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Abstract

With the steady rise in the number of antibiotic-resistant Gram-positive pathogens, it has become increasingly important to find new
antibacterial agents which are highly active and have novel and diversified mechanisms of action. Two classes will be discussed here: the cationic
antimicrobial peptides, which are amphiphilic in nature, targeting membranes and increasing their permeability; and lipopeptides, which consist of
linear or cyclic peptides with an N-terminus that is acylated with a fatty acid side chain. One member of the cyclic lipopeptide family, the anionic
molecule daptomycin, has been extensively studied and is the major focus of this review. Models will be presented on its mode of action and
comparisons will be made to the known modes of action of cationic antimicrobial peptides and other lipopeptides.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The growing prevalence of antibiotic-resistant bacteria has
increased the complexity of anti-infective therapies being
administered in hospitals, nursing homes, and dialysis
centres worldwide. While the phenomenon of resistance is
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not new, being first proposed by Sir Alexander Fleming with
regards to penicillin more than 60 years ago, it has become
of increasing concern as more and more antibiotics are
rendered ineffective. Moreover, resistance now includes
potent antibacterial agents which are used as a last resort,
including methicillin and vancomycin. Approximately 30%
of hospital strains of enterococci are currently vancomycin-
resistant and nearly half of the infections due to Staphylo-
coccus aureus are methicillin-resistant. Given this situation,
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there has been an urgent need to develop new bactericidal
agents which target resistant Gram-positive pathogens. A
number of new antibiotics have recently been approved by
the FDA or are in advanced development to try to meet this
demand [1-3]. Some examples include tigecycline (sold
commercially as Tygacil, by Wyeth-approved by the FDA in
June 2005) which is the first in a new class of agents, the
glycylcyclines, that possesses activity against key Gram-
positive and Gram-negative bacterial pathogens and functions
by inhibiting protein synthesis [4]. Another example includes
the cyclic lipopeptide daptomycin which has been found to
be an effective antimicrobial agent against methicillin-
resistant Staphylococcus aureus (MRSA), as well as
vancomycin-susceptible strains of enterococci (in vitro),
Streptococcus pyogenes, S. agalactiae, and Strephtococcus
dysgalactiae [5—10]. Finally, a number of cationic antimi-
crobial peptides are in various stages of development
including MX-226, a derivative of bovine indolicidin that
is in phase IIIb clinical trials for preventing catheter
colonization and decreasing tunnel infections [11-13].

A key to future developments is to understand the mode of
action of these antibacterial agents. Several excellent recent
reviews describe what classes of antimicrobial agents are
currently being marketed [1,14,15] and how they function
[3,16—18]. Here, we will focus only on two classes: cationic
antimicrobial peptides and lipopeptides.

2. Mechanism of action of cationic antimicrobial peptides

Cationic antimicrobial peptides are widespread throughout
the animal and plant kingdoms and play a fundamental role
in innate immune defences, both through direct antimicrobial
activity and through immunomodulatory effects, in fending
off a wide range of microbes—from bacteria to viruses. They
are ubiquitous in nature and have remained -effective
defensive weapons, displaying little to no resistance effects
[3,19]. In fact, only a few resistant species have been found:
bacteria of the Burkholderia, Morganella or Serratia genuses
have outer membranes that have reduced negative charge on
their surface lipopolysaccharides (LPS), while under the
appropriate environmental conditions, others modify their
LPS through the two component regulators PhoPQ and
PmrAB [19]. Other species, such as, for example, Porphyr-
omonas gingivalis, secrete proteases which degrade the
peptides [19]. Most of the resistance mechanisms encoun-
tered only have a moderate (2- to 4-fold) increase on the
minimal inhibitory concentration (MIC) [12]. Consequently,
these molecules are of great interest and are being developed
as a new class of anti-infective agents.

