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§ 0. Introduction

It is well known that integral operators of finite double-norm in a
Lebesgue space L, (1<p<oo) are compact. Furthermore, it is known
that, although an operator of finite double-norm in L; need not be compact,
its square is always compact. We present a theorem from which these
facts follow, thereby generalizing a theorem by W. A. J. LuxEMBURG and
A. C. ZaaxEN [3]. The theorem (theorem 4.2) is presented in the setting
of a Banach function space (also called a normed K&the space), which
is a generalization of the Lebesgue spaces L, (1<p<oo) and of the
Orlicz spaces L.

§ 1. Banach function spaces

Let X be a non-empty point set and let u be a countably additive
and non-negative measure in X such that the triple (X, 4, u) is a o-finite
measure space (/1 denoting the collection of all measurable subsets of X).
By M we denote the set of all u-measurable complex functions on X,
and by M+ the subset of all fe M such that f(x)>0 holds g-almost
everywhere (u-a.e.) on X. The notation | du will denote integration over
the whole set X. If it is necessary to show that integration is performed
with respect to a certain variable x, we shall use the notation { du(z).
Finally, we denote the characteristic function of the set # C X by yz(x).

Let ¢ be a function norm defined on M, and suppose that ¢ satisfies
the following conditions.

(a) o has the weak Fatou property, i.e., from

O<fi<fo<fa< ... | f with all f, € M* n=1,2,..)

and lim o(fn) < oo it follows that p(f) <oo.

(b) o is saturated, i.e., if £ is any subset of X such that u(¥F)>0 and
o(yg)=o0, then E contains at least one subset # such that u(F)>0 and
o(xr) <oo.

It is well known (see for example [4]) that these hypotheses on ¢ imply
that the space L,, consisting of all f € M such that g(f) <oo, is a complete
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normed space, i.e., a Banach space. We shall also assume that u(X)>0,
and so it follows from (b) that there exists an L -admissable sequence
(m): Xn } X of measurable subsets of X (see [3]).

We recall that the associate norm g’ of p is defined by

0'(g)= sup { [ [fgldu: o(f) <1},

holding for every ge M. We denote L, also by L/, and recall that
L, CL*. A fanctional G € L,* belongs to L, if and only if there exists
a function g e L, such that {f, G>=G(f)= { fgdu for all fe L,

A function f € L, is said to be of absolutely continuous norm whenever
o(xe,f) | 0 for every sequence E, (n=1, 2, ...) of measurable subsets of X
such that By | @. The set L, of all functions f € L, which are of absolutely
continuous norm is a closed linear subspace of L,. We observe that, for
1<p<oo, every fe Ly is of absolutely continuous norm. If g has no
atoms, then the only function of absolutely continuous norm in L, is
the null function.

Let (n): Xn 1 X be an L,admissable sequence. The closure of the set
of all f e L,, bounded on some subset F;C X, for some n and vanishing
outside Fy, is also a closed linear subspace of L,, which we denote by L}

(see [3]).

§ 2. Weak sequential compactness

As usual we denote the weak topology generated in L, by the subset
M C L* by o(L,, M). The subset S C L, is said to be o(L,, M) sequentially
compact whenever every sequence in § contains a subsequence which is
o(L,, M) convergent to an element of S. If it is only required that the
subsequence converges to an element of L, then § is said to be con-
ditionally o(L,, M) sequentially compact.

The following theorem was proved by W. A. J. LuxeMBURG and A. C.
ZAANEN in [3].

Theorem 2.1. Let (n): Xot X be an L,-admissable as well as L,'-
admissable sequence and let M be a closed linear subspace of L, such that
M D L}, and such that g € M implies gye € M for any p-measurable set K.
Then the subset S C L, is conditionally o(L, M) sequentially compact if
and only if

(i) N(g)= sup { f |fgldu: f€ S} is finite for every ge M,
(i) N(xe,g) | O for every g € M and for every sequence Ey | 0§ of measurable
subsets of X.

We shall make use of the following facts which can be deduced from
the above theorem.

Theorem 2.2. (For a proof see [3]). Every norm-bounded subset S C L,
is conditionally o(L,, L,*) sequentially compact.
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The subset S C L2 is said to be of uniformly absolutely continuous
norm whenever, given £¢>0 and any sequence of measurable sets By | 0,
there exists an index N such that o(xe,f) <e for all n> N and for all f e §
simultaneously.

