [11, p. 463, Corollary 3.13]). (17)
j=0

Proof of Proposition 6. The proof is devoted to demonstrating that the equations (a)-(g) hold in A/.7.
The formula (a) are the well-known homogeneity relations since the pfaffian § (resp. A) is a homo-
geneous polynomial of degree m (resp. —m). (b) holds because the GL(2m, C)-invariant operators
commute (see (7)). Now, we should note that the algebra A acts on the ring C[8] of polynomials of
the pfaffian. In particular Ag (resp. §A), homogeneous of degree 0 (i.e. [0, A§] =0), acts on C[§]. This

implies that the differential operator A (resp. §A) is a polynomial of 8, % that is, AS € C[4, %]
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with 833—5 = %9. Thus AS (resp. §A) is a polynomial in 6. Letting the polynomial § act from the left
of A in the first member and in the second member of the Bernstein-Sato formula (17) yields

m—1
8A8k=<l_[(k+2j))8k vk € Z. (18)
j=0

Since the pfaffian polynomial function § (resp. §%) is a homogeneous function of degree m (resp. mk)
the second member of (18) can be written as follows:

m—1 m—1

6 Nk o\ ok
H(E-I—Z])(S _<l_[(k+21)>5. (19)
j=0 j=0

Then, from (18) and (19), we deduce
m—1 i
SA — —+2j)]sk=o0.
( ]_[(m + J>>8 0 (20)
j=0
This last means that the operator (§A — ]_[T:_Ol(% + 2j)) annihilates any polynomial function in C[§].

Thus (A — 1_['}:0](% +2j)) belongs to 7 that is we get the relation (c): §A = HTz_ol(% +2j) mod J.
In the same way, by the Bernstein-Sato polynomial (17) we have

m—1

AskH :(1—[(k+2j+1)>8k, (21)
j=0
m—1

ASSK = (]‘[(k+2j+1))5’<, (22)
j=0

and the homogeneity of the pfaffian polynomial gives
m—1 P m—1
1_[<—+2j+1>8"=(l_[(k+2j+1)>6". (23)
. m ;
j=0 j=0
So from (22) and (23), we have
m-1
ASSk = — +2j+1)8 24
E) (m +2j+ ) (24)

and the relation (d) is deduced. Next, we get the relation (e) from the formula (16) and the following
equality obtained thanks to the homogeneity of the polynomial function §:

-1
sk = (T)(]‘[(%H]’))ak. (25)
j=0

Therefore (f) and (g) are obtained from (e). O
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Now, denote by J the preimage in A of the ideal in .Zlg defined by the relations (a), (c), (d) of
Proposition 6. Put A :=.4/7 the quotient algebra of A by 7.

Corollary 8. The quotient algebra A is generated by §, 0, A satisfying the relations

[0,6]=m-3,

[6,Al=—m-A,
m—1 0

SA = —+2j),
(5 +2)

m—1

)
AS = H(E“Hl)’

j=0

Actually, this corollary is a particular case of T. Levasseur’s result in [12, Theorem 3.9, p. 483] or
H. Rubenthaler [19, Theorem 2.8, p. 1345], [20, Theorem 7.3.2, p. 37].

Proof of Corollary 8. Let P be an operator in A, we decompose it into homogeneous components
(P= ZjeZ Pj) P; of degree jm (i.e. [0, Pj] = jmP;) so that if j =0 then Pg = ¢(6) is a polynomial
in 6. Indeed, Po acts on C[8] then Pq e C[8, ] with §:5 = L6. If j >0 then AJP; =y (6) is a
polynomial in 6 because AJP; is homogeneous of degree 0. Likewise if j <O then §7/P; =¢(0) is a
polynomial in 6. Thus for any P; homogeneous of degree jm, its class modulo J is of the form

5igj6) ifj>0,

P; mod J = . o
§7Iyi(0) ifj<0

(26)

where ¢;(6), ¥;(6) are (polynomials) homogeneous of degree 0. O

4. Invariant sections of Dy -modules

This section is devoted to the main general argument of the paper. The idea is to show that the
Dy -modules studied here are generated by their invariant global sections under the action of Gg. The
proof makes use of Dy-modules with support in the closure of the orbits Vo (0 <k <m).