Despite the diversity in the amino acid sequence and the
structural classes (i.e., B-sheets, a-helices, loops and extended
structures [12]) of antimicrobial peptides, with over 700 known
to date, they all share a common three-dimensional arrange-
ment. They fold into amphiphilic molecules, with one face
being hydrophobic, while the other is charged [3]. Given this
arrangement and the composition of bacterial membranes,
cationic antimicrobial peptides function predominantly after

directly binding to the lipid bilayer. A model which can be used
to account for the initial interactions of most antimicrobial
peptides with membranes has been termed the Shai—Matsu-
zaki—Huang model [20—-24], illustrated in Fig. 1. The peptides
start off being unstructured in solution (Fig. la). Upon
interaction with the membrane, they adopt a three-dimensional
structure (e.g., a-helix, P-sheet) such that the molecule
becomes amphiphilic, with the positively charged side inter-
acting directly with the lipid headgroups (Fig. 1b). The peptide
then integrates into the outer half of the membrane, leading to
thinning of the outer leaflet (Fig. 1c). Evidence for this thinning
has recently been demonstrated using atomic force microscopy
[25] and X-ray diffraction [26,27]. Following this step, channel
formation can occur although this portion of the process is
more controversial (Fig. 1d). A number of different models
have been proposed for this, namely the barrel-stave model, the
carpet model, the toroidal pore model, and the micellar
aggregate channel model [28,29]. The appropriateness of
each model depends on the peptide [30-37], as well as
properties of the lipids (i.e., phase, elasticity, hydrophobic
chain length, hydration, etc.) [38—42]. Finally, the bacterial
cells are killed in one of a number of ways, examples of which
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Fig. 1. Model for the mechanism of action of cationic antimicrobial peptides.
The unstructured peptides (a) adopt secondary structure upon interaction with
the bacterial membrane, and particularly anionic phospholipids. (b) This
structure can consist of 3-sheets, which are stabilized by 2—3 disulphide bonds,
amphiphilic a-helices, extended molecules, B-structured loops stabilized by 1
disulphide, or mixed structures [11,19]. (c) Subsequently, the peptides are
integrated into the outer leaflet straddling the membrane interface between the
headgroups and the acyl chains, leading to a thinning of the bilayer. (d) This is
followed by the formation of a formal or informal channel that is differently
depicted as occurring via a barrel-stave mechanism, a carpet mechanism, the
formation of a toroidal pore, or the formation of a micellar aggregate channel
[28,29]. Finally, bacterial cells are killed by either membrane perforation
(depolarization), the translocation of the peptide across the membrane leading to
the cationic peptides attacking intracellular targets, or membrane disintegration
(micellization), and can involve a mixed multi-hit mechanism with several of
these events occurring with similar efficiency.
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include: (i) membrane depolarization [43]; (ii) damage of
intracellular processes such as macromolecular synthesis [44],
degradation of cell walls [45], or modification of the lipid
composition in the membrane bilayer [22]; or (iii) in extreme
cases, formation of micelles, leading to cell leakage [21].

Despite the relatively high peptide concentrations needed
for activity (usually pM) [19], the unique mechanism of action
of cationic peptides makes them interesting starting points for
development of new antimicrobial agents. Since the mode of
action of these peptides relies on their interaction with the
membrane bilayer, via charge—charge and hydrophobic
interactions, resistance is curtailed because it would be too
costly or require too many mutational events for a microbe to
change the composition or organization of its lipids in order to
weaken these interactions. In addition, the large variability in
peptide sequence found for these peptides ensures that there is
no unique recognition site for protease cleavage. Another
important factor in curbing resistance is the existence of
secondary targets, i.e., although cationic peptides preferential-
ly bind to specific targets, they can also interact with other
targets in the bacterial cell and affect processes such as cell-
wall synthesis or degradation, cell division, or macromolecular
synthesis [12]. Finally, it should be noted that multicellular
organisms often attack bacteria by using more than one
cationic peptide, thereby minimizing the chances of antibiotic
resistance.