Theorem 2.3. Let the norm-bounded subset S C L, be of uniformly
absolutely continuous norm. Then S is conditionally o(L,, L,") sequentially
compact.

Proof. Obviously L, satisfies the conditions required for M in
theorem 2.1. Since 8 is norm bounded, there exists a number C such
that o(f)<C for all fe 8. Hence,

N(g)=sup { { |fgldu: f € S}< sup {o(f)e’(9): f € S}<Cp'(g) <o

for every g € L,’. Furthermore, if E, | § is a sequence of measurable sets,
then

N(xeg) - sup { § [fyp,gldu: f € S}< sup {o(xe,fle'(g): f€S}]| O

for every ge L, since S is of uniformly absolutely continuous norm.
By theorem 2.1 we conclude that S is conditionally o(L,, L,") sequentially
compact.

§ 3. Integral Operators

We shall restrict our attention to a certain class of integral operators
mapping the Banach function space L, into itself, i.e., the class of operators
having L,-kernels.

Definition 3.1. The (ux u)-measurable function T(x,y) defined on
X x X s called an L -kernel whenever

§ 1T, pf@)ldu(y) € L, for every fe L,

Let T(x,y) be an L,kernel. Then the following properties are well
known ([1], [3]).

(a) Tf= | T(z, y){(y)du(y) defines a bounded linear operator on L,

(b) T =0 (the null operator) if and only if T'(x, y) =0 holds (u x u)-a.e.
on X xX.

(¢) T(x,y) is an L,kernel if and only if

§ 1T (x, y)g(x)ldu(x) € I, for every ge L,'.

In other words, T'(z, y) is an L,-kernel if and only if 77 (z, y)=T(y, z) is
an L, -kernel.

(d) The operator T~ with kernel T™(x,y) is the restriction of the
adjoint operator T'* to the subspace L," of L,*.

(e) If T:1 and T3 are integral operators with corresponding L, -kernels
Ti(x, y) and Tz, y) respectively, then T'3—T1T is an integral operator
with L -kernel T's(z, y), where

Tz, y)= § T1(z, 2)T2(2, y)du(z).
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§ 4. Compactness of Integral Operators

We recall that the subset S of a Banach space W is called conditionally
sequentially compact whenever every sequence in S contains a subse-
quence which converges to some element of W. The linear operator T,
mapping a Banach space V into a Banach space W is called compact
whenever T maps the closed unit ball of V into a conditionally sequentially

compact subset of W.

In this section we shall give a necessary and sufficient condition for
an integral operator T with L, kernel T(z,y) to be compact. We shall,
however, make one restrictive assumption concerning the operator T,
namely, that the range R(T) of T is a subset of the space I,

The following lemma is essentially due to W. A. J. LUXEMBURG [2].

Lemma 4.1. Let fo(n=1,2,...) be a sequence in L, which converges
pointwise u-a.e. to a function fo€ L, such that the set {fn:n=1,2, ..} is
of uniformly absolutely continuous norm. Then f, converges in norm to fo,
i.e., o(fa—fo) > 0 as n — oo.

Proof. Let (7): Xz * X be any L,-admissable sequence. Then f, con-
verges pointwise u-a.e. on X for every k. Determine for k=1, 2, ...
subsets Zy of Xy such that u(Xx—Zi)<1/k and such that f, converges
uniformly on Zg. This is possible by Egoroff’s thcorem. We may assume
that the sequence Zj is ascending and hence Zx * X is an L,-admissable
sequence. By the uniformly absolute continuity of the f., we have for
some index N that g(yx-zyfr)<e/4 for all n. Hence,

o{yx zy(fn—fm)}<e/2 for all m and n.
On Zy, the sequence f, converges uniformly and we therefore have that
olxzy(fn—fm)}<e/2 for m,n>N,.
Hence, for all m, n>> N;, we have
elfn—fm) <olix zy(fn—fm)} t olxzyfn--fm)}<e.

'This holds for arbitrarily given ¢> 0, so the sequence f, converges in norm
to some g e L2 But then some subsequence of f, converges pointwise
u-a.e. to g. By hypothesis f, converges pointwise u-a.e. to fo and hence
g=fo holds u-a.e. on X. This shows that o(fo—fa) — 0 as n — oo, which
ends the proof.

A direct proof without making use of Egoroff’s theorem is possible [1].

