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a b s t r a c t

We consider a class of matrices of the form Cn = (1/N)A
1/2
n XnBnX∗n × A

1/2
n , where Xn is

an n × N matrix consisting of i.i.d. standardized complex entries, A1/2
n is a nonnegative

definite square root of the nonnegative definite Hermitian matrix An, and Bn is diagonal
with nonnegative diagonal entries. Under the assumption that the distributions of the
eigenvalues of An and Bn converge to proper probability distributions as n

N → c ∈ (0,∞),
the empirical spectral distribution of Cn converges a.s. to a non-random limit. We show that,
under appropriate conditions on the eigenvalues of An and Bn, with probability 1, there will
be no eigenvalues in any closed interval outside the support of the limiting distribution, for
sufficiently large n. The problem is motivated by applications in spatio-temporal statistics
and wireless communications.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to extend the result of [1] to the eigenvalues of a more general class of random matrices,
specifically matrices of the form

Cn = (1/N)A1/2
n XnBnX

∗

nA
1/2
n ,

where for n = 1, 2, . . . , Xn is n×N (N = N(n)) consisting of i.i.d. standardized complex entries (EX11 = 0, E|X11|
2
= 1), A1/2

n is
a nonnegative definite square root of the n×n Hermitian nonnegative definite matrix An, and Bn = diag(b1, b2, . . . , bN), each
bi ≥ 0. For the matrices studied in [1] it is assumed that Bn = IN , the N×N identity matrix. In that case Cn can be viewed as the
sample covariance matrix consisting of N samples of the random vector A

1/2
n X·1 (X·1 denoting the first column of Xn), which

has population covariance matrix An. The matrix Cn can then be interpreted as the sample covariance matrix consisting of
N weighted samples. There are other ways to interpret the matrix, important in various applications. One example is the
spatio-temporal sampling model to be described in Section 1.2.1. In wireless communications, Hn = (1/

√
N)A

1/2
n XnB

1/2
n ,

for general nonnegative definite matrix Bn, is used to model the path gains between different groups of antennas in a
multiple-input–multiple-output (MIMO) system (Section 1.2.2). It is typically assumed that X11 is complex Gaussian (real
and imaginary parts independently distributed as N(0, 1/2)), in which case the square of the singular values of Hn has the
same distribution as the eigenvalues of Cn (the bi’s being the eigenvalues of Bn).
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1.1. Statement of the result

Results have previously been obtained on the limiting behavior of the empirical distribution function, FCn , of its
eigenvalues (FCn(x) ≡ (number of eigenvalues of Cn ≤ x)/n) [5,19,6], with differing assumptions (the weakest appearing
in [19]) and varied (but equivalent) forms of expressions for the result. The following limit result is expressed in terms of
the Stieltjes transform of FCn , defined for any distribution function G as

mG(z) =
∫ 1
λ− z

dG(λ), z ∈ C+ ≡ {z ∈ C : =z > 0}.

Assume that the empirical distribution functions, FAn and FBn , converge weakly, as n → ∞, to probability distribution
functions, denoted respectively by FA and FB, and cn ≡ n/N → c > 0. Then, with probability 1, FCn converges weakly to
a probability distribution function F whose Stieltjes transform m(z) = mF(z), for z ∈ C+, is given by

m(z) =
∫ 1

a
∫ b

1+cbe dFB(b)− z
dFA(a), (1)

where e = e(z) is the unique solution in C+ of the equation

e =
∫

a

a
∫ b

1+cbe dFB(b)− z
dFA(a). (2)

It is remarked here that the result in [19] covers arbitrary Hermitian nonnegative definite Bn. Moreover, the assumption of
identical distribution of the entries of Xn is weakened to a Lyapunov-type condition.

As in [1], the purpose of this paper is to prove, with additional assumptions, the almost sure non-appearance of
eigenvalues of Cn in any interval away from the origin and outside the support of F as n → ∞. Before the result can be
formally stated we need one more definition. Let Fcn,An,Bn denote the distribution function whose Stieltjes transform is given
by (1) replacing c, FA and FB with cn, FAn and FBn , respectively.

The following will be proven:

Theorem 1. Assume the following:

(a) Xij, i, j = 1, 2, . . . , are i.i.d. complex-valued random variables with EX11 = 0, E|X11|
2
= 1, and E|X11|

4 <∞.
(b) N = N(n) with cn = n/N→ c > 0 as n→∞.
(c) For each n, An is n× n Hermitian nonnegative definite, and Bn = diag(b1, . . . , bN) is N× N, each bi ≥ 0, satisfying FAn

D
−→ FA,

FBn
D
−→ FB, both limits being probability distribution functions.

(d) ‖An‖ and ‖Bn‖, the respective spectral norms of An Bn, are bounded in n.
(e) Cn = (1/N)A

1/2
n XnBnX∗nA

1/2
n , where A

1/2
n is any Hermitian square root of An, Xn = (Xij), i = 1, 2, . . . , n, j = 1, 2, . . . ,N.

(f) The interval [a, b] with a > 0 lies in an open interval outside the support of Fcn,An,Bn for all large n.

Then,

P(no eigenvalue of Cn appears in [a, b] for all large n) = 1.

The applicability of Theorem 1 depends on finding a way to determine the intervals outside the support of Fcn,An,Bn , as
it exists for sample covariance matrices [14]. In the latter case, the limiting Stieltjes transform m(z) has an explicit inverse
z = z(m). It is straightforward to verify that a Stieltjes transform is increasing on intervals on the real line outside the support
of its distribution function. Its inverse therefore exists on these intervals and is also increasing. Therefore plotting z(m) for
m real, and locating on the vertical axis places where the inverse is increasing, yields intervals outside the support. There
does not appear to be an explicit inverse for (1). Nevertheless, preliminary work indicates a way to determine an inverse of
m(z) associated with an interval outside the support of the limiting spectral distribution. This has been established in the
case of another class of random matrices [7]. Work in this area is currently being pursued.

1.2. Motivation

Our results give information on the behavior of individual eigenvalues. Results describing only the limiting behavior of
the empirical spectral distribution provide information on the proportion of eigenvalues falling in any interval. But these
results do not rule out the possibility of o(n) eigenvalues scattered outside the support of the limiting empirical spectral
distribution. The goal of our research is to establish that such a phenomenon does not occur for large enough n. Further
research in our framework would allow for precise description of the location of the eigenvalues. In particular, we expect
that the results proved here will be key to proving certain phase transition phenomena observed in the context of sample
covariance matrices with Bn = IN and An having a few large isolated eigenvalues [2,3,8,11].
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1.2.1. Application to spatio-temporal statistics
The data model that we are considering here arises in the field of spatio-temporal statistics, where the rows of the n× N

matrix Un = A
1/2
n XnB

1/2
n correspond to indices of spatial locations and the column indices correspond to points in time.

This class of models is also known as the separable covariance model. This is because, under the assumptions made here on
the entries of Xn (i.i.d., mean 0, finite fourth moment), the joint (space–time) covariance of Un, viewed as an Nn × 1 vector
consisting of the columns of the matrix Un stacked on top of one another, is given by ΣUn = An ⊗ Bn, where ⊗ denotes
the Kronecker product between matrices. Note that, if we further assume Gaussianity for the entries of Xn, then the joint
distribution of Un is NNn(0, An ⊗ Bn). Also, in that setting, we do not require An and Bn to be diagonal, only that they are
nonnegative definite. The interpretation of this covariance structure is that the entries of Un are correlated in time (column),
but the pattern of temporal correlation does not vary with location (row). In other words, there is no space–time interaction
in the process.

One advantage of this model from a statistical estimation point of view is that, when N is large and n is comparatively
small, so that n

N
→ 0 as n → ∞, it is possible to get quite reliable estimates of An from the sample covariance matrix

Cn =
1
N
UnU∗n . Indeed, in that setting, if moreover ‖An‖ is bounded above, it is not hard to verify that ‖Cn −

1
N
(tr Bn)An‖ → 0

a.s., as n→∞. So, the spectral properties of An can be recovered from that of the spectrum of Cn. Of course, the key questions
that we are addressing here relate to the situation where n

N
→ c ∈ (0,∞). The behavior of the empirical spectrum in that

setting has hitherto been unknown.
The results and techniques presented in this paper may prove useful as regards this problem for a number of different rea-

sons. A statistical problem related to such spatio-temporal processes is that of understanding the temporal variability of the
spatial field. One of the approaches for gaining an understanding of the temporal variability is to perform an eigen-analysis
(in space) of the sample covariance matrix Cn. This is because, the weights of the different eigenvectors of Cn, in representing
the columns of Un (principal components scores), vary in time. These weights therefore capture the temporal variability of
the orthogonal components (eigenvectors of Cn) of the spatial process. The eigenfunctions thus obtained are usually referred
to as empirical orthogonal functions (particularly in climatology; see, e.g., [16]). Understanding the asymptotic behavior of
the sample eigenvalues and eigenfunctions therefore is a relevant aim, since under the separable space–time model they
give a set of orthogonal components, and their relative strengths, for the spatial variation of the process.