3. Mechanism of action of lipopeptides

Lipopeptides consist of a linear or cyclic peptide sequence,
with either net positive or negative charge, to which a fatty acid
moiety is covalently attached to its N-terminus. They are a class
of antibiotics which are highly active against multi-resistant
bacteria. Some lipopeptides also display anti-fungal activity
[46-49]. Recently, a series of synthetic lipopeptides derived
from non-membrane active peptides conjugated to palmitic acid
[48] were synthesized and characterized in order to try to
understand which features are key to lipopeptide antibacterial
activity [49]. In addition, a number of lipopeptides consisting of
cationic amphiphilic peptides with an acetylated N-terminus
(C8—C18 fatty acid chain length) have been characterized [50—
55]. Of these, members of the polymyxin family have been
studied extensively [29,56-59] and will not be further
considered here.

In the anionic lipopeptide class, the first naturally occurring
member to be discovered was amphomycin over fifty years ago
[60]. Additional members of this class of compounds include
crystallomycin [61,62], aspartocin [63—66], glumamycin [67—
69], laspartomycin [70], tsushimycin [71,72], and, by far, the
most studied, daptomycin [73—77]. Because of their unique
composition, they function in a manner which is atypical for
most antibacterial agents. In particular, they neither inhibit cell
wall synthesis by interacting with ribosomal subunits nor do
they inhibit protein synthesis [1]. Rather, they are believed to
target and bind to the bacterial membrane directly [55], and
cause rapid depolarization of the antibacterial membrane
potential [48,78]—in a manner somewhat reminiscent of the

cationic peptides, described above. Since this mechanism is
distinct from those of other antibiotics currently on the market,
only a few rare cases of resistance to anionic lipopeptides (in
this case, daptomycin) have been reported to date [79,80]. In
fact, resistance is generally rare against all lipopeptides,
including echinocandins [81]. Moreover, since the distribution
of minimal inhibitory concentrations (MICs) is unimodal, a
well-defined resistance mechanism has been proposed to be
unlikely [82]. In addition, the lack of use of these antibiotics in
animal husbandry has afforded fewer opportunities for
resistance development in notoriously intractable species like
the enterococci, in contrast to the tetracyclines, macrolides,
glycopeptides and quinolones, which have been used exten-
sively [3]. Finally, most anionic lipopeptides possess Asp—Gly
segments in their amino acid sequence, making them prone to
chemical reaction and degradation under physiological condi-
tions [83]. This also serves to prevent the development of
resistance as the antibiotics can be readily eliminated from the
environment.

Though much remains to be understood in the mechanism
of action of all lipopeptides, a few key properties have
emerged. For one, a number of lipopeptides tend to
oligomerize. Evidence for this has been demonstrated in the
crystal structure of tsushimycin [84], which is found to form
dimers, as well as micelles constituted of 30—40 antibiotic
molecules in a Ca®-containing solution [85]. Moreover, the
line-broadening of the NMR signals in 'H spectra of
daptomycin in the presence of 1 molar equivalent of Ca®"
suggests that this lipopeptide can form aggregates [86—88].
Avrahami and Shai [48] found that all of the lipopeptides they
investigated, designated as PA-K4X;W, where X=Gly, Ala,
Val, or Leu and PA refers to the palmitic acid tail, were capable
of aggregation, though the oligomerization state was not
determined exactly. Interestingly though, those peptides that
were already significantly hydrophobic (X=Val) without the
presence of the palmitoyl moiety, or highly hydrophobic once
conjugated to palmitic acid (X=Leu), displayed no bactericidal
activity against either Gram-positive (S. aureus, B. subtilis) or
Gram-negative (P. aeruginosa, A. baumannii, E. coli) bacteria.
The authors therefore suggested that although formation of
micelles is important, the oligomers should be capable of
dissociating in order to ultimately interact with the bacterial
membranes.

