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Abstract 

Leader fall is the main concern in climbing activities and the appropriate answer to the problem is the 
rope.  
An accurate numerical simulation of the consequences of a fall on the “safety chain” (assembly of rope, 
fixed points, karabiners, cords and other climbing gears) is essential for understanding the events and 
conceiving safety methods. It also reduces the times and costs involved in experimental assessments. In 
this context a sound knowledge of the rope properties is essential. 
The analytical model of the rope behaviour during stretching should be slim enough to reduce computing 
time, but still be able to describe the rope behaviour in each segment of the “safety chain”. 
The present paper proposes a model to describe the rope behaviour when stretched, representing the force 
as a function of strain and strain rate. Model parameters have been calibrated on experimental data 
measured from a specific mountaineering commercial rope. The same procedure can be applied for 
different mountaineering ropes present on the market.   
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1. Introduction 

In climbing and mountaineering activities, the most critical piece of equipment in terms of safety 
is the so called “dynamic rope”, able to stretch under dynamic load and  therefore capable of absorbing 
energy, thus reducing  the shock forces acting on the human body and on the "safety chain" (assembly of 
rope, fixed points, karabiners, cords and other climbing gears). Mountaineering ropes are considered 
personal protective equipment (PPE) and submitted to the EN 892 standard [1]. 
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In the analysis of the loads occurring on the elements of the "safety chain" and on the human 
body, the use of mathematical models becomes an useful tool for the optimization of the equipment 
assemblies and safety methods.  This reduces time and costs in experimental testing [2] and improves the 
awareness of the phenomena.  
The setup of such models requires an analytical formulation of the rope behaviour in terms of a relation 
between load, strain and, also, strain rate.  A great amount of work has been devoted to this subject during 
recent years. A growing amount of evidences is available in literature [3] [4] [5] [6]. 

Mountaineering ropes have a quite complex structure due to the “kernel-mantel”-like 
construction; accordingly models describing all the physical mechanisms that take place during rope 
stretching are indeed very sophisticated. The reasons for that are the visco-elasto plastic behaviour of the 
polyamide PA basic material, the friction between yarns, strands and other constitutive parts of the rope 
and the time dependent strain recovery during a possible unload lapse of time between two adjacent 
loading cycles. All these characteristics can change from rope to rope according to the manufacturing 
design. 

An overall rope model (able to describe the behaviour up to the yarn level) is by far too complex, 
considering that a rope is composed of 60.00 yarns. For the aim of this research a simple model is 
required. Nevertheless, even in its simplicity, the constitutive equation should cover all the main features 
of the rope including non-linear behaviour, energy dissipation during the load-unload cycles and time-
dependent strain recovery. 
In the past, several models of various degrees of simplicity were proposed to describe the mechanical 
characteristics of elastic components such as the Maxell or Kelvin Voigt ones or a combination of them. 
To our knowledge, none of these models comprehensively mimics the mountaineering rope's behaviour.  

For this purpose, a modified version of the non-linear model proposed by Hunt and Crossley [7], 
well known in the field of impact studies, is proposed in the present study. This model defines the force 
generated in the rope as the sum of two terms: the first describes the dependence of the force on the rope 
strain by a nonlinear formulation; the second one describes the dependence of the force on the rope strain 
as well as on its strain rate so enabling the energy dissipation. 

Nomenclature 

t       time 
x mass displacement 
x’ mass speed 
 rope strain 
’ rope strain rate 

F force in the rope 
L specimen length  
H free fall height 
ff fall factor  H/L 
ci constitutive equation coefficients 
subscript  

s refers to the mass movement start   

t refers to the rope stretching start   

res stands for “residual” (referred to strain after distressing) 

unload  stands for an instant in which load disappears 
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2. The reference experimental data 

The definition of the parameters of the rope constitutive equation was obtained by a best fitting 
procedure starting from 4 experimental data sets; carried on with 4 specimens cut from the same rope. A 
mass, able to fall vertically and freely with no friction between two guiding columns, is arrested by a 
piece of rope tied to the mass on one side and fixed to an anchor point on the other side. In these 
circumstances the rope practically absorbs the entire fall energy. The experimental data refer to a 
commercial mountaineering rope. 

During the test, the mass displacement and the generated force were recorded. The sampling 
frequency was 1 kHz; four different experimental situations were considered, i.e. four different fall 
factors: ff=2,  ff=1,5,  ff=1,  ff=0.5. 