1.2.2. Application to wireless communication
In wireless communications, Hn = (1/

√
N)A

1/2
n XnB

1/2
n , for a general nonnegative definite matrix Bn, appears in a variety of

models, including both direct-sequence and multiple-carrier code-division multiple-access systems ([15], Sections 3.1–3.2),
and in multiple-input–multiple-output (MIMO) systems ([15], Section 3.3). The importance of acquiring more detailed
information on the singular values of Hn beyond what the limiting empirical distribution ((1) and (2)) reveals, which has
been primarily used to estimate capacity, is becoming more apparent. For example, in [17] an estimate of capacity requires
knowledge of the largest singular value of Hn which Theorem 1 provides. Indeed, the a.s. convergence of the largest singular
value of Hn is an analog of the corollary to Theorem 1.1 in [1] and readily follows from Theorem 1 using similar arguments.
Another example is in MIMO systems, where Hn models the path gains between different groups of antennas. It is typically
assumed that X11 is complex Gaussian (real and imaginary parts independent N(0, 1/2)), in which case the square of the
singular values of Hn has the same distribution as the eigenvalues of Cn (the bi’s being the eigenvalues of Bn). The matrices
An and Bn are the covariances among the receiver and the transmitter antennas, respectively. They reflect the scenario
involving these two groups of antennas, for example, their locations, and the nature of the interference encountered due
to their surroundings. The singular values of Hn, or equivalently the eigenvalues of Cn, indicate several important properties
of the communication scheme, due to the fact that any information on Hn yields ways to allocate the transmitted signal
in an optimal way. For example, if there is a significant number of small eigenvalues, transmission can be achieved after
performing a unitary transformation, on the left and/or the right side of Hn, resulting in a reduced number of virtual parallel
antennas with little correlation between them. When the number of antennas is sizeable, knowledge of the eigenvalues of
Cn, depending only on An and Bn, is gained to some extent from the limiting F. It yields the proper proportion of eigenvalues
within any interval. However, Theorem 1 is a step toward knowing the location of all the singular values, which provides
much more information. For example, it can ensure that no lone eigenvalue above or below the limiting support exists. The
importance of Theorem 1 lies in the determination of spectral behavior of Cn entirely through An and Bn.

The essential portion of the proof of Theorem 1 will proceed in the following sections. The main tools used in the proof
are properties of the Stieltjes transform and bounds on the moments of martingale difference sequences. The results to be
obtained here are analogous to those in Sections 3–5 of [1], namely, we will show

sup
x∈[a,b]

|mn(z)− m0
n(z)| = o(1/(nvn)) a.s., (3)

where
mn = mn(z) = mFCn (z) = (1/n)tr (Cn − zI)−1 (4)

is the Stieltjes transform of the empirical distribution function of the eigenvalues of Cn,

m0
n = m0

n(z) = mFcn,An,Bn (z) (5)
and z = x+ ivn, where vn = κn−1/140, κ an arbitrary positive constant (fixed for all n).
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The steps needed to conclude Theorem 1 from (3) are identical to those in Section 6 of [1], except for the fact that in the
latter paper vn = N−1/68. In particular, following the same arguments one can prove that, if a′, b′ are such that a′ < a, b < b′,
and the interval [a′, b′] also satisfies condition (f) of Theorem 1, then

sup
x∈[a,b]

∣∣∣∣∣∣
∫

I[a′,b′]cd(FCn(λ)− Fcn,An,Bn(λ))

((x− λ)2 + v2
n)((x− λ)

2 + 2v2
n) · · · ((x− λ)

2 + 70v2
n)

+
∑

λj∈[a′,b′]

v140
n

((x− λj)2 + v2
n)((x− λj)2 + 2v2

n) · · · ((x− λj)2 + 70v2
n)

∣∣∣∣∣∣ = o(1), a.s. (6)

where the λj’s denote the eigenvalues of Cn. From this, using the fact that the integral in (6) converges a.s. to 0, one can argue
that, with probability 1, no eigenvalue of Cn appears in [a, b] for all sufficiently large n.

Before proceeding, we simplify here some of the assumptions. It is clear from assumption (d) of Theorem 1 that we can
without loss of generality assume throughout that max{‖An‖, ‖Bn‖} ≤ 1 for all n. Also, the argument given at the beginning
of Section 3 of [1] carries through in our case. Specifically, for any C > 0 let Yij = XijI(|Xij|≤C) − EXijI(|Xij|≤C) (where IA denotes
the indicator function on the set A), Yn = (Yij), i ≤ n, j ≤ N, C̃n = (1/N)A

1/2
n YnBnY∗nA

1/2
n , and λk, λ̃k the respective eigenvalues

of Cn and C̃n in nonincreasing order. Then as in [1], using the main result in [18] on the largest eigenvalue of (1/N)XnX∗n , we
have, with probability 1,

lim sup
n→∞

max
k≤n
|λ

1/2
k − λ̃

1/2
k | ≤ (1+

√
c)E1/2

|X1 1|
2I(|X1 1|>C),

and because of assumption (a) we can make the bound on the right side arbitrarily small by choosing C sufficiently large.
Thus we can assume that the Xij are uniformly bounded.

The rest of the paper is organized as follows. In Section 2, we give the key steps to the derivation of the integral equations
for the limiting Stieltjes transforms of associated spectral measures. In Sections 3 and 4 we will show, respectively,

sup
x∈[a,b]

|mn(z)− Emn(z)| = o(1/(nvn)) a.s. (7)

and

sup
x∈[a,b]

|Emn(z)− m0
n(z)| = O(1/n). (8)

Some mathematical tools needed in proving these results are given in the Appendix. Throughout this paper, K denotes a
universal constant whose value may vary from one appearance to another.

2. Integral representation of Stieltjes transforms

Write Xn = [X·1, . . . , X·N], and let yj = (1/
√
N)A

1/2
n X·j. Then we can write

Cn =

N∑
j=1

bjyjy
∗

j .

Fix z ∈ C+ ≡ {z = x+ iv ∈ C : v > 0}. Define

en = en(z) = (1/n)tr An(Cn − zI)−1, (9)

and

pn = −
1
Nz

N∑
j=1

bj
1+ cnbjen

=

∫
−b

z(1+ cnben)
dFBn(b). (10)

Write Cn = OΛO∗, Λ = diag(λ1, . . . ,λn), in its spectral decomposition. Let An = {aij} = O∗AnO. Then

en = (1/n)tr An(Λ− zI)−1
= (1/n)

n∑
i=1

aii
λi − z

. (11)

We therefore see that en is the Stieltjes transform of a measure on the nonnegative reals with total mass (1/n)tr An. It
follows that both en(z) and zen(z) map C+ into C+. This implies that pn(z) and zpn(z) map C+ into C+, and as z → ∞,
zpn →−(1/N)tr Bn. Therefore, from Lemma 5 we also have pn a Stieltjes transform of a measure on the nonnegative reals with
total mass (1/N)tr Bn. It follows that en and pn are bounded in absolute value by v−1(1/n)tr An and v−1(1/N)tr Bn, respectively.

More generally, from Lemma 5 we have any function of the form

−b

z(1+ m(z))
,
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where b ≥ 0 and m(z) is the Stieltjes transform of a bounded measure on R+, to be the Stieltjes transform of a measure on
the nonnegative reals with total mass b. It follows that∣∣∣∣ −b

z(1+ m(z))

∣∣∣∣ ≤ b

v
. (12)

Let C(j) = Cn − bjyjy∗j . We may, without loss of generality, assume that max(‖An‖, ‖Bn‖) ≤ 1. Write

Cn − zI + zI + zpnAn =

N∑
j=1

bjyjy
∗

j + zpnAn.

Taking inverses and using the definition of Cn and C(j), we have

(Cn − zI)−1
+ (zI + zpnAn)

−1

=

N∑
j=1

bj(Cn − zI)−1yjy
∗

j (zI + zpnA)
−1
+ zpn(Cn − zI)−1An(zI + zpnA)

−1

=

N∑
j=1

bj
(C(j) − zI)−1yjy∗j (zI + zpnA)−1

1+ bjy
∗
j (C(j) − zI)−1yj

+ zpn(Cn − zI)−1An(zI + zpnA)
−1,

where the last step follows from Lemma 1 in the Appendix.
Taking traces and dividing by n, we have

mn(z)−
∫ 1

a
∫ b

1+cnben
dFBn(b)− z

dFAn(a) =
1
N

N∑
j=1

bjdj ≡ wm
n ,

where

dj =
(1/n)x∗j A

1/2
n (I + pnAn)

−1(C(j) − zI)−1A
1/2
n xj

z(1+ bjy
∗
j (C(j) − zI)−1yj)

−
(1/n)tr (Cn − zI)−1An(I + pnAn)

−1

z(1+ cnbjen)
.

Multiplying both sides of the above matrix identity by An, and then taking traces and dividing by n, we find

en(z)−
∫

a

a
∫ b

1+cnben
dFBn(b)− z

dFAn(a) =
1
N

N∑
j=1

bjd
e
j ≡ we

n,

where

de
j =

(1/n)x∗j A
1/2
n (I + pnAn)

−1An(C(j) − zI)−1A
1/2
n xj

z(1+ bjy
∗
j (C(j) − zI)−1yj)

−
(1/n)tr An(Cn − zI)−1An(I + pnAn)

−1

z(1+ cnbjen)
.

2.1. Bound on the approximation error

Notice that for each j, y∗j (C(j) − zI)−1yj can be viewed as a Stieltjes transform of a measure on R+. Therefore∣∣∣∣∣ 1
z(1+ bjy

∗
j (C(j) − zI)−1yj)

∣∣∣∣∣ ≤ 1
v
.