We now come to our main theorem.

Theorem 4.2. Let T be an integral operator with L,-kernel T(z, y)
and let R(T)C L. Then T is compact if and only if
1) {Tf:o(fy<1} ts a set of uniformly absolutely continuous norm.
(ii) Every sequence fo(n=1, 2, ...) with p(fs) <1 contains a subsequence fin
such that T, converges pointwise p-a.e. on X.
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Proof. We first prove that the conditions are sufficient. This readily
follows from the preceding lemma, for if f, is a sequence such that o(f.) <1,
then we have that 7'fi, converges pointwise u-a.e. on X for some subse-
quence f1, of f, (by condition (ii)). By condition (i) we have that the set
{Tfin: m=1, 2, ...} is of uniformly absolutely continuous norm and so we
conclude from the lemma that the sequence 7T'fi, converges in norm to
some element of L,. This shows that 7' is compact.

To prove the necessity of condition (i) suppose that T is compact but
that (i) does not hold. Then there exist a sequence of u-measurable sets
E,CX with E, | ¢, a number ¢>0, and a sequence f, with o(f,)<1,
such that o(xg,Tfs)>¢ for n=1,2,.... On account of the compactness
of T, we may assume that o(Tf,—g) — 0 for some ge L, Hence,
o(T'fn—g)<e/2 for all n> N1, and p(yz,9)<e¢/2 for all n> N, But then,
for n> max (N, Ns), we have

o(xe,Tfn) <oixe, (Tt —9)} +olxr,9) <&,

which yields a contradiction. It follows that the set {T'f:o(f)<1} is of
uniformly absolutely continuous norm.

That the compactness of 7' implies (ii) is a direct consequence of the
fact that every convergent sequence in L, contains a subsequence which
is pointwise convergent u-a.e. on X.

To apply the above theorem successfully, we should have available
conditions under which (i) and (ii) hold.

It is easily seen that if there exists a function 7(x) € L2 such that,
for all fe L, with o(f)<1, we have

(1) | § T, )fy)du(y)] < |x(@)],

then the set {T'f:o(f)<1} is of uniformly absolutely continuous norm,
i.e., (i) holds. We shall discuss this matter further when considering an
example.

The next lemma presents a sufficient condition in order that condition
(ii) of our theorem holds.

Lemma 4.3. Let T be an integral operator with L,-kernel T(z,y)
satisfying
§ 1T, y)g(x)|du(x) € Ly for every ge L, .

Then every sequence fn (n=1, 2, ...) in L, with o(fa)<1 contains a subse-
quence f," such that Tf, converges potntwise u-a.e. on X.

Proof. It is known (see [3], lemma 7.2) that under the stated con-
ditions we have, for any u-measurable set £ C X such that ¢'(yz)<oo,
that the sequence yz7T'f, is conditionally sequentially compact with respect
to the Lj-norm. Let (7): Xx 1 X be any L,-admissable as well as L, -
admissable sequence. Then 7f, has a subsequence converging on X;
with respect to the Lj-norm, and hence 7'f, has a subsequence 7'f1, con-
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verging pointwise p-a.e. on X;. Similarly, T'f;, contains a subsequence
T'fon converging pointwise u-a.e. on X,, and so on. The diagonal sequence
Tfun converges pointwise u-a.e. on X. Hence, if we put f,'=fna, then f,’
is the required subsequence of f,.

W. A. J. LuxemBure and A. C. ZAANEN proved in [3] that if T'(z, y)
is a (u X u)-measurable function satisfying

{ (@) JI|T(=, y)f(y)lduly) € L2 for every fe L,

@ () §1T(x, y)g(z)du(x) € L,® for every ge L,

then T is compact if and only if the set {Tf:o(f)<1} is of uniformly
absolutely continuous norm. It is clear that this statement is an immediate
consequence of theorem 4.2 and lemma 4.3. (Note that condition (2) (a)
implies that E(T) C L,*.)

By implementing the results of section 2, we can supply other con-
ditions which imply the pointwise convergence required in condition (ii)
of theorem 4.2. The following two theorems show how this can be done.

Theorem 4.4. Let T be an integral operator with L,-kernel T(x, y)
such that Tx(y)=T(x, y) € L2 for almost every x € X, and let R(T)C Lo
Then T 1is compact if and only if {T'f: o(f)<1} is of uniformly absolutely
continuous norm.