The second important property of lipopeptides is their
ability to interact with membranes via their lipid tails. This
applies to all peptides investigated to date, regardless of the
net charge of the peptide moiety. For cationic peptides, which
given their amphiphilic nature can interact quite strongly with
the negatively charged bacterial membrane, the addition of a
lipid tail of appropriate length (typically C10—C12) generally
tends to increase the bactericidal activity. This can be due to
either an increase in the affinity of the lipid tail for the
hydrocarbon chains or as a result of the stronger interaction of
the cationic peptide with the lipid headgroups. It has been
shown that if the lipopeptide consists of only one hydrocarbon
tail, the binding of the lipopeptide to the membrane is only
slightly increased [54]. For example, for MSI-843,
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Thennarasu et al. [55] showed that the insertion of the N-
terminal octyl group and aliphatic side chains into a POPC
bilayer only contributes less than a third of the binding
enthalpy. When peptides are acetylated with two hydro-
carbons chains, then the interaction is sufficiently strong to
anchor the peptide firmly in the membrane [54]. On the other
hand, the addition of a fatty acid modification to a cationic
peptide has been shown to promote the formation of a-helical
secondary structure [51,53]. For MSI-843, for instance, the
remaining two thirds of the binding enthalpy arises from «-
helix formation [55]. Since the formation of secondary
structure is essential for interaction of these amphiphilic
molecules with the membrane, lipidation of cationic peptides
contributes to increased activity by driving the cationic
peptide moiety into the correct conformation. For lipopeptides
with net negative charge, the situation is quite different. In
this case, divalent cations (e.g., Ca”") are needed to lock the
lipopeptide into an amphiphilic conformation. Indeed, both
daptomycin [86] and tsushimycin [84], whose three-dimen-
sional structures have been solved by NMR and X-ray
crystallography respectively, have been found to display a
predominantly hydrophilic side on one face of the structure
and a hydrophobic side on the other. In both cases, calcium
may also play a role in strengthening the interaction between
the peptide and the membrane bilayer (see below).

As mentioned previously, the exact mechanism of action of
this family of peptides and, in particular, of anionic lipopep-
tides remains to be determined. It has been suggested that
tsushimycin, for example, could function by either [85]: (a)
inhibiting phospho-N-acetylmuramoyl-pentapeptide transfer-
ase (MraY), required in the biosynthesis of the bacterial cell
wall; (b) binding with lipoteichoic acids, which are on the
bacterial cell surface; or (c) dissipating the membrane potential,
i.e., depolarization. Most of these proposals are based on the
crystal structure [84]. For example, the distance between the
Ca*" jons in the tsushimycin dimer is ca. 9.2 A, a distance
similar to the length of the repeating phosphate groups in
lipoteichoic acids. Similar mechanisms have been proposed for
the mode of action of daptomycin: (1) inhibition of lipoteichoic
acid biosynthesis in the presence of calcium ions [89], but this
has been disputed [78]; or (2) binding of calcium, followed by
a change in conformation [86], allowing the peptide to insert
deeper into the membrane bilayer. This in turn leads to
membrane depolarization and may result in cell death
[78,86,90]. To try to understand more about how anionic
lipopeptides function, we will now focus on a discussion of
daptomycin and examine structural and functional data for this
peptide and suggest more detailed models on its mode of
action.