For each j, let e(j) = e(j)(z) = (1/n)tr An(C(j) − zI)−1, and

p(j) = p(j)(z) =
∫

−b

z(1+ cnbe(j))
dFBn(b),

both of course being Stieltjes transforms of measures on R+, along with the integrand for each b.
Using Lemmas 1 and 2(a) in the Appendix, (12) and the fact that ‖Bn‖ ≤ 1, we have

|pn − p(j)| = |en − e(j)|cn

∣∣∣∣∣
∫

b2

z(1+ cnben)(1+ cnbe(j))
dFBn(b)

∣∣∣∣∣ ≤ 4c2
n

nv3 . (13)

In order to handle both wm
n , dj and we

n, de
j at the same time, we shall denote by En either An or In, and wn, dj for now will denote

either the original wm
n , dj or we

n, de
j .
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Write dj = d1
j + d2

j + d3
j + d4

j , where

d1
j =

(1/n)x∗j A
1/2
n (I + pnAn)

−1En(C(j) − zI)−1A
1/2
n xj

z(1+ bjy
∗
j (C(j) − zI)−1yj)

−
(1/n)x∗j A

1/2
n (I + p(j)An)

−1En(C(j) − zI)−1A
1/2
n xj

z(1+ bjy
∗
j (C(j) − zI)−1yj)

,

d2
j =

(1/n)x∗j A
1/2
n (I + p(j)An)

−1En(C(j) − zI)−1A
1/2
n xj

z(1+ bjy
∗
j (C(j) − zI)−1yj)

−
(1/n)tr En(C(j) − zI)−1An(I + p(j)An)

−1

z(1+ bjy
∗
j (C(j) − zI)−1yj)

,

d3
j =

(1/n)tr En(C(j) − zI)−1An(I + p(j)An)
−1

z(1+ bjy
∗
j (C(j) − zI)−1yj)

−
(1/n)tr En(Cn − zI)−1An(I + pnAn)

−1

z(1+ bjy
∗
j (C(j) − zI)−1yj)

,

and

d4
j =

(1/n)tr En(Cn − zI)−1An(I + pnAn)
−1

z(1+ bjy
∗
j (C(j) − zI)−1yj)

−
(1/n)tr En(Cn − zI)−1An(I + pnAn)

−1

z(1+ cnbjen)
.

For the rest of this subsection, we assume that for all n large, v = vn = κn−δ for some κ > 0 and δ ≥ 0. We wish to show that
for all δ ≤ 1/4, for arbitrary subset Sn ⊂ R containing at most n elements, and arbitrary positive t and ε, we have

P(max
x∈Sn
|wn|v

−12
n > ε) ≤ Ktε

−2tn2−t(1−34δ) (14)

by proving the same bound on each of
P( max

j≤N,x∈Sn
|di

j|v
−12
n > ε),

for i = 1, 2, 3, 4. Note that the constants Kt and Kp (appearing later) are positive constants.
We begin with d1

j . We get, from Lemma 2(c) and (13),

|d1
j | ≤

1
vn

4c2
n

nv3
n

1
vn

‖X·j‖2

n

16
v2
n

=
64c2

n

nv7
n

‖X·j‖2

n
.

From Lemma 3 it is straightforward to argue that for p ≥ 2
E‖X·j‖2p

≤ Kpn
p.

Therefore for p ≥ 2

P( max
j≤N,x∈Sn

|d1
j |v
−12
n > ε) ≤ nP

(
max
j≤N

‖X·j‖264c2
n

n2v19
n

> ε

)
≤ Kp

nN

(nv19
n )p

ε−p.

For d2
j we use Lemmas 2(a) and 3 to get, for p ≥ 2,

E|v−12
n d2

j |
p
≤ Kpv

−13p
n n−p/2v−2p

n = Kp
1

(n1/2v15
n )p

,

so that for ε > 0, p ≥ 2,

P( max
j≤N,x∈Sn

|d2
j |v
−12
n > ε) ≤ Kpε

−p nN

(n1/2v15
n )p

.

Using Lemmas 1 and 2(a), (b), and (13) we have

|d3
j v
−12
n | ≤

K

v13
n

(
1
nv2

n

+
1
nv6

n

)
≤ K

1
nv19

n

.

Therefore for any p ≥ 1 and ε > 0

P( max
j≤N,x∈Sn

|d3
j |v
−12
n > ε) ≤ Kpε

−p nN

(nv19
n )p

.

Finally, for d4
j , we use Lemmas 1 and 2(a) to find

|d4
j v
−12
n | ≤

4
v16
n

(|(1/n)X∗
·jAn(C(j) − zI)−1X·j − (1/n)tr An(C(j) − zI)−1

| + (nvn)
−1).

Therefore, by Lemma 3, for any ε > 0, p ≥ 2, we have
P( max

j≤N,x∈Sn
|d4

j |v
−12
n > ε)

≤
∑

j≤N,x∈Sn

[
P

(
4
v16
n

|(1/n)X∗
·jAn(C(j) − zI)−1X·j − (1/n)tr An(C(j) − zI)−1

| >
ε

2

)
+ Kpε

−p(nv11
n )−p

]

≤ Kpε
−p nN

(n1/2v17
n )p

,

which, for δ ∈ [0, 1/4], can easily be verified to be the largest of the four bounds. Therefore, (14) holds.
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2.2. Existence, convergence, and continuity of the solution

We can at this stage provide a proof of the existence of a unique e with nonnegative imaginary part satisfying (2) for any
z = x+ iv, v > 0, and the a.s. convergence in distribution of FCn to F. We also show the continuous dependence of e on FA, FB,
and c. We see from (14) with δ = 0, κ = v and t > 3 that we have

en(z)−
∫

a

a
∫ b

1+cnben
dFBn(b)− z

dFAn(a) and mn(z)−
∫ 1

a
∫ b

1+cnben
dFBn(b)− z

dFAn(a)

converging a.s. to zero. Consider a realization for which both convergences to zero occur on a subsequence {ni} for which en
converges, say to e. Because of (12), we have, by the Dominated Convergence Theorem (DCT),

pn =

∫
−b

z(1+ cnben)
dFBn(b)→

∫
−b

z(1+ cbe)
dFB(b) ≡ p

and ∫
a

a
∫ b

1+cnben
dFBn(b)− z

dFAn(a) =
∫

−a

z(1+ cnapn)
dFAn(a)

→

∫
−a

z(1+ cap)
dFA(a)

=

∫
a

a
∫ b

1+cbe dFB(b)− z
dFA(a)

along the subsequence. Thus e is a solution to (2).
From uniqueness of e, proved below, we must have convergence of en to e on the whole sequence. Therefore, again by the

DCT we have

mn(z)→
∫ 1

a
∫ b

1+cbe dFB(b)− z
dFA(a).

This event occurs with probability 1, and for a countable number of v’s with a limit point. Since the limsup of the largest
eigenvalue of Cn is a.s. bounded by (1+

√
c)2 (by Lemma 4), the sequence {FCn } is almost surely tight. Therefore, FCn converges

in distribution to F a.s.
For probability distribution functions FA and FB on [0, 1] and c > 0, let e = e(z) be a solution to (2) with FA, FB, c replaced

by FA, FB, and c, respectively. Assume that c ≤ c. Then we have

e− e =
∫

a

a
∫ b

1+cbe dFB(b)− z
d(FA(a)− FA(a))

+

∫ a2 ∫ b
1+cbe d(FB(b)− FB(b))

(a
∫ b

1+cbe dFB(b)− z)(a
∫ b

1+cbe dFB(b)− z)
dFA(a)

+ (c− c)
∫

e
a2 ∫ b2

(1+cbe)(1+cbe) dFB(b)

(a
∫ b

1+cbe dFB(b)− z)(a
∫ b

1+cbe dFB(b)− z)
dFA(a)+ γ(e− e), (15)

where

γ = c
∫ a2 ∫ b2

(1+cbe)(1+cbe) dFB(b)

(a
∫ b

1+cbe dFB(b)− z)(a
∫ b

1+cbe dFB(b)− z)
dFA(a).

Notice that by (12), the first integrand in (15) is bounded in absolute value by 1/v, the second by |z|/v3, and the third by
|z|2/v5. Let e2 and e2 denote the imaginary parts of e and e. Then we write

e2 =

∫ a(ace2
∫ b2

|1+cbe|2 dFB(b)+ v)

|a
∫ b

1+cbe dFB(b)− z|2
dFA(a) = e2α+ vβ,

and

e2 =

∫ a(ace2
∫ b2

|1+cbe|2 dFB(b)+ v)

|a
∫ b

1+cbe dFB(b)− z|2
dFA(a) = e2α+ vβ.
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By the Cauchy–Schwarz inequality,

|γ| ≤

∫  ca2 ∫ b2

|1+cbe|2 dFB(b)∣∣∣a ∫ b
1+cbe dFB(b)− z

∣∣∣2


1/2  ca2 ∫ b2

|1+cbe|2 dFB(b)∣∣∣a ∫ b
1+cbe dFB(b)− z

∣∣∣2


1/2

dFA(a)

≤

∫ ca2 ∫ b2

|1+cbe|2 dFB(b)∣∣∣a ∫ b
1+cbe dFB(b)− z

∣∣∣2 dFA(a)


1/2 ∫ ca2 ∫ b2

|1+ cbe|2dFB(b)∣∣∣a ∫ b
1+cbe dFB(b)− z

∣∣∣2 dFA(a)


1/2

=

(
e2α

e2α+ vβ

)1/2
(

e2α

e2α+ vβ

)1/2

.

Notice that for v small we have by Lemma 2(a)

e2α/β ≤ e2c
∫

b2

|1+ cbe|2
dFB(b) = −=

∫
b

1+ cbe
dFB ≤

4c
v

.

Therefore∫ ca2 ∫ b2

|1+cbe|2 dFB(b)∣∣∣a ∫ b
1+cbe dFB(b)− z

∣∣∣2 dFA(a)


1/2

=

(
e2α

e2α+ vβ

)1/2

=

(
e2α/β

v+ e2α/β

)1/2

≤

( 4c
v2 + 4c

)1/2

≤ 1− Kv2

for v small, and for some positive constant K. A corresponding bound obviously exists for the other factor making up the
bound on γ, so we conclude that for v small

|γ| ≤ 1− Kv2 (16)
for some positive constant K.

We see then that (15) and (16) together reveal two things: uniqueness of solutions to (2) (with FA = FA, FB = FB, and c = c),
and continuous dependence of solutions to (2) on FA, FB under the topology of weak convergence of probability measures
(which follows from the DCT), and c.

