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Abstract

This letter, investigates the problem of mean square exponential stability for a class of discrete-time stochastic neural
network with time-varying delays. By constructing a appropriate Lyapunov-Krasovskii functional, combining the
stochastic stability theory, and the convex theory method, a delay-dependent exponential stability criteria is obtained
in term of LMIs. Finally, a numerical example is exploited to show the usefulness of the results derived.
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1. Introduction

Recent years have witnessed a growing interest in investigating neural networks, this is mainly to the
great potential applications in varies areas such as signal processing; pattern recoganization; static image
processing; associative memory and combinatorial optimization [1]. As is known to all, dynamical
behaviors of neural networks are key to the applications, and the achieved applications heavily depend on
the dynamic behaviors of equilibrium point for neural network, therefore, stability is one of the most
important issues related to such behavior.

It is worth pointing out that most neural networks are concerned with continuous-time cases. Since
discrete-time neural networks play a more important role than their continuous-time counterparts in
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today’s digital life, moreover, in implementing and applications of neural networks, discrete-time neural
networks also take a more crucial key than their continuous-time counterparts [2]. Therefore, both
analysis and synthesis problem for discrete-time neural networks have been extensively studied and a
great number of important results have been reported in the literature [3-4]. But it is our observation that
there still exist room for further improvement by constructing rational Lyapunov functionals which
motivates the present study..

2. Problem formulation an preliminaries

Consider the following discrete-time stochastic neural networks (DSNNs) with time-varying delays:
x(k+1)=Cx(k)+Af (x(k))+ Bf (x(k=7(k)))+ &k, x (k). x (k=7 (k)))o(k) @)
where x(t) =[x, (k),x, (k),-+,x, (k)] € R" s the neuron state vector.
C =diag(c,,¢,, +,c,) with |¢,| <1, described the rate with which the ith neuron will reset its state
in isolation when disconnected from networks and external inputs. 7 (k) is time-varying delay and

satisfies 0< 7, < 7(k)<7,.
Assumption 1. Forany x,ye€ R, x# y,
[l g (2.2)
xX=y

Assumption 2. There exist a constant matrix G = 0, and is assumed to satisfy

) T )

6" (k.x(k).x(k-7(k)))8(k.x(k).x(k—7(k)))< s(k=7(k))| 7| x(k-7(k))

where G = .

k G3

3. Main result

Theorem 1. Suppose that Assumption (1-2) hold. Then the DSNNs (2.1) is exponential stable in the

mean square if there exist positive definite matrices P,Q,, E|, E,,Z , diagonal matrices D, > 0,i =1,2,

K >0, L>0,and positive scalars £ > 0 such that following LMIs hold:
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P<pl Z<pl Qz(%‘ lej>0 (3.4)
Oy
— _— T
E, pG,+(7,-7)pG, 0 0 E, C'PB+(tr,-1)(C-1) ZB
* :22 2IUZ IUZ O 526
* * —E -2uZ 0 0 0
* * * —E,—uZ 0 0
* * * * E,  A'PB+(r,-7,)A"ZB
* * * * * =
=66
(3.5)
— —_ T
E, pG,+(r,-1,)pG, 0 0 E, C'PB+(1,-1,)(C-1) ZB
* E, y774 2uz 0 Z
* * —E, —uZ 0 0 0
* * * ~E,—2uZ 0 0
* * * * B A"PB+(t,-1,)A"ZB
% % % % * =
=66
(3.6)
where

E,=C"PC-P+pG,+60,+E +E,-26'\K +26I',L
+(7,—7,)(C~1) Z(C~1)+(7,~7,) p,G,— 2T, DT,

[1]

s =CTPA+00, +0K —6L+(1,—7,)(C—1) ZA+ D, (T, +T,)

[1]

» = PG, +(Tz -7 )p1G3 —-Q, +2I'K =-2I',L -2I''D,T', =3uZ

[1]

26 =—0On _K+L+D1(F1 +F2) Ess :ATPA+9Q13+(72_Tl>ATZA_2D1

1

Eq=B"PB-0Q,+(7,-7,)B"ZB-2D, 0=1,—7+1 ’uzz' -
27 4

m=0 7 0 -1 0 0] I,=[0 - I 0 0 0]

Proof of Theorem 1. Take the following L-K functional candidate as follows
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v (x,) =x" (k) Px(k)

Ca [0 T 00 T, gl s ][ 0 T

E(Av,(x,))=E(x" (k+1) Px(k+1)—x" (k) Px(k))
E(av, (x)) < E(x" (k) 00, x (k) + 2" (K) 60, f (x (k) + 17 (x(k)) 600, (x(K))

—x" (k=7 (k))—f" (x(k r(k)))Q13f(( (k))))
O, x (k=7 (k))=2x" (k=7 (k)) Ouf (x(k—7(k)))
(

E(Avy(x,))=E(x" (k)(E +E,)x(k)-x" (k-7,) Ex(k-7,)-x (k—rz)E2x(k—12))

E (v, (x)) < E{26[ £ (x(k) =T (k)] K (k) =2 (w(k =7 (k) Kx (k= 2(K))

+2x" (k=7 (k)) T, Kx (k-7 (k))+20[ T,x (x(k))] Lx (k)
+2f7 (x (k=7 (k)))Lx(k-7(k))-2x (k—z'(k))FzLx(k—r(k))}
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H2<T(k)): _Tzifl_(T _IT)z (Tz_T(k)) z

Now combining above discussion, we have a upper bound as
E(Av,)< E(gT (k) (E+T11, (z(k))TT] +11,1, (r(k))ng)g(k))

Then if we want to have = +11 7, (T(k))HlT +I1,17, (T(k))l_[g <0 for 7, < T(k) <7,,
which are equivalent to handle following two LMIs by the convex combination theory:
E+I11, (Tl)HlT +I1,1, (TI)Hg <0 and E+I1,7, (TZ)HIT +I1,1, (Tz)Hg <0

that are equivalent to (3.5) and (3.6) hold. Therefore, if the LMIs (3.4-3.6) hold, we utilize the similar

method proposed in the [3], we can know the system (2.1) is mean square exponential stability.

4. Example

Consider the discrete-time stochastic neural network (2.1) with:
0.8 0 0.001 0 -0.1 0.01
0 09 0 0.005 -0.2 -0.1
The activation function satisfy Assumption 1 with I', = diag (0 0) ,I', =diag (0.5 0.5) . By

the Matlab LMI Control Toolbox, we find a solution to the LMIs (3.4-3.6)
22.0242 —1.4285 1.2536 0 3.0549 0
D, = D, =

—1.4285 4.1354 0 0.4064 0 1.1534

o 0.0094 0 - 24709 —0.2029
0 0.0003 1 -0.2029 0.8985
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