4. Daptomycin

A large number of papers and reviews have been written on
daptomycin (for recent work see [3,14,15,78,91,92]). The
general consensus in the literature at present is that daptomycin
displays rapid bactericidal activity by binding to the cytoplas-
mic membrane in a calcium-dependent manner (Fig. 2a—c) and

interaction of
the peptide with
membrane via
acyl chain

integration of
\peptide, mediated by
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membrane
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Fig. 2. Previous mechanism of action of daptomycin, as reported in the recent
literature (see text): (a, b) Daptomycin interacts with the bacterial membrane
via its lipid tail and inserts partly. (c) In the presence of Ca?" which bridges
between the anionic daptomycin and the anionic headgroups of bacterial outer
leaflet lipids, the lipopeptide inserts more deeply into the membrane and (d)
forms aggregates. Finally, in panel e, cell death occurs via membrane
perforation (assessed as depolarization) or some other membrane-associated
event.

oligomerizing in the membrane (Fig. 2d), leading to an efflux of
potassium from the bacterial cell (Fig. 2e). This in turn leads to
cell death, as this loss of potassium leads to dysfunction of
macromolecular synthesis [78]. This mechanism is different
from the one proposed for B-lactams, as it does not depend on
cell lysis [78]. Recent data on the interaction of daptomycin
with divalent cations and model membranes obtained in our
laboratories or through collaboration leads us to propose a
revised mechanism.

4.1. Interaction with divalent cations
Daptomycin absolutely requires calcium for activity

[8,93,94]. Recently, Jung et al. [86] showed that calcium (as
Ca*" ions) is needed to trigger two structural transitions in
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daptomycin. In a first step, calcium binds to daptomycin in
solution, resulting in a more tightly defined family of
structures. In fact, if one clusters structures of the apo-form
of daptomycin (Protein Databank entry: 1T5M.pdb) which
have an overall distance between them of 1.5 A or less [95],
one finds 9 different families of structures. If one uses the same
clustering algorithm for the calcium-bound structures (1TSN.
pdb), only 7 families of structures are found. This is consistent
with the suggestion that Ca®" is needed to lock daptomycin into
an active conformation. Indeed, the need for ions to lock a
flexible peptide into a functional conformation is not
uncommon and has also been observed for tsushimycin
[84,85]. In addition, Ca®" is needed to render daptomycin
more amphiphilic, suggesting that Ca>" promotes insertion of
daptomycin into membrane bilayers, in accordance with what
has previously been proposed (Fig. 2¢). The second structural
transition observed in daptomycin [86] requires the presence of
both Ca®" and lipids with negatively charged headgroups (e.g.,
phosphatidyl glycerol). Although the exact nature of this change
remains to be characterized structurally, the effect of daptomy-
cin on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and
1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-1-glycerol
(POPC/POPG) (1:1) lipid bilayers in the presence of Ca®" is to
perturb the membrane further and induce leakage.

Structural investigations of daptomycin by NMR [86—88]
have all shown that significant line-broadening occurs when
Ca’" is added in a 1:1 Ca*"/daptomycin molar ratio,
suggesting that addition of Ca®" leads to oligomerization.
This has recently been confirmed using equilibrium sedimen-
tation experiments, where upon addition of one molar
equivalent of Ca®", an aggregate consisting of 14-16
daptomycin molecules was found. Samples were prepared
using a 2.5 mM daptomycin solution (with KCIL, pH 7.0) to
which 0.25, 0.5, 0.75, 1, and 2.5 equivalents of CaCl, was
added. The experiments were performed using a Beckman XLI
analytical ultracentrifuge, at 40, 45, and 50 KRPM. The data
were analyzed by curve-fitting to an equation describing the
sedimentation equilibrium for a monomer (Ho, S.W., Okon,
M., Calhoun, J.R., Lear, J.D., Jung, D., Hancock, R.E.-W.,
Scott, W.R.P. and Straus, S.K., unpublished results). This
evidence, as well as >C NMR data, indicates that the addition
of Ca®" induces the formation of micelle-like structures. The
daptomycin molecules would be arranged such that the lipid
tails point inwards, similarly to observations for tsushimycin in
the crystal [84]. The calcium ions would help hold the charged
sidechains of daptomycin from different monomers together.
Whether this interaction always occurs preferentially between
specific residues or rather between different residues is
currently being investigated. Presumably, as with the synthetic
lipopeptides studied by Avrahami and Shai [48,49], these
micelles should be able to dissociate when they come into
close contact with the bacterial membrane, so that daptomycin
can insert and perturb the membrane. The need for large
concentrations of Ca®" (ca. 1000-fold more than the concen-
tration of daptomycin) for activity supports the hypothesis that
Ca”" binds weakly to daptomycin such that the micelle formed
can readily dissociate.