2.3. Bound on the difference between Stieltjes transforms

At this point on we assume that vn = κn−δ with δ ∈ (0, 1/35], so that vn → 0 as n→∞. The main goal in this subsection
is to prove the following:

P(max
x∈Sn

v−1
n |mn − m0

n| > ε) ≤ Ktε
−tn−δt/4 for t ≥ 280. (17)

We have e0
n = e0

n(z) (with z = x+ iv where v > 0 is arbitrary) a unique solution to

e =
∫

a

a
∫ b

1+cnbe
dFBn(b)− z

dFAn(a). (18)

Let m0
n denote the Stieltjes transform of Fcn,An,Bn . Then,

m0
n = m0

n(z) =
∫ 1

a
∫ b

1+cnbe0
n

dFBn(b)− z
dFAn(a). (19)

Let e0
2, e2, m0

2, m2 denote the imaginary parts of e0
n , en, m0

n , mn, respectively. Also, let we
n and wm

n be as defined earlier in
Section 2.1. Then

e0
2 =

∫ a(acne
0
2
∫ b2

|1+cnbe0
n |

2 dFBn(b)+ v)

|a
∫ b

1+cnbe0
n

dFBn(b)− z|2
dFAn(a),

e2 =

∫ a(acne2
∫ b2

|1+cnben|2
dFBn(b)+ v)

|a
∫ b

1+cnben
dFBn(b)− z|2

dFAn(a)+ =we
n,

m0
2 =

∫ acne
0
2
∫ b2

|1+cnbe0
n |

2 dFBn(b)+ v

|a
∫ b

1+cnbe0
n

dFBn(b)− z|2
dFAn(a),

m2 =

∫ acne2
∫ b2

|1+cnben|2
dFBn(b)+ v

|a
∫ b

1+cnben
dFBn(b)− z|2

dFAn(a)+ =wm
n ,
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and as above we have

en − e0
n = (en − e0

n)γn
+ we

n,

where

|γ
n
| ≤

∫ cna2 ∫ b2

|1+cnben|2
dFBn(b)∣∣∣a ∫ b

1+cnben
dFBn(b)− z

∣∣∣2 dFAn(a)


1/2 ∫ cna2 ∫ b2

|1+cnbe0
n |

2 dFBn(b)∣∣∣a ∫ b
1+cnbe0

n
dFBn(b)− z

∣∣∣2 dFAn(a)


1/2

.

Using the argument leading up to (16), we have for small v > 0,∫ cna2 ∫ b2

|1+cnbe0
n |

2 dFBn(b)∣∣∣a ∫ b
1+cnbe0

n
dFBn(b)− z

∣∣∣2 dFAn(a)


1/2

≤

( 4cn
v2 + 4cn

)1/2

≤ 1− Kv2

for some positive constant K.
Letµn = nδ/4. Therefore we have vnµ3

n → 0. Let λmax denote the largest eigenvalue of (1/N)XnX∗n , and let K1 > (1+
√
c)2.

Since

|λ− (x+ ivn)|−1
≤

3
2
|x|−1

for fixed λ and |x| large, we have for all n large

|en − e0
n| ≤ 3µ−1

n v3
n (20)

whenever |x| > µnv−3
n and λmax ≤ K1. Notice that, since max{|en|, |e0

n|} ≤ v−1
n

1
n

tr An, whenever (1/n)tr An ≤ v4
nµ
−1
n we have

v−3
n |en − e0

n| ≤ 2v−4
n (1/n)tr An ≤ 2µ−1

n . (21)

Now, let α, β be such that e2 = e2α+ vnβ+ =we
n. Then

∫ cna2 ∫ b2

|1+cnben|2
dFBn(b)∣∣∣a ∫ b

1+cnben
dFBn(b)− z

∣∣∣2 dFAn(a) =
e2α

e2α+ vnβ+ =we
n

.

Using Cauchy–Schwarz we have

|en| ≤ β
1/2((1/n)tr An)

1/2
+ |we

n|.

Next, as in [1] p. 329, for all n large |en| ≥ 1
2µ
−1
n v3

n(1/n)tr An whenever |x| ≤ µnv−3
n and λmax ≤ K1. So, for all n large, whenever

|x| ≤ µnv−3
n , |we

n| ≤ v12
n , λmax ≤ K1, and (1/n)tr An > v4

nµ
−1
n we have

1
2
µ−1

n v3
n(1/n)tr An ≤ |en| ≤ β

1/2((1/n)tr An)
1/2
+ |we

n| ≤ β
1/2((1/n)tr An)

1/2
+ µnv

8
n(1/n)tr An.

Therefore
1
3
µ−1

n v3
n(1/n)tr An ≤ (1/n)tr An

(1
2
µ−1

n v3
n − µnv

8
n

)
≤ β1/2((1/n)tr An)

1/2,

from which we get

β ≥
1
9
v10
n µ

−3
n .

Therefore

vnβ+ =w
e
n ≥

1
9
v11
n µ

−3
n − v12

n > 0,

and so

|en − e0
n| ≤ K−1v−2

n |w
e
n| ≤ K−1v10

n .

Thus, combining this with (21) and (20), we have, for all n large,

max
x∈Sn

v−3
n |en − e0

n| ≤ K−1v7
n + 3µ−1

n + 2v−4
n max

x∈Sn
(I
[|we

n|>v12
n ]
+ I[λmax>K1]).

Therefore, for these n, and for any positive ε and t we have

P(max
x∈Sn

v−3
n |en − e0

n| > ε) ≤ Ktε
−t
(
n−7δt

+ n−δt/4
+ v−4t

n [P(max
x∈Sn
|we

n|v
−12
n > 1)+ P(λmax > K1)]

)
≤ Ktε

−tn−δt/4, (22)
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where the last step follows by replacing t with
17
4 δt + 2
1− 34δ

in (14) and t with 17
4 δt in Lemma 4. Taking the difference between mn and m0

n and using Cauchy–Schwarz, we get

|mn − m0
n|

≤ |en − e0
n|

∫ cn
∫ b2

|1+cnben|2
dFBn(b)∣∣∣a ∫ b

1+cnben
dFBn(b)− z

∣∣∣2 dFAn(a)


1/2 ∫ cna2 ∫ b2

|1+cnbe0
n |

2 dFBn(b)∣∣∣a ∫ b
1+cnbe0

n
dFBn(b)− z

∣∣∣2 dFAn(a)


1/2

+ |wm
n |.

As before, we have the second factor on the right bounded above by 1, while by Lemma 2(a) the first factor is bounded above
by 4c3/2

n v−2
n . Therefore, for any positive ε and t we get, from (14) and (22),

P(max
x∈Sn

v−1
n |mn − m0

n| > ε) ≤ P(max
x∈Sn

v−3
n |en − e0

n| > ε(2c1/2
n )−1)+ P(max

x∈Sn
|wm

n |v
−1
n > ε/2)

≤ Ktε
−t max(n−δt/4, n2−t(1/2−17δ)). (23)

Now it is easy to verify (17) from (23).

2.4. A rate on FCn outside the support

Let E0 denote the expectation, and Ek denote the conditional expectation with respect to the σ-field generated by
{y1, . . . , yk}. Also, let ε > 0 be such that [a′, b′], with a′ = a− ε and b′ = b+ ε, also satisfies condition (f) of Theorem 1. The
goal of this subsection is to prove the following bound:

max
k≤N
Ek(F

Cn([a′, b′]))2
= o(v2

n), a.s. (24)

Suppose that the n elements in Sn are equally spaced between−
√
n and

√
n. Since, for |x1 − x2| ≤ 2n−1/2,

|mn(x1 + ivn)− mn(x2 + ivn)| ≤ 2n−1/2v−2
n

|m0
n(x1 + ivn)− m0

n(x2 + ivn)| ≤ 2n−1/2v−2
n ,

and when |x| ≥
√
n, for n large enough, for K1 as in Lemma 4,

|mn(x+ ivn)| ≤ 2n−1/2
+ v−1

n I[λmax>K1]

and

|m0
n(x+ ivn)| ≤ 2n−1/2.

Therefore, for all n large

sup
x∈R
|mn − m0

n| ≤ max
x∈Sn
|mn − m0

n| + 4n−1/2v−2
n + v−1

n I[λmax>K1],

and hence we conclude from (17) and Lemma 4 that for these n, and for any ε > 0 and t ≥ 280, 0 < δ ≤ 1
35 ,

P(v−1
n sup

x∈R
|mn − m0

n| > ε) ≤ Ktε
−t(n−δt/4

+ n−t(1/2−3δ)) ≤ Ktε
−tn−δt/4. (25)

Since for any r > 0,

Ek(v
−r
n sup

x∈R
|mn(x+ ivn)− m0

n(x+ ivn)|r),

for k = 0, 1, . . . , n forms a martingale, from Jensen’s inequality it follows that for any t ≥ 1,

(Ek(v
−r
n sup

x∈R
|mn(x+ ivn)− m0

n(x+ ivn)|r))t

for k = 0, 1, . . . , n forms a submartingale. Therefore, from Lemmas 2.5 and 2.6 of [1], and (25), for any ε > 0, t ≥ 1, and
r > 0, so that 2rt ≥ 280, we have

P(max
k≤N
Ek(v

−r
n sup

x∈R
|mn(x+ ivn)− m0

n(x+ ivn)|r) > ε)

≤ ε−tE(v−rtn sup
x∈R
|mn(x+ ivn)− m0

n(x+ ivn)|rt)

≤ 2ε−tK1/2
2rt n

−δrt/4, (26)
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whenever δ ∈ (0, 1/35]. From this, it follows that with probability 1,

max
k≤N
Ek(v

−r
n sup

x∈R
|mn(x+ ivn)− m0

n(x+ ivn)|r)→ 0. (27)

Let λ1 ≥ · · · ≥ λn be the eigenvalues of Cn, and write

mnj = mout
nj + min

nj , j = 1, 2,

where j = 1 refers to the real part of mn and j = 2 refers to the imaginary part of mn, so that

mout
n2 (x+ ivn) =

1
N

∑
λj∈[a′,b′]

vn
(x− λj)2 + v2

n

,

and

mout
n1 (x+ iv) =

1
N

∑
λj∈[a′,b′]

x− λj

(x− λj)2 + v2
n

.