Theorem 9. A Dy -module M in Mod%1 (Dy) is generated by its Gg-invariant global sections.

To prove this key Theorem 9, we need some preliminary results.
4.1. A description of Dy -modules supported by the closure of the GL(2m, C)-orbits V, (0 <k <m)

Let us denote by Vyy := Uj<k V> the closure of the GL(2m, C)-orbit Vy, that is, Vo :i={XeV:=
AZCZ"i/ rank(X) < 2k} the set of 2m x 2m-skew-symmetric matrices of rank 2k or less for 0 < k <m.
Then Vom— is the hypersurface defined by the equation pf(X) =0 where pf :V — C, X —> pf(X)

is the pfaffian mapping. Here we study Dy -modules with support on V5. These modules will be used
in the sequel to prove the central Theorem 9.
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4.1.1. Invariant sections of(’)(%)
Recall that we have denoted by § := pf(X) and its dual A := pf(D) the pfaffians for X € V and
D= (%) € Dy respectively.

In this subsection we describe the subquotient modules for F := Ov(%). Put e, := 8% (k > 0).
Actually F is generated by its Go-invariant homogeneous sections ej satisfying the following relations
deduced from formulas (17)-(16):

8.y =ek—1, Oey = —mkey, (27)
m—1

Aep = ( []ei- k)) €k+1s (28)
j=0

-1
Tey = (’7) (H(zj - k))ek (29)
j=0

for 1<I<m.
4.1.2. Characterization of quotient modules for (’)(%)
We consider the submodules Fj := Dy 8~ of F generated respectively by e, := 8% (0 <k < 2m)
in Oy (3):
Fo:=0Oy CF1:=Dy8 ' CFy:=Dy82C--- C Fap:=Dys 2. (30)
Remark 10. The Bernstein-Sato equation (17)
m—1
ASK = ( [T&+ 2j))5’<—1
j=0
guarantees the following equalities
Fakp1=Foyz (O<k<m—1). (31)
Then we will use in the sequel the modules Fy, and its quotient Fyi/For_2 (1 <k <m).
Denote by
F2K .= Fy/Fok_y = Dy 8 /Dy s~ =2 (32)
the quotient module associated with Fop, (1 <k <m).

Proposition 11. The quotient module F2

ported by Vom_o for 1 <k <m.

is a simple holonomic Dy -module of multiplicity 1 which is sup-

Indeed the relation (31) of the preceding Remark 10 implies the following equalities

FP=0y, F2:=Dy6%/Oy =Dys /0Oy, (33)
sz = DVS—Zk/,DVS—(Zku) — ,DV(S—(Zkf])/DV(S—(Zk—Z)’ (34)
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and the following description for the quotient module FZ := For/Fok—2 (1 <k <m):
one generator &y := ey mod 8~ (k=2

Oeor = —2mkeyy,

pf(Xpey =0for [I| = (2m — 2k) + 2.

F2k —

Then the quotient modules F2X are generated by invariant sections é,. They are simple Dy -modules
supported by Vm_ak.

Now we are interested in the following quotient modules for Ov(%) by the Fy;_» which will be
used in the sequel:

1 1
Rak := Oy (5)/F2H =0y <§>/Ds—@k—2>. (35)

They are generated by finitely many global homogeneous invariant sections and there exists the fol-
lowing Jordan-Holder sequence:

1
Ov(g)/sz—z, Fok—2/Fak—4, For—4a/Fa—6, ..., F2/Fo, Fo

supported respectively by
Vom—2. 72m7(2k72)7 VZm—(Zk—4)7 s Vomoa, Von.
Then we can see that the Ry are supported by the closure Vyn_y for 1<k <m.

Lemma 12. The Dy -modules Ry := (’)(%) /Fox_o are generated by finitely many global invariant sections
and they are supported by Vy,_ok (1 < k < m) the closure of GL(2m, C)-orbits.

4.1.3. Sections of Ry, extended
_In this subsection we show that any section u of the Dy-module Ry in the complement of
V om—2k—2 extends to the whole V.