Studies with other divalent cations such as Mn**, Mg,
Cu?" and Ni** (Jung, D. and Hancock, R.E.W., unpublished
results) have shown that replacing Ca®" with Mn>" results in a
32-fold increase in the MIC (in pg/ml), whereas using either
Mg?*, Cu*" or Ni*" increases the MIC by greater than 64-
fold. Furthermore, it was found that the addition of Mn?>" or
Mg®" to daptomycin in the presence of POPC/POPG (1:1)
liposomes does not lead to calcein leakage, but does result in
some lipid flip-flop. In fact, for both Mn*" or Mg*", the flip-
flop measured was approximately half of what was observed
when Ca”" was added and absolutely required the presence of
lipids with negatively charged headgroups. Finally, addition of
a 1:1 equivalent of Mg”>" to daptomycin did not change the
structure of this antibiotic, relative to the apo-form. Equilib-
rium sedimentation results showed that at a 1:1 molar ratio of
Mg** to daptomycin, only a very small fraction of daptomycin
oligomerized. Instead, a 2.5:1 Mg”" to daptomycin ratio was
needed to achieve the same degree of aggregation as was
obtained for a 1:1 ratio of Ca®" to daptomycin. Taken
together, these data indicate the following: (1) that Ca®" can
bind better to daptomycin compared to any of the other
cations; (2) that the change in conformation observed in going
from the apo-structure of daptomycin to the Ca*"-bound form
[86] is associated with micelle formation; and (3) that the
ability of daptomycin to induce leakage plays a more
important role in accounting for its antibacterial activity than
its ability to promote lipid flip-flop. This in turn may imply
that the formation of micelles is important to deliver
daptomycin to the bacterial membrane in the “correct”
conformation. It is also consistent with the suggestion that
daptomycin is not transported across the bacterial membrane
via a flip-flop mechanism but acts by perturbing the
membrane on the surface. It should be noted that recent
work has shown that the interaction of calcium ions with
negatively charged lipid headgroups is stronger than those of
magnesium ions [96], implying that Ca®*" may also be more
effective in acting as a bridge between daptomycin and lipid
headgroups than magnesium ions. Again the need for high
concentrations of calcium for activity supports the hypothesis
that Ca®" is important for daptomycin binding to bacterial
membranes.

4.2. Interaction with bacterial membranes

In addition to calcium, daptomycin interactions with lipid
membranes depend substantially on the presence of lipids with
negatively charged headgroups. Although lipid flip-flop occurs
in both neutral membranes consisting of POPC alone and
charged membranes of POPC/POPG (1:1) membrane leakage
only occurs for POPC/POPG (1:1) bilayers (in the presence of
Ca”"). Moreover, liposome fusion can only be induced by
daptomycin when POPG is present in the vesicle.

Our recent unpublished studies using differential scanning
calorimetry in model membranes of DiPoPE have shown that
daptomycin can induce positive curvature strain. Adding
daptomycin alone to membranes consisting of DiPoPE shifted
the transition temperature from 43.4 °C (for pure lipid) to
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45 °C. Addition of 5 mM Ca®" in the presence of
daptomycin, which on its own favors hexagonal lipid phase
formation, resulted in a main transition peak at 42 °C. These
results are analogous to what was recently reported for MSI-
843 [55] and a number of other lipopeptides [54] and indicate
that daptomycin perturbs the membrane strongly. Recently,
the cationic antimicrobial peptide magainin 2 was shown to
promote curvature strain and result in detergent-like properties
[97]. This may be relevant for daptomycin’s mechanism of
action as well.