Similarly, write m0
n1 and m0

n2 to mean the real and imaginary parts of m0
n . By (27), with probability 1, we have

max
k≤N
Ek(v

−r
n sup

x∈R
|mn2(x+ ivn)− m0

n2(x+ ivn)|r)→ 0. (28)

Define the sequence {Gq}
∞

q=1 of functions on R2 by

Gn−1∑
j=1

(N(j)+1)+k
(x1, x2) = EkF

Cn(x1)F
Cn(x2),

for k = 0, 1, 2, . . . ,N(n). Clearly, each Gq is a probability distribution function on R2. Also, for q =
∑n−1

j=1 (N(j) + 1) + k, the
two-dimensional Stieltjes transform, m(G)

q (x1 + iv1, x2 + iv2) of Gq is Ekmn(x1 + iv1)mn(x2 + iv2). Notice that x < 0, λ > 0
implies that∣∣∣∣ 1

λ− (x+ iv)
−

1
λ− x

∣∣∣∣ ≤ v

x2 .

Therefore, from (27), we have, with probability 1,

|m(G)
q (x1, x2)− m0

n(x1)m
0
n(x2)| → 0, as q→∞,

for countably many negative x1 having a negative limit point, and countably many negative x2 also having a negative limit
point.

It is straightforward to show the following: Assume that f (z1, z2) is a function of two complex variables, and analytic on
a open rectangle E1 × E2 ⊂ C2 (that is, for fixed z1 ∈ E1f (z1, z2) is analytic in z2, and vice versa [9]). Let {zn1} ⊂ E1, {zn2} ⊂ E2,
where {zn1} has a limit point in E1, {zn2} has a limit point in E2. Then f is uniquely determined by the values that it places on
the set {(z1, z2) : z1 ∈ {z

n
1}, z2 ∈ {z

n
2}}. This, together with the a.s. tightness of Gq, gives us, with probability 1, Gq(y1, y2)

converging weakly to F(y1)F(y2).
Notice that the integrands of∫

[a′,b′]c×[a′,b′]c

dEkFCn(x1)FCn(x2)

((x− x1)2 + v2
n)((x− x2)2 + v2

n)

and ∫
[a′,b′]c

dEkFCn(x1)

(x− x1)2 + v2
n

on their respective domains are uniformly bounded and equicontinuous for x ∈ [a, b]. Therefore, from Problem 8, p. 17, in [4],
and using the fact that∫ b′

a′

vn
(x− u)2 + v2

n

dFcn,An,Bn(u) = 0 for all x ∈ R,

the sequence {gq}∞q=1 defined by

gq = sup
x∈[a,b]

Ekv
−2
n |m

in
n2(x+ ivn)− m0

n2(x+ ivn)|2

for q =
∑n−1

j=1 (N(j) + 1) + k (with 0 ≤ k ≤ N(n)) converges to 0 a.s. as n → ∞. Thus we have, a.s.,
maxn≥n0 max1≤k≤N(n) g∑n−1

j=1 (N(j)+1)+k → 0, as n0 →∞. This implies that

max
0≤k≤N

sup
x∈[a,b]

Ekv
−2
n |m

in
n2(x+ ivn)− m0

n2(x+ ivn)|2 → 0 a.s.
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This, together with (28), implies that

sup
x∈[a,b]

max
k≤N

v−2
n Ek(m

out
n2 (x+ ivn))2

→ 0. (29)

Now, for any x ∈ [a, b], we have

v−1
n mout

n2 (x+ ivn) ≥
∫ b

a

1
(u− x)2 + v2

n

dFCn(u)

≥

∫
[a,b]∩[x−vn,x+vn]

1
(u− x)2 + v2

n

dFCn(u)

≥
1

2v2
n

FCn([a, b] ∩ [x− vn, x+ vn]).

We select xj ∈ [a, b], j = 1, . . . , J, such that vn < xj − xj−1, and [a, b] ⊂ ∪J
j=1[xj − vn, xj + vn]. Notice that, as a consequence,

J ≤ (b− a)v−1
n . Then from the inequality above, it follows that, with probability 1,

v−2
n max

k≤N
Ek(F

Cn([a, b]))2
≤ v−2

n max
k≤N
Ek

(
J∑

j=1
FCn([a, b] ∩ [xj − vn, xj + vn])

)2

≤ v−2
n max

k≤N
Ek

(
J∑

j=1
2vnmout

n2 (xj + ivn)
)2

≤ 4J max
k≤N

J∑
j=1
Ek(m

out
n2 (xj + ivn))2, by Hölder’s inequality

≤ 4J2 max
1≤j≤J

max
k≤N
Ek(m

out
n2 (xj + ivn))2

≤ 4(b− a)2v−2
n sup

x∈[a,b]
max
k≤N
Ek(m

out
n2 (x+ ivn))2

→ 0,

by (29).
This shows that

max
k≤N
Ek(F

Cn([a, b]))2
= o(v2

n), a.s.

Clearly, the same argument holds for [a′, b′] replacing [a, b], and so we have (24). Now, taking δ = 1/35, from (24) we get

max
k≤N
Ek(F

Cn([a′, b′]))2
= o(N−2/35) a.s. (30)

3. Convergence of mn − Emn

Throughout the rest of the paper we take vn = κn−δ with δ = 1
140 , and some constant κ > 0. In this section, we

verify (7). Since for real x1, x2, |mn(x1 + ivn) − mn(x2 + ivn)| ≤ |x1 − x2|v−2
n (and from this, the same bound holds for

|Emn(x1 + ivn)− Emn(x2 + ivn)|), we can prove (7) if we prove that

max
x∈Sn

Nvn|mn(x+ ivn)− Emn(x+ ivn)| → 0, a.s. as n→∞, (31)

for the set Sn consisting of n2 points equally spaced in [a, b].
Write D = Cn − zI, Dj = D − bjyjy∗j (where yj =

1
√
N
A

1/2
n X·j), and Djj′ = Dj − bj′yj′y

∗

j′ , for j′ 6= j. Note that Dj = C(j) − zI. Then,
mn =

1
n

tr D−1. Also, let D = Cn − zI, where z is the complex conjugate of z. Note that D = D∗. Also, let

αj = y∗j D
−2
j yj −

1
N

tr (D−2
j An), aj =

1
N

tr (D−2
j An),

βj =
1

1+ bjy
∗
j D
−1
j yj

, b̂j =
1

1+ bj
1
N
E[tr (D−1

j An)]
,

γj = y∗j D
−1
j yj −

1
N
E[tr (D−1

j An)], γ̂j = y∗j D
−1
j yj −

1
N

tr (D−1
j An).

We first derive bounds for the moments of γj and γ̂j. Integrating first with respect to X·j, that is, conditioning on the set
{X·i : j 6= i}, and using Lemma 3, for all p ≥ 2,

E|γ̂j|p ≤ KpN
−pE[tr (A1/2

n D−1
j AnD

−1
j A1/2

n )]p/2
≤ KpN

−p/2v−pn , (32)

where the last step follows from the fact that ‖D−1
j ‖ ≤ v−1

n , and that ‖An‖ ≤ 1.
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Now, using the fact that (Ej − Ej−1)[fn(X·1, . . . , X·N)] (for any bounded fn) forms a martingale difference sequence w.r.t.
the sigma-fields Fj−1 generated by columns {X·1, . . . , X·(j−1)}, and that E0[tr (D−1

j An)] = E[tr (D−1
j An)], and EN[tr (D−1

j An)] =

tr (D−1
j An), from Burkholder’s inequality (Lemma 2.2 in [1]),

E|γj − γ̂j|p = N−pE

∣∣∣∣∣∣
N∑

j′ 6=j

(Ej′ − Ej′−1)[tr (D−1
j An)]

∣∣∣∣∣∣
p

= N−pE

∣∣∣∣∣∣
∑
j′ 6=j

Ej′ [tr (D−1
j − D−1

jj′ )An] − Ej′−1[tr (D−1
j − D−1

jj′ )An]

∣∣∣∣∣∣
p

= N−pE

∣∣∣∣∣∣
∑
j′ 6=j

(Ej′ − Ej′−1)

[
bjy∗j D

−1
jj′ AnD

−1
jj′ yj

1+ bjy
∗
j D
−1
jj′ yj

]∣∣∣∣∣∣
p

≤ KpN
−pE

∑
j′ 6=j

∣∣∣∣∣(Ej′ − Ej′−1)

[
bjy∗j D

−1
jj′ AnD

−1
jj′ yj

1+ bjy
∗
j D
−1
jj′ yj

]∣∣∣∣∣
2p/2

≤ KpN
−p/2v−pn , (33)

where in the last step we use Lemma 2.10 of [1] to bound the term within conditional expectations by ‖An‖v−1
n ≤ v−1

n .
Therefore, from (32) and (33) it follows that for any p ≥ 2,

E|γj|p ≤ KpN
−p/2v−pn . (34)

Next, we write

mn − Emn =
1
n

N∑
j=1

(Ej − Ej−1)[tr (D−1)]

= −
1
n

N∑
j=1

(Ej − Ej−1)

[
bj

y∗j D
−2
j yj

1+ bjy
∗
j D
−1
j yj

]
(since Ejtr (D−1

j ) = Ej−1tr (D−1
j ))

= −
1
n

N∑
j=1

(Ej − Ej−1)

[
bj

y∗j D
−2
j yj

1+ bj
1
N
E[tr (D−1

j An)]

]

+
1
n

N∑
j=1

(Ej − Ej−1)

[
b2
j

y∗j D
−2
j yj(y∗j D

−1
j yj −

1
N
E[tr (D−1

j An)])

(1+ bj
1
N
E[tr (D−1

j An)])2

]

−
1
n

N∑
j=1

(Ej − Ej−1)

[
b3
j

y∗j D
−2
j yj(y∗j D

−1
j yj −

1
N
E[tr (D−1

j An)])
2

(1+ bj
1
N
E[tr (D−1

j An)])2(1+ bjy
∗
j D
−1
j yj)

]

= −
1
n

N∑
j=1

bjb̂jEjαj +
1
n

N∑
j=1

b2
j b̂

2
j Ejajγ̂j

+
1
n

N∑
j=1

b2
j b̂

2
j (Ej − Ej−1)[αjγj − bjy

∗

j D
−2
j yjβjγ

2
j ]

= W1 +W2 +W3. (35)

3.1. Boundedness of b̂j

Let

p0
n = −

1
z

∫
b

1+ cnbe0
n

dFBn(b) and p̂n = −
1
z

∫
b

1+ cnbE(en)
dFBn(b).