Proposition 13. A section u € I'(V\V ym_2x—2, Rox) of the Dy -module Ry in the complement of V ym—_2x—2
extends to the whole V (k=1,...,m—1).

Proof. First, note that the hypersurface Vo;,_, is smooth out of Vy,_4 and it is a normal variety
along Vym_4 (smooth). Likewise the variety V,,_o, is smooth out of Vy,_ 2> and normal along
Vom—ok— fork=1,... . m—1.

Next, the Dy-module Ry is the union of modules Oyeyj (k < j < m) such that the associated

graded modules gr(Ry) is the sum of modules (’)T% vezj (k< j<m). In this case the prop-
2m—2k—2

erty of extension here is true for functions because V,,_y is normal along Vo, ok—2 (k=1,...,
m—1). O

Actually for the proof of Theorem 9, we need more information about the Dy-module R;
that is a more precise statement as that the restriction of Ry to V — Vy;_4 is isomorphic to

Ov_vyn s (1/0/Oy_y,.

Lemma 14. The restriction of Ry to V — V ym_4 is isomorphic to the quotient va\72m74 (1/6)/(9\,7‘72”174.
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Proof. Let j:V — Vy,_4 —> V be an open embedding and recall that we have denoted R; :=
Oy (1/8)/Oy. We have the following exact sequence 0 — Oy — Oy (1/§) — R, — 0. Since
the inverse image j* is an exact functor we obtain the following exact sequence:

0— j*(Oy) — j7(Ov(1/8)) — j*(R2) — 0.
Thus we have the isomorphism
it Ry = jH(0Ov(1/8)/jH OV =0y g, /8Oy g, .. O

Next, we will also need the following remark, which will be used in the algebraic context, in the
proof of Theorem 9.

Remark 15. (See [4,21].) Here V is an algebraic variety under the action of Gy = SL(2m, C).

i) For F a quasi-coherent sheaf on the algebraic variety V, U the complement of the closed set
defined by an equation f =0 and s € I'(U, F) a section of F on U, for all large enough n € N, the
multiplication by the n-th power of f that is s* f"? extends from the open set U to the whole V (i.e.
s*flel(V,F))

ii) If s/, s” e '(V, F) are two extensions of the above section s € I'(U, F), then for all large
enough k € N, we have the equality

S/*fk — S”*fk. (36)
This, on V x Gg, gives the Gp-invariance of the extension.

Now we embark on the proof of Theorem 9.
4.2. Proof of Theorem 9

Recall F:= Oy (3) and Ry := O(})/Ds~?=2 for 1 <k <m (see Section 4.1.2). The D-module F
is generated by its Gg-invariant homogeneous sections e, = § ¥ where k > 0 subject to the relations
(27)-(29). In particular, F has subquotient modules Ry, with support in Vy,_p for 1 <k <m (see
Lemma 12).

Denote by M C M the submodule generated over Dy by Gp-invariant homogeneous global sec-
tions i.e.

M:=Dyf{ue(V,M)°, dimc C[0]u < oo}. (37)

We will see successively that the quotient module M/./W is supported by the closure of the
GL(2m, ©)-orbits Vym_s (1 <k <m), and the monodromy is trivial since Vom_2k\Vam—2k—2 = Vom—2k
is simply connected (see Proposition 1).

To begin with, M /M is supported by Vo;,_»: this will be proved in the algebraic context since
the result in the algebraic context implies all in the C-analytic context.

Denote by U := V\Van_> (the complement of the pfaffian hypersurface) the algebraic variety,
and by U(C) the set of its complex points with its usual topology. On the Zariski open set U, the
given M is equivalent to that of a local system F on U (i.e. on U(C)). Since Gy is simply connected,
such a local system F is (only) an inverse image by the pfaffian map & of a local system £ on
Gm :=P"\{0, o0} (i.e. on C*) (one has a fiber bundle with connected and simply connected fibers):

F=81L withs:U — Gp. (38)

2 Here « is the multiplication of sections of the structural sheaf O.



126 P. Nang / Journal of Algebra 356 (2012) 115-132

The corresponding D-module N on Gy, is generated by its sections o7, ...,0p € I'(Gp, N) (Gp, is
affine):

N =Dg, (01, ...,0p). (39)
The inverse images on U of these sections are Gg-invariant and on U they generate M:
8 Y1), ...,8 Wop) e (U, M)©0 (40)
and
My =Dy{s7(01),...,8 (op)) (41)

(because the action of Gg on the inverse image comes from the action of Gy on U, which is com-
patible with the projection 6 : U — Gy, (i.e. § : U — C*) and compatible with the trivial action
on Gp).