4.3. Mode of action of daptomycin. revised model

Taken together, the recent findings presented above lead us
to propose a new model for the mode of action of daptomycin,
as illustrated in Fig. 3. In a first step, daptomycin aggregates in
solution in the presence of a minimum of 1:1 calcium to
daptomycin molar ratio. The presence of Ca® results in a
change in the conformation of daptomycin to one which is
better defined than in the apo-form (Fig. 3a). Support for this
calcium-induced change in conformation comes from NMR and
CD data [86]. It should be noted that studies [88] performed
under different sample conditions to those used by Jung et al.
[86] have shown that no major structural changes occur in the
presence of calcium. This may be due to a dependence of the
peptide structure on “solvent”, a fact which is not uncommon
for such molecules. Indeed, the apo-structure of daptomycin
reported by Ball et al. [88] is different to that reported by
Rotondi and Gierasch [87], where the sample contained 10 mM
sodium phosphate buffer in addition to the 10% D,0/90% H,0,
pH 5 used by Ball et al.. Despite these discrepancies, all of the
studies mentioned agree that daptomycin readily forms
aggregates, particularly in the presence of calcium, where it
forms micelles (see above). In order for daptomycin to interact
with the bacterial membrane, this micellar structure may need to
dissociate (Fig. 3b). Daptomycin then inserts into the
membrane, a process facilitated by calcium, which binds
strongly to phosphatidylglycerol headgroups (Fig. 3c). This
insertion may be accompanied by a second conformational
transition, as described by Jung et al. [86]. At this point,
daptomycin induces positive curvature strain on the lipids (Fig.
3d). It may also oligomerize in the membrane, a fact which is as
of yet undetermined. As a final step, leakage occurs, leading to
cell death (Fig. 3e). It is also possible that daptomycin

Fig. 3. Revised mechanism of action of daptomycin: (a) without calcium,
daptomycin adopts a structure which is reasonably well defined but not highly
amphiphilic. Once a 1:1 calcium to daptomycin molar ratio is reached, the
lipopeptide oligomerizes (b) to form a 14—16 mer and most likely arranges itself
into a micelle. This process is accompanied by a change in conformation. (c)
Once daptomycin comes into close proximity with the bacterial membrane, the
multimer dissociates, and daptomycin inserts into the bilayer. This is
accompanied by a second structural transition [86], the exact nature of which
remains to be determined. (d) Insertion of daptomycin into the membrane is
accompanied by the induction of positive membrane curvature. Oligomerization
in the membrane may occur. Finally, (e) bacterial cells are killed by membrane
perforation (assessed as depolarization) or some other membrane-associated
event.

aggregation in the membrane would interfere with membrane-
associated processes including synthesis of cell wall compo-
nents, energetics, cell division, etc.
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5. Conclusions and perspective

One should note that many of the findings for daptomycin
(peptide aggregation, association with membranes leading to a
conformational change in the peptide and alteration of lipid
phase transitions, lipid flip-flop at lower concentrations,
induction of membrane leakiness at high concentrations,
induction of curvature strain) and many of the features of
this mechanism (Fig. 3) are analogous to what has been
observed for cationic peptides. Thus, it seems likely that
Nature has found two chemical solutions to bring about
analogous mechanisms of action, namely cationic peptides
with lipophilic domains (either lipid tails or hydrophobic
amino acid patches) or anionic lipopeptides that are absolutely
dependent on the presence of Ca®" for their action. It is
proposed that the divalent Ca®" ions serve to “convert” the
negatively charged residues on the anionic lipopeptides into
pseudo positive charges thus promoting interaction with
negatively charged lipids (which are also required for the
action of most cationic antimicrobial peptides). Having gained
some insight into Nature’s design plan, we propose that
antimicrobial designers will be well equipped to initiate studies
to rationally design even more potent lipopeptides.
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