We have

m0
n = −

1
z

∫ 1
ap0

n + 1
dFAn(a), and e0

n = −
1
z

∫
a

ap0
n + 1

dFAn(a). (36)

We have then

e0
n = −

1
z

1
p0
n

∫
ap0

n + 1− 1
ap0

n + 1
dFAn(a) = −

1
zp0

n

−
m0

n

p0
n

.
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Therefore

e0
np

0
n = −

1
z
− m0

n.

Suppose z = zj ∈ C+ → x ∈ [a′, b′] as j→∞. Then

e0
n(z)p

0
n(z)→−

1
x
− m0

n(x) ∈ R.

We see that both {p0
n(zj)} and {e0

n(zj)} remain bounded, since if, say, e0
n goes unbounded on some subsequence, p0

n would tend
to zero on that subsequence, and from (36) it will render e0

n converging to a finite number, a contradiction. Since=m0
n(x) = 0,

we must have limj→∞ =p0
n(zj) = 0. This in turn implies limj→∞ =e0

n(zj) = 0 as well. Therefore, the measures defining p0
n and

e0
n have derivative 0 for each x ∈ [a′, b′], so (a′, b′) is outside the support of both these measures; after considering a slightly

larger ε, this statement extends to [a′, b′].
From continuity, we have e0

n(z) → e0(z), and consequently, m0
n → m0(z), and p0

n(z) → p0(z), e0, m0, p0 defined for
the limiting empirical distribution, for all z ∈ C+ ∪ [a′, b′]. We must have [−1/p0

n(a
′),−1/p0

n(b
′)] not intersecting with

any of the eigenvalues of An (respectively, [−1/p0(a′),−1/p0(b′)] not intersecting with the support of FA). Therefore, since
p0
n(x) → p0(x), for x = a′, a, b, b′, and p0(a′) < p0(a) < p0(b) < p0(b′), we must have −1/p0

n(z) uniformly bounded away
from the eigenvalues of An for all z = x+ iv, x ∈ [a, b], and for v ∈ [0, v0] for some positive v0.

Similarly, −1/(cne0
n) is uniformly bounded away from the eigenvalues of Bn for all z = x + iv, x ∈ [a, b], v ∈ [0, v0].

Therefore, using (22) and arguments analogous to those leading to (27) (now applied to en instead of mn), we have, with
z = x+ ivn,

sup
x∈[a,b]

|p̂n(z)− p0
n(z)| = sup

x∈[a,b]
|e0

n(z)− E(en(z))|
cn
|z|

∣∣∣∣∣
∫

b2

(1+ cnbe0
n)(1+ cnbE(en))

dFBn(b)
∣∣∣∣∣

≤ sup
x∈R

K

vn
|e0

n(z)− E(en(z))| ≤ KE(v−1
n sup

x∈R
|en − e0

n|)→ 0

as n→∞. Thus we conclude that

sup
x∈[a,b]

‖(I + p̂n(z)An)
−1
‖ ≤ K, (37)

and

max
j≤N

sup
x∈[a,b]

1
|(1+ cnbjE(en))|

≤ K. (38)

Let for j 6= j ≤ N,

b̂j =
1

1+ cnbjn−1Etr (AnD
−1
j )

and b̂jj =
1

1+ cnbjn−1E(tr (AnD
−1
jj ))

.

From Lemma 1

|(1/n)tr (AnD
−1
j )− en| ≤ (nvn)

−1 and |(1/n)tr (AnD
−1
jj )− en| ≤ 2(nvn)

−1,

so from (38) we also have for all n large

max
j≤N

sup
x∈[a,b]

(|b̂j|, max
j6=j
|b̂jj|) ≤ K. (39)

3.2. Bounds on W1,W2,W3

Let Fnj be the spectral distribution of the matrix
∑

k6=j bkyky
∗

k . From Lemma 2.12 of [1], and (30), we get

max
j
Ej(Fnj([a

′, b′]))2
= o(v8

n) = o(N−2/35), a.s. (40)

Define

Bj = I
[Ej−1Fnj([a′,b′])≤v

4
n ]∩[Ej−1(Fnj([a′,b′]))2≤v8

n ]
.

Note that Bj = I
[EjFnj([a′,b′])≤v

4
n ]∩[Ej(Fnj([a′,b′]))2≤v8

n ]
a.s., and we have

P

(
N⋃

j=1
[Bj = 0] i.o.

)
= 0.

Therefore, for any ε > 0,
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P
(

max
x∈Sn
|NvnW1| > ε i.o.

)
≤ P

(([
max
x∈Sn

∣∣∣∣∣vn N∑
j=1
Ej(αj)

∣∣∣∣∣ > ε
]

N⋂
j=1
[Bj = 1]

)
∪

(
N⋃

j=1
[Bj = 0]

)
i.o.

)

≤ P

(
max
x∈Sn

∣∣∣∣∣vn N∑
j=1
Ej(αj)Bj

∣∣∣∣∣ > ε i.o.
)

,

where ε = infn nε/(N max1≤j′≤n bj′ |b̂j′ |) > 0, since max1≤j≤N |bj| ≤ 1, and max1≤j≤N supx∈[a,b] |b̂j| is bounded for all n (by (39)).
Note that, for each x ∈ R, {Ej(αj)Bj} forms a martingale difference sequence.

By Lemma 2.1 in [1], and Lemma 3, for each x ∈ [a, b], and p ≥ 2,

E

∣∣∣∣∣vn N∑
j=1
Ej(αj)Bj

∣∣∣∣∣
p

≤ Kp

E( N∑
j=1
Ej−1|vnEj(αj)Bj|

2

)p/2

+

N∑
j=1
E|vnEj(αj)Bj|

p


≤ Kp

E( N∑
j=1
Ej−1v

2
nN
−2Bj tr

(
A1/2
n D−2

j AnD
−2
j A1/2

n

))p/2

+ vpn

N∑
j=1
E|αj|

p


≤ Kpv

p
nN
−pE

(
N∑

j=1
BjEj−1tr (D−2

j D
−2
j )

)p/2

(since ‖An‖ ≤ 1)

+ Kpv
p
nN
−p

N∑
j=1
E
(

tr (A1/2
n D−2

j AnD
−2
j A1/2

n )
)p/2

(by Lemma 3)

≤ Kp

vpnN
−pE

(
N∑

j=1
BjEj−1tr (D−2

j D
−2
j )

)p/2

+ v−pn N1−p/2

 ,

since maxj ‖D
−1
j ‖ ≤ v−1

n and ‖An‖ ≤ 1.
Let λkj denote the kth-smallest eigenvalue of

∑
k′ 6=j bk′yk′y

∗

k′ . We have, for x ∈ [a, b],

N∑
j=1

BjEj−1tr (D−2
j D

−2
j ) =

N∑
j=1

BjEj−1

 ∑
λkj 6∈[a′,b′]

1
((λkj − x)2 + v2

n)
2 +

∑
λkj∈[a′,b′]

1
((λkj − x)2 + v2

n)
2


≤

N∑
j=1

(nε−4
+Bjv

−4
n nEj−1Fnj([a

′, b′]))

≤ KN2. (41)
Here the last step follows from (40).