The mass speed was calculated by numerical derivation and subsequent filtering of the mass 
displacement measured by laser as a function of time. In order to reduce energy dispersions from the rope 
to a minimum, the fixed constrain was obtained by a mechanical clamp, thus avoiding energy absorption 
by knots. In Fig.1 the scheme and a detail of the experimental apparatus is shown. Fig. 2 depicts mass 
displacement and speed as a function of time referred to ff=1.5; the force is represented as well. The 
classical diagram showing the force and the strain rate as function of strain is represented in Fig. 3. The 
data are relative to a 2.38 meter long specimen obtained from a modern mountaineering rope; the fall 
height was  3.52 meters. 
The following equations define strain and the strain rate:  

L / )x(x t−=       ( 1 ) 

L/ x 
..

=        ( 2 ) 

FIG. 1   The experimental apparatus  (schematic) and a detail of the rope-mass connection  (two clamps)
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3. The constitutive equation 

The equation describing the force in the rope is of the type )  , ,  ( f  F res

.

εεε= ,  composed by two 

parts: the first represents the contribution due to the strain alone;  the second describes the additional 
effects of the strain rate. The residual strain is involved as well. This formulation enables a situation in 
which a lack of force is possible even with a non-zero strain, typical of a complete distressed phase 
between two subsequent load sequences as shown in Fig. 2 and FIG. 3. The mass rebound sequences are 
well deducible from the mass displacement shown in Fig. 2. 
The force is represented as follows:   

.

5
42

)1(.
c

res3
c

res1load )(c)(cF
ε

ε
c−

−+−=     ( 3 ) 

.

872
)1(

..
c

res6
c

res1unload  |  |)(  )(c)(cF
εεε c

sign
−−+−=    ( 4 ) 

The equations take into account the time dependent residual strain )( res that was calculated at each 

time-step by means of the strain recovery rate )(
.

resε  (evaluated as a mean of the measured ones during 

unload  phases) and considered linear in time.   
The current residual strain is represented by: 

)(
.

res unloadres tt −= ε         ( 5 ) 

       
The eight coefficients ci comparing in (3) and (4) were defined by means of a best fitting process 
minimizing the sum of the differences between the measured and calculated forces at each time step. The 
calculated force, according to (3) and (4), were obtained using experimental strain and strain rates during 
the entire process. The mathematical algorithm of the simplex search method [8] was used. 
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FIG. 2  Force, displacement and speed versus time                             FIG. 3 Force and strain rate versus strain
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The sum procedure was further extended to the four experimental sets of data corresponding to ff 2, 1.5, 1 
and 0.5. The optimization was performed subdividing the load history into three steps, corresponding to 
the three sequences “load-unload” deducible from Fig. 2 and Fig. 3.   
A comparison between the experimental data and the calculated force is shown in Fig. 4.  Note the good 
correspondence between the two slopes in the outer loop, except in areas with low force value, mostly in 
the unloading phases. As consequence, accounting for the areas involved in each loop, the dissipated 
energy as calculated is greater than the measured one. A mild discrepancy is present in the inner load-
unload loops as well.   

4.  Comparison between the reference experimental data and the results of a fall model using the 
rope constitutive equation 

A numerical simulation of the experimental fall was performed using Simulink/Matlab language; 
the force generated in the rope was calculated according to the constitutive equations (3) and (4).
The parameters of the experimental fall are recalled here:  

• Falling mass M  80 kg 
• Rope length L  2.384 m 
• Free vertical fall H  3.521 m   
• Fall factor   ff=H/L = ~ 1.5 

FIG. 5    Comparison  between  measured  and  calculated  data 
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FIG. 4  Comparison between force ( as measured and calculated) versus strain for three fall factors 
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The comparison between the calculated data and the experimental ones are reported in Fig. 5. 
It is worthwhile noting the good agreement between calculated and measured data, particularly for the 
outer load loop; the inner loops are affected by the strain recovery rate that has been assumed as the mean 
of the measured values; this assumption seems to be slightly poor and will be improved in the future. A 
mild discrepancy between the maximum force measured and the calculated one is evident, this could 
depend on the quality of the correspondence between the experimental apparatus and the overall 
mathematical model. However, the model is able to reliably predict the first peak zone of the fall (and the 
second as well): this is the most critical zone covering the highest loads in the process. Therefore the 
model could be used in further analyses to simulate and eventually optimize the use and effectiveness of 
the mountaineering gears involved in the “safety chain”. 

Conclusions 

A mathematical model describing the behaviour of a rope under loading and unloading cycles during a 
climbing fall is presented. The model defines the force generated in the rope as a function of the strain 

and strain rate as well as of the strain recovery rate, that is )  , ,  ( f  F res

.

εεε= . The proposed equation fits 

well with the experimental data; still, the first load/unload loop is better represented than the inner ones. 
This model will probably be a satisfactory tool to simulate the behaviour of a rope in climbing falls, 
including complex situations whereby several “runners” are involved in the safety chain and the rope is 
not fixed at an anchor, but sliding in a braking device, according to the "dynamic belay" technique. 
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