Note that each of these invariant sections 5_1(0'1),...,8_1(0'13) extends from U to the whole
space V after a multiplication by a large enough power of the pfaffian § (see Remark 15i)):

8§ Yo1), ..., 67 op) € T(V, M). (42)

Moreover, after a multiplication by another power of §, the extension is Gg-invariant (see Re-
mark 15ii)):

8 1o, ..., 8 Nop) e M'(V, M)CO, (43)

Now taking the quotient of M by M the module generated by Go-invariant sections, we then deduce
from (41) and (43) that

M//\'/Tzo onU. (44)

This means that M//ﬁ is supported by Vop_».

Next, if M is supported by Vym_», it is isomorphic out of V,_4 to a direct sum of a certain
number of copies of R, (see Lemma 14), then there is a morphism v : M — Rg whose sections
extend from V\Vy;,_4 to the whole V (see Proposition 13). Here, the image v(M) is a submodule
of R, then it is generated by its invariant homogeneous section (see Lemma 12) so that M/ M is
supported by Van_s.

In the same way by induction on k, if M is with support on Vyn,_z (1 <k < m) then there is a
morphism M — RJ, which is an isomorphism out of Vyn_s_2, such that M/M is with support
on Vym_ak_> because the submodules of Ry are also generated by their invariant homogeneous
sections. Finally, if M is supported by V¢ (the Dirac module with support at the origin) then the
result is obvious. This completes the proof of Theorem 9.

5. Equivalence of categories
In this section we establish the main result of this paper: Theorem 18.

Recall that A:=C(5, A, 0, I3, . .., I'm—1) is the algebra of Go-invariant differential operators. Since
the Euler vector field 6 belongs to .4, we can decompose the algebra .A under the adjoint action of 6:

A=EP Ak, Alkl={P e A: [0, P1=kP} (45)
keN
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and we can check that
Vk,leN, Afk]-Alll c Alk +1] (46)

so A is a graded algebra. . _
Recall also that J C A is the annihilator of C[§]. We have denoted J the preimage in A of the
ideal in A/J defined by the relations (a), (c), (d) of Proposition 6:

[6,8]=m-3,
[0, Al=—m-A,

m—1 P
SA = —+2j,
(5 +2)

m—1

)
AS:H(E—FZ]'—{—]).

j=0

We put A the quotient of A by 7: A:=A/7 (see Corollary 8).
Now, since 7 is an ideal of A it decomposes also under the adjoint action of 6:

T =Tk, Tki=JnAlk. (47)
keN

Note that 7 is a homogeneous ideal of the graded algebra A, thus the quotient algebra A = A/7 is
naturally graded by

Alk] = (A/ )kl = A[k]/ T k] (48)

As in the Introduction we denote by Mod® (A) the category consisting of graded .A-modules T
of finite type such that dim¢ C[@]u < oo for any u in T. In other words, T is a direct sum of finite-
dimensional C-vector spaces:

T=@PT.. Ti:=|ker® — )" (with dimc T, < c0) (49)
reC peN

equipped with the endomorphisms &, 6, A of degree m, 0, —m, respectively and satisfying the rela-
tions (a), (c), (d) with (6 — 1) being a nilpotent operator on each T,.

Recall that Modr)?(Dv) stands for the category consisting of regular holonomic Dy -modules whose
characteristic variety is contained in X the union of conormal bundles to the orbits for the action of
GL(2m, C) on skew-symmetric matrices.