Therefore, for p ≥ 70
34 ,

P

(
max
x∈Sn

∣∣∣∣∣vn N∑
j=1
Ej(αj)Bj

∣∣∣∣∣ > ε
)
≤ Kp,εn

2N−p/140,

which is summable when p > 420. Therefore, by Borel–Cantelli lemma,
max
x∈Sn
|W1| = o(1/Nvn) a.s. (42)

Next we prove
max
x∈Sn
|W2| = o(1/Nvn) a.s. (43)

by following similar arguments. First, observing that {Ej(ajγ̂j)Bj} forms a martingale difference sequence, and using Lemma
2.1 of [1], Lemmas 1 and 3, and the fact that |aj| ≤ n

N
v−2
n , we have

E

∣∣∣∣∣vn N∑
j=1
Ej(ajγ̂j)Bj

∣∣∣∣∣
p

≤ Kp

E( N∑
j=1
Ej−1|vnEj(ajγ̂j)Bj|

2

)p/2

+

N∑
j=1
E|vnEj(ajγ̂j)Bj|

p


≤ Kpv

p
nN
−pE

(
N∑

j=1
BjEj−1(|aj|

2tr (D−1
j D

−1
j ))

)p/2

(by Lemma 3)

+ Kpv
−p
n N−p

N∑
j=1

(
tr (D−1

j D
−1
j )

)p/2
(

by Lemma 3, and since max
j
|aj| ≤

n

N
v−2
n

)

≤ Kp

vpnN
−pE

(
N∑

j=1
BjEj−1(|aj|

2tr (D−1
j D

−1
j ))

)p/2

+ v−2p
n N1−p/2

 ,

since maxj ‖D
−1
j ‖ ≤ v−1

n , so maxj tr (D−1
j D

−1
j ) ≤ nv−2

n .
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Moreover, using same notation as before, the fact that ‖An‖ ≤ 1, and arguing as in the derivation of (41), we have
N∑

j=1
BjEj−1(|aj|

2tr (DjD
−1
j )) ≤

N∑
j=1

BjEj−1N
−2n

[∑
k

1
((λkj − x)2 + v2

n)
2

] [∑
k

1
(λkj − x)2 + v2

n

]
,

(by Cauchy–Schwarz applied to |aj|2)

≤

N∑
j=1

BjN
−2nEj−1(nε

−4
+ v−4

n nFnj([a
′, b′]))(nε−2

+ v−2
n nFnj([a

′, b′]))

≤ KN2.

Since maxj max{bj, supx∈[a,b] |b̂j|} is bounded, for large enough n, we have (43) by arguments similar to the ones used already
in the derivation of (42).

Note that Lemma 1 implies that

max
j

sup
x∈[a,b]

|bjy
∗

j D
−2
j yjβj| = max

j
sup
x∈[a,b]

∣∣∣∣∣ bjy∗j D
−2
j yj

1+ bjy
∗
j D
−1
j yj

∣∣∣∣∣ ≤ 1
vn

. (44)

Using Lemma 2.2 of [1] followed by Hölder’s inequality, we have

E

∣∣∣∣∣vn N∑
j=1

(Ej − Ej−1)(αjγj − bjy
∗

j D
−2
j yjβjγ

2
j )

∣∣∣∣∣
p

≤ Kpv
p
nN

p/2−1
N∑

j=1
(E|αjγj|

p
+ v−pn E|γj|

2p) (by (44))

≤ Kpv
p
nN

p/2−1
N∑

j=1

(
N−p

(
E(tr (D−2

j D
−2
j ))p

)1/2
N−p/2v−pn + v−3p

n N−p
)

(by Cauchy–Schwarz, Lemma 3, the fact that‖An‖ ≤ 1, and (34))
≤ Kpv

p
nN

p/2(N−pNp/2v−2p
n N−p/2v−pn + v−3p

n N−p) (since ‖D−1
j ‖ ≤ v−1

n )

≤ Kpv
−2p
n N−p/2.

Thus, using arguments as in the proof of (42) and (43), we get

max
x∈Sn
|W3| = o(1/Nvn). (45)

Hence, (31) and, consequently, (7) follow from (42), (43) and (45).

4. Convergence of expected value

In this section we prove (8). Recall the definitions of D, Dj and Djj from Section 3. Also, let

βjj =
1

1+ bjy
∗
j D
−1
jj yj

.

For j 6= j ≤ N let λkjj denote the kth-smallest eigenvalue of Djj, and let Fnjj denote the empirical distribution function of this
matrix. Using (40) and Lemma 2.12 of [1] we get

max
j6=j
E(Fnjj[a′, b′])2

= o(v8
n).

Therefore

max
j≤N

sup
x∈[a,b]

E(tr D−1
j D

−1
j )2
= max

j≤N
sup
x∈[a,b]

E

 ∑
λkj 6∈[a′,b′]

1
(λkj − x)2 + v2

n

+
∑

λkj∈[a′,b′]

1
(λkj − x)2 + v2

n

2

≤ max
j≤N

sup
x∈[a,b]

E(nε−2
+ v−2

n nFnj([a
′, b′]))2

≤ Kn2,

and

max
j≤N

sup
x∈[a,b]

E(tr D−2
j D

−2
j )2
≤ max

j≤N
sup
x∈[a,b]

E(nε−4
+ v−4

n nFnj([a
′, b′]))2

≤ Kn2.

The latter implies of course

max
j≤N

sup
x∈[a,b]

Etr D−2
j D

−2
j ≤ Kn.

Similarly,

max
j6=j

sup
x∈[a,b]

E(tr D−1
jj D̄−1

jj )2
≤ Kn2, and max

j6=j
sup
x∈[a,b]

E(tr D−2
jj D

−2
jj ) ≤ Kn.
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Moreover

max
j6=j

sup
x∈[a,b]

E(tr D−1
jj D

−1
jj )4
≤ E(nε−2

+ v−2
n nFnjj([a

′, b′]))4
≤ Kn4(ε−8

+ v−8
n E(Fnjj([a

′, b′]))2) ≤ Kn4.

Write

Cn − zI + zI + zp̂nAn =

N∑
j=1

bjyjy
∗

j + zp̂nAn.

Taking first inverses and then expected values we have

E(Cn − zI)−1
+ (zI + zp̂nAn)

−1
= E

[
N∑

j=1
bj(Cn − zI)−1yjy

∗

j (zI + zp̂nAn)
−1
+ zp̂nD

−1An(zI + zp̂nAn)
−1

]

=

N∑
j=1

bj

[
E

(C(j) − zI)−1yjy∗j (zI + zp̂nAn)
−1

1+ bjy
∗
j D
−1yj

−
1

z(1+ cnbjE(en))
E(Cn − zI)−1An(I + p̂nAn)

−1

]
.

Taking the trace on both sides and dividing by n we have

E(mn(z))−
∫ 1

a
∫ b

1+cnbE(en)
dFBn(b)− z

dFAn(a) =
1
zN

N∑
j=1

bjd̂j ≡ ŵm
n ,

where

d̂j = E[βj(1/n)X∗
·jA

1/2
n (I + p̂nAn)

−1D−1
j A1/2

n X·j] −
(1/n)trE[D−1

]An(I + p̂nAn)
−1

(1+ cnbjE(en))
.

Multiplying both sides of the above matrix identity by An, and then taking traces and dividing by n, we find

E(en(z))−
∫

a

a
∫ b

1+cnbE(en)
dFBn(b)− z

dFAn(a) =
1
zN

N∑
j=1

bjd̂
e
j ≡ ŵe

n,

where

d̂e
j = E[βj(1/n)X∗

·jA
1/2
n (I + p̂nAn)

−1AnD
−1
j A1/2

n X·j] −
(1/n)tr AnE[D−1

]An(I + p̂nAn)
−1

(1+ cnbjE(en))
.

Again, we let En denote either An or In. We first show that

n−1 max
j≤N

sup
x∈[a,b]

|tr EnE[D−1
]An(I + p̂nAn)

−1
− tr EnE[D−1

j ]An(I + p̂nAn)
−1
| = O(n−1). (46)

Using βj = b̂j − bjβjb̂jγj, (3.3) of [1], (34), (37) and (39) we conclude that the left hand side of (46) becomes

= n−1 max
j≤N

bj sup
x∈[a,b]

|E[βjy
∗

j D
−1
j An(I + p̂nAn)

−1EnD
−1
j yj]|

≤ n−1 max
j≤N

bj sup
x∈[a,b]

(|b̂j||E[y∗j D
−1
j An(I + p̂nAn)

−1EnD
−1
j yj]|

+ bj|b̂j| |E[βjγjy
∗D−1

j An(I + p̂nAn)
−1EnD

−1
j yj]|)

≤ Kn−1 max
j≤N

sup
x∈[a,b]

(N−1
|E[tr A1/2

n D−1
j An(I + p̂nAn)

−1EnD
−1
j A1/2

n ]|)

+ v−1
n (E|γj|2)1/2(E|y∗j D

−1
j An(I + p̂nAn)

−1EnD
−1
j yj|

2)1/2

≤ Kn−1 max
j≤N

sup
x∈[a,b]

(N−1E[tr D−1
j D

−1
j ])

+ v−1
n N−1/2v−1

n N−1(E[tr D−2
j D

−2
j ] + E(tr D−1

j D
−1
j )2)1/2

≤ Kn−1.

Thus (46) holds.
From Lemma 3 and (37) we get

max
j≤N

sup
x∈[a,b]

E|(1/n)x∗j A
1/2
n (I + p̂nAn)

−1EnD
−1
j A1/2

n xj − (1/n)tr EnD−1
j An(I + p̂nAn)

−1
|
2

≤ Kn−2 max
j≤N

sup
x∈[a,b]

E[tr D−1
j D

−1
j ] ≤ Kn−1. (47)

We next show that

max
j≤N

sup
x∈[a,b]

n−2E|tr EnD−1
j An(I + p̂nAn)

−1
− tr EnE[D−1

j ]An(I + p̂nAn)
−1
|
2
≤ Kn−1. (48)
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Using (3.3) of [1], and the fact that βjj = b̂jj − bjb̂jjβjjγjj, the left hand side of (48) becomes

= max
j≤N

sup
x∈[a,b]

n−2
∑
j6=j

E|(Ej − Ej−1)tr EnD−1
j An(I + p̂nAn)

−1
|
2

≤ 2 max
j≤N

sup
x∈[a,b]

n−2
∑
j6=j

b2
j E|βjjy

∗

j D
−1
jj An(I + p̂nAn)

−1EnD
−1
jj yj|

2

= 2 max
j≤N

sup
x∈[a,b]

n−2
∑
j6=j

b2
j E|(b̂jj − bjb̂jjβjjγjj)y

∗

j D
−1
jj An(I + p̂nAn)

−1EnD
−1
jj yj|

2

≤ K max
j≤N

sup
x∈[a,b]

n−2
∑
j6=j

[
E|y∗j D

−1
jj An(I + p̂nAn)

−1EnD
−1
jj yj|

2

+ v−2
n (E|γjj|4E|y∗j D

−1
jj An(I + p̂nAn)

−1EnD
−1
jj yj|

4)1/2
]

≤ K max
j≤N

sup
x∈[a,b]

n−2
∑
j6=j

b2
j n
−2
[
E(tr D−2

jj D
−2
jj )+ E(tr D−1

jj D
−1
jj )2

+ v−2
n n−1v−2

n (E(tr D−2
jj D

−2
jj )2
+ E(tr D−1

jj D
−1
jj )4)1/2

]
≤ K max

j≤N
sup
x∈[a,b]

n−2
∑
j6=j

n−2(n+ n2
+ v−4

n n−1(n2
+ n4)1/2)

≤ Kn−1.