Proof. Let f, be a sequence such that o(fs) <1. By theorem 2.2 the
set {fa:n=1, 2, ...} is conditionally o(L,, L,%) sequentially compact.
Hence, f» contains a subsequence fi, such that fi, is o(L,, L,*) convergent.
Since T'z(y) € L2 for almost every x € X, we have for these z that

§ Tehn(y)duly) = § T, 9)hny)du(y)
is a convergent sequence of complex numbers. In other words,

Thin= § T(x, )fialy)du(y)

converges pointwise u-a.e. on X. This shows that condition (ii) of theorem
4.2 holds. By hypothesis, (i) holds as well, so we may conclude that 7'
is compact. As in theorem 4.2, the compactness of T implies that
{Tf: o(f) <1} is of uniformly absolutely continuous norm.

Theorem 4.5. Let {Tf:0o(f)<1} be a set of uniformly absolutely
continuous norm and let T'z(y) € L, for almost every x € X. Then the operator
T2 is compact.

Proof. We prove that the operator T satisfies conditions (i) and (ii)
of theorem 4.2, and that R(T?)C L.
To prove that T2 satisfies (i), we observe that

{T%:0() <1} C{Tq: o(9) <IITIl},
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and it is easily seen that this last set is of uniformly absolutely continuous
norm whenever {Tf: o(f) <1} is of uniformly absolutely continuous norm.
This shows that the set {I'?f: o(f)<1} has the required property.

The set S={Tf: o(f) <1} is norm bounded and of uniformly absolutely
continuous norm so that, by theorem 2.3, § is conditionally o(L,, L,")
sequentially compact. Hence, if f, is a sequence such that o(fs) <1, then
Tfn contains a subsequence T'fi, which is o(L,, L,’) convergent. By hy-
pothesis T'2(y) € L,’, and so

T2fra(@)= § { § T(x, Ty, 2)du®y) fin(2)du(z)
= § T, ) § T(y, 2)fru(2)du(z) }duly)
= § (Thn) @) T2(y)duly),

converges pointwise u-a.e. on X. We conclude that condition (ii) holds
for 72,

Finally, let 0+f e R(T), i.e., let f=Tg for some g€ L,, g+ 0. Consider
the element g’ =g/o(g). If E, | ¢ is any sequence of measurable sets then,
since g(g')=1, we have o(yg,Tq’) | 0, ie., [0(g)]0(xE,f) | O so that
o(xe,f) | 0. Since this holds for any sequence of measurable sets £, | 0,
and for any fe R(T), we conclude that R(7'), and hence also R(T?), is
contained in I,®

Our final conclusion is therefore that the operator T2 is compact.

The last theorem is obviously a generalization of the fact that the
square of an integral operator of finite double-norm in the Lebesgue space
L is compact.

By way of example we finally consider integral operators of finite
double-norm in L, (1 <p <oo). An integral operator T with kernel T'(z, y)
is said to be of finite double-norm in L, (1<p<oo) whenever

[t@lle =11 T @, Plldllp <00 (P +g=1).

Note that if 7' is of finite double-norm then (x)=||T(x, y)|l, is an element
of Ly. This implies that, for 1 <p<oo, the set {T'f: ||f|lp<1} is of uniformly
absolutely continuous norm, for

[(TH@) < § 1T, pf)dpy) <T@, e Ifllo <7(x) € Ly =Ly

(See formula (1)). Hence, any integral operator of finite double-norm in L,
(1 < p < oo) satisfies condition (i) of theorem 4.2. Furthermore, for 1 <p < oo,
we have that Tu(y) € Lg=L,* if T is of finite double-norm. Theorem 4.4
therefore shows that 7' is compact. If p=1, then Tx(y) € Ly, so T4(y)
is usually not of absolutely continuous norm (i.e., if g does not have
atoms), unless of course T;(y)=0 for almost every x € X. However, T
satisfies all the conditions of theorem 4.5, so we conclude that 72 is
compact. We note that for 1 <p<oco, T(x, y) also satisfies the condition
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(2), so that we may also conclude from the theorem of Luxemburg and
Zaanen that T is compact. In general, however, an operator 7 may have
a kernel T'(x, y) satistying (2) but not the conditions that T';(y) € L,2 or
Ty)e L,

. » and vice versa.
Potchefstroom University,

Potchefstroom, South Africa
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