Let M be an object in the category Modr)f—‘(Dv), denote by ¥ (M) the submodule of I'(V, M)
consisting of Gp-invariant homogeneous global sections u in M such that dim¢ C[f]u < oo:

w(M):={ue 'V, M), dimcC[o]u < oo}. (50)
We are going to show that ¥ (M) is an object in Mod®' (A).
Let (01,...,0p) e I'(V, M)C0 be a finite family of homogeneous invariant global sections gener-

ating the Dy -module ¥ (M) (see Theorem 9):

W (M) :=Dy (01, ...,0p). (51)
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We are going to see that the family (o1, ...,0p) generates also ¥ (M) as an A-module: indeed, an
invariant section o € ¥ (M) can be written as

P
U=qu(X,D)oj where gq; € Dy. (52)
j=1

Denote by §j := fsuam) g -q;jdg the average of q; over SU(2m) (compact maximal subgroup of Go).

Then the average ; belongs to the algebra A (i.e. §j € A). Now denote by f; the class of §; mod-
ulo J:

fi:==q; modJ thatis fj € A. (53)
Therefore we also have
p p
U=qu0j=zfj0j with f; € A. (54)
j=1 j=1
This last means that
Y (M) = Afoq,...,0p), (55)

and ¥ (M) is an .A-module. Moreover, according to Theorem 3ii), we have

v (M) =P M (56)
reC
where
(M), =[P (M)]N [ |J ker(o — A)p:| (with dim¢ ¥ (M);. < o0) (57)
peN

is the finite-dimensional C-vector space of homogeneous global sections of degree A € C in ¥ (M).
Finally we can check that

AR (M), CY (M) forallkeN, reC. (58)
So ¥ (M) is a graded A-module of finite type for the Euler vector field 6 thanks to (55)-(58). This

means that ¥ (M) is an object in Mod®' (A).
Conversely, let T be an object in the category Mod® (.A), one associates to it the Dy -module

®(T):=MoX)T (59)
A

where Mg :=Dy /7. Then ®(T) is an object in the category Modr)fl(Dv).
Thus, we have defined two functors

¥ : Mod¥(Dy) — Mod®¥'(A4), @ : Mod® (A) —> ModT(Dy). (60)

We need the two following lemmas:
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Lemma 16. The canonical morphism
T—¥(o(T)), t— 1t (61)

is an isomorphism, and defines an isomorphism of functors Idyoger 4y —> ¥ 0 @.

Proof. As above My := Dv/j Denote by & (the class of 1p modulo 7) the canonical generator
of My. Let h € Dy, denote by heA its average on SU(2m)(C) and by ¢ the class of h modulo 7,
that is, ¢ € A.

Since € is Gp-invariant, we get he = he = &@. Moreover, we have hgo =0 if and only if hel,
in other words ¢ = 0. Therefore the average operator (over SU2m)) Dy — A, h —> h induces
a surjective morphism of .A-modules v : My — A. More generally, for any .4-module T in the
category Mod®' (A) the morphism v ® 17 is surjective

vr: Mo@QT — AQR)T =T (62)
A A

which is the left inverse of the morphism

uT:T—>M0®T, t—e®t, (63)

that is, (v ® 17) o (¢ ® 11) = v(¢) = 17. This means that the morphism ur is injective. Next, the
image of uy is exactly the set of invariant sections of Mo @ 4 T = @(T), that is, ¥(®@(T)): indeed if
o= ZI 1 hi ®t; is an invariant section in Mo @ 4 T, we may replace each h; by its average h, €A,
then we get

p p
o=) hi®ti=e®) htice®T, (64)
i=1 i=1

that is, Z,P:] fT,—t,- € T. Therefore the morphism u7 is an isomorphism from T to ¥ (®(T)) and defines
an isomorphism of functors. O

Next we note the following

Lemma 17. The canonical morphism
w:P (¥ (M) — M (65)

is an isomorphism and defines an isomorphism of functors @ o W — IdModrEh (Dy)
Proof. As in Theorem 9 the Dy-module M is generated by a finite family of invariant sections
(01)i=1,...p € ¥ (M) so that the morphism w is surjective. Now consider Q the kernel of the mor-
phism w : & (¥ (M