So (48) is true.
We get the same bound when (I + p̂nAn)

−1 is removed from the expressions, that is, we also have

max
j≤N

sup
x∈[a,b]

E|γj − γ̂j|2 ≤ Kn−1.

Moreover, using (32),

max
j≤N

sup
x∈[a,b]

E|γ̂j|2 ≤ Kn−2E[tr D−1
j D

−1
j ] ≤ Kn−1.

Thus

max
j≤N

sup
x∈[a,b]

E|γj|2 ≤ Kn−1.

Therefore, with d̂em
j denoting either d̂j or d̂e

j , and with ŵem denoting either ŵe or ŵm, we have, using Lemma 1, (46), (47), (34),
and the fact that βj = b̂j − b̂2

j γj + b̂2
j βjγ

2
j ,

sup
x∈[a,b]

|ŵem
| = sup

x∈[a,b]

∣∣∣∣∣ 1
zN

N∑
j=1

bjd̂
em
j

∣∣∣∣∣
≤ Kn−1

+max
j≤N

sup
x∈[a,b]

∣∣∣∣∣E[βj(1/n)x∗j A
1/2
n (I + p̂nAn)

−1EnD
−1
j A1/2

n xj] −
(1/n)tr EnE[D−1

j ]An(I + p̂nAn)
−1

1+ cnbjE(en)

∣∣∣∣∣
≤ Kn−1

+ K max
j≤N

sup
x∈[a,b]

(
E|βj − b̂j +

cnbjb̂j
1+ cnbjE(en)

× E(en − (1/n)tr A1/2
n D−1

j A1/2
n )|(1/n)(E(tr D−1

j D
−1
j ))1/2

+ |E[βj((1/n)x∗j A
1/2
n (I + p̂nAn)

−1EnD
−1
j A1/2

n xj − (1/n)tr EnE(D−1
j )An(I + p̂nAn)

−1)]|

)
≤ Kn−1

+ K max
j≤N

sup
x∈[a,b]

(
| |b̂2

j |E|γj − βjγ
2
j | + v−1

n n−1
|n−1/2

+ |b̂j|
2
|E[(γj − βjγ

2
j )((1/n)x∗j A

1/2
n (I + p̂nAn)

−1EnD
−1
j A1/2

n xj

− (1/n)tr EnE(D−1
j )An(I + p̂nAn)

−1)]|
)

≤ K(n−1
+max

j≤N
sup
x∈[a,b]

(E|γj|2 + v−2
n E|γj|

4)1/2n−1/2)

≤ K(n−1
+ (n−1

+ v−2
n n−2v−4

n )1/2n−1/2)

≤ Kn−1. (49)

As before, we have

E(en)− e0
n = (E(en)− e0

n)γn + ŵe
n
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where, after inserting p̂n and p0
n ,

|γn| ≤

∫ cna2 ∫ b2

|1+cnbE(en)|2
dFBn(b)

|z|2|ap̂n + 1|2
dFAn(a)

1/2 ∫ cna2 ∫ b2

|1+cnbe0
n |

2 dFBn(b)

|z|2|ap0
n + 1|2

dFAn(a)


1/2

. (50)

Let G0
n , G0 denote the distribution functions defining e0

n , e0. Then G0
n

D
−→ G0. We have∫ 1

(λ− x)2 dG0(λ) =
d
dx

e0(x)

uniformly bounded for x ∈ [a, b]. For λ in either (−∞, a′] or [b′,∞), {(λ − x)−2
: x ∈ [a, b]} form a uniformly bounded,

equicontinuous family of functions in λ. From [4], Problem 8, p. 17, we have then

lim
n→∞

sup
x∈[a,b]

∣∣∣∣ d
dx

e0
n(x)−

d
dx

e0(x)

∣∣∣∣ = 0.

Since for all x ∈ [a, b], λ ∈ [a′, b′]c and positive v,∣∣∣∣ 1
(λ− x)2 + v2 +

1
(λ− x)2

∣∣∣∣ ≤ v2

ε4 ,

recalling that e0
2 = =e

0
n , we have for any sequence of positive v′n converging to 0,

lim
n→∞

sup
x∈[a,b]

∣∣∣∣∣ e0
2(x+ iv′n)

v′n
−

d
dx

e0
n(x)

∣∣∣∣∣ = 0.

Therefore, we conclude that

sup
n,x∈[a,b]

e0
2(x+ ivn)

vn
≤ K. (51)

Writing again e0
2 = e0

2α+ vnβwe have, by (51) and the conclusion in Section 3.1 concerning the eigenvalues of Bn remaining
away from−1/(cne0

n),

sup
x∈[a,b]

e0
2α

vnβ
≤ sup

x∈[a,b]

e0
2

vn
cn

∫
b2

|1+ cnbe0
n|

2 dFBn(b) ≤ K.

Therefore

sup
x∈[a,b]

∫ cna2 ∫ b2

|1+cnbe0
n |

2 dFBn(b)

|z|2|ap0
n + 1|2

dFAn(a) = sup
x∈[a,b]

e0
2α/(vnβ)

(e0
2α/(vnβ))+ 1

is uniformly bounded away from 1. Moreover, from continuity and the uniform convergence of E(en) and p̂n, we must have
that the supremum over all x ∈ [a, b] of the first factor on the right hand side of (50) is also uniformly bounded away from
1 for all n large. We therefore have from (49)

sup
x∈[a,b]

|E(en)− e0
n| = O(n−1).

Again

|E(mn)− m0
n|

≤ |E(en)− e0
n|

∫ cn
∫ b2

|1+cnbE(en)|2
dFBn(b)

|z|2|ap̂n + 1|2
dFAn(a)

1/2 ∫ cna2 ∫ b2

|1+cnbe0
n |

2 dFBn(b)

|z|2|ap0
n + 1|2

dFAn(a)


1/2

+ |ŵm
n |.

The second factor on the right is of course bounded by 1, and from (37) and (38), the first factor is bounded, uniformly for
x ∈ [a, b]. Therefore, by (49), we conclude that (8) holds.

Thus combining the results of this section and the previous section, we arrive at (3), and along with Section 6 of [1], this
completes the proof of Theorem 1.
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Appendix. Mathematical tools

Lemma 1. For n× nA, τ ∈ C, and r ∈ Cn for which A and A+ τrr∗ are invertible,

r∗(A+ τrr∗)−1
=

1
1+ τr∗A−1r

r∗A−1.

(follows from r∗A−1(A+ τrr∗) = (1+ τr∗A−1r)r∗).

Moreover (Lemma 2.6 of [13]), let z ∈ C+ with v = Im z, A and B n× n with B Hermitian, and r ∈ Cn. Then∣∣∣tr ((B− zI)−1
− (B+ rr∗ − zI)−1

)
A
∣∣∣ = ∣∣∣∣∣ r∗(B− zI)−1A(B− zI)−1r

1+ r∗(B− zI)−1r

∣∣∣∣∣ ≤ ‖A‖v .

Lemma 2 (Lemma 2.3 of Silverstein (1995)). For z = x + iv ∈ C+ let m1(z), m2(z) be Stieltjes transforms of any two measures
with respective total masses M1, M2; A, B, and C n× n with A Hermitian nonnegative definite, and r ∈ Cn. Then

(a)

‖(m1(z)A+ I)−1
‖ ≤ max(4M1‖A‖/v, 2)

(b)

|tr B((m1(z)A+ I)−1
− (m2(z)A+ I)−1)|

≤ |m2(z)− m1(z)|n‖B‖ ‖A‖max(4M1‖A‖/v, 2) max(4M2‖A‖/v, 2)

(c)

|r∗B(m1(z)A+ I)−1Cr − r∗B(m2(z)A+ I)−1Cr

≤ |m2(z)− m1(z)|‖r‖
2
‖A‖‖B‖max(4M1‖A‖/v, 2) max(4M2‖A‖/v, 2)

(‖r‖ denoting the Euclidean norm on r).

Lemma 3 (Lemma 2.7 of [1]). For X = (X·1, . . . , ·Xn)
T i.i.d. standardized and bounded entries, C an n× n matrix, we have for any

p ≥ 2

E|X∗
·1CX·1 − tr C|p ≤ Kp(tr CC∗)p/2

where Kp depends on the distribution of X·1.

Lemma 4 (Analog of (3.1) of [1]). When the entries of Xn are bounded the largest eigenvalue of 1
N
XnX∗n , denoted by λmax, satisfies

P(λmax > K) = o(n−t)

for any K > (1+
√
c)2 and any positive t.

Lemma 5 (Lemma 2.2 of [12], and Theorems A.2, A.4, A.5 of [10]). If f is analytic on C+, both f (z) and zf (z) map C+ into C+, and
there is a θ ∈ (0,π/2) for which zf (x)→ c, finite, as z→∞ restricted to {w ∈ C : θ < arg w < π− θ}, then c < 0 and f is the
Stieltjes transform of a measure on the nonnegative reals with total mass−c.
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