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§ O. Introduction.

It is well known that integral operators of finite double-norm in a
Lebesgue space L p (1 < P < CXl) are compact. Furthermore, it is known
that, although an operator of finite double-norm in L 1 need not be compact,
its square is always compact. We present a theorem from which these
facts follow, thereby generalizing a theorem by W. A. J. LUXEMBURG and
A. C. ZAANEN [3]. The theorem (theorem 4.2) is presented in the setting
of a Banach function space (also called a normed Kothe space), which
is a generalization of the Lebesgue spaces L p (L;;: P< CXl) and of the
Orlicz spaces L~.

§ 1. Banach function spaces

Let X be a non-empty point set and let fl be a countably additive
and non-negative measure in X such that the triple (X, A, fl) is a a-finite
measure space (A denoting the collection of all measurable subsets of X).
By M we denote the set of all fl-measurable complex functions on X,
and by M+ the subset of all f E M such that f(x);;. 0 holds fl-almost
everywhere eu-a.e.) on X. The notation Sdfl will denote integration over
the whole set X. If it is necessary to show that integration is performed
with respect to a certain variable x, we shall use the notation Sdu(x).
Finally, we denote the characteristic function of the set E C X by XE(X).

Let e be a function norm defined on M, and suppose that (! satisfies
the following conditions.

(a) e has the weak Fatou property, i.e., from

(n= 1,2, ... )

and lim e(fn) < CXl it follows that e(f) < CXl.

(b) e is saturated, i.e., if E is any subset of X such that fl(E»O and
e(XE) = CXl, then E contains at least one subset P such that fl(F) > 0 and
e(xp) < CXl.

It is well known (see for example [4]) that these hypotheses on e imply
that the space L e, consisting of all f E M such that e(f) < CXl, is a complete
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normed space, i.e., a Banach space. We shall also assume that fl(X) > 0,
and so it follows from (b) that there exists an Le-admissable sequence
(n): x; t X of measurable subsets of X (see [3]).

We recall that the associate norm e/ of e is defined by

e/(g) = sup { J I/gldfl: g(f) <: I},

holding for every gEM. We denote Le, also by L/, and recall that
Le' C Le", A functional G E Le* belongs to Le' if and only if there exists
a function g E Le' such that <I, G) = G(f) = f Igdfl for all I E L

Q
•

A function I E L
Q

is said to be of absolutely continuous norm whenever
e(XE"f) t 0 for every sequence En (n= 1,2, ... ) of measurable subsets of X
such that En t 0. The set Lea of all functions I E L

Q
which are of absolutely

continuous norm is a closed linear subspace of L
Q

• We observe that, for
1<P < =, every IE L p is of absolutely continuous norm. If fl has no
atoms, then the only function of absolutely continuous norm in L oo is
the null function.

Let (n): X n t X be an Le-admissable sequence. The closure of the set
of all f E L

Q
, bounded on some subset FI C X n for some n and vanishing

outside FI , is also a closed linear subspace of L e, which we denote by L;
(see [3]).

§ 2. Weak sequential compactness

As usual we denote the weak topology generated in Le by the subset
M C i,* by a(Le, M). The subset S C i, is said to be a(L

Q
, M) sequentially

compact whenever every sequence in S contains a subsequence which is
a(Le, M) convergent to an element of S. If it is only required that the
subsequence converges to an element of Le, then S is said to be con
ditionally a(Le, M) sequentially compact.

The following theorem was proved by W. A. J. LUXEMBURG and A. C.
ZAANEN in [3J.

Theorem 2.1. Let (n): X n t X be an Le-admissable as well as Le'
admissable sequence and let M be a closed linear subspace 01 Le' such that
M:J L;, and such that gEM implies gXE E M lor any a-measurable set E.
Then the subset S C L

Q
is conditionally a(Le, M) sequentially compact il

and only if

(i) N(g) = sup { f I/gldfl: I E S} is finite lor every gEM,

(ii) N(XE,.g) t 0 tor every gEM and lor every sequence En t 001 measurable
subsets of X.

We shall make use of the following facts which can be deduced from
the above theorem.

Theorem 2.2. (For a proof see [3]). Every norm-bounded subset S C L
Q

is conditionally a(Le, Le,a) sequentially compact.
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Th e subset S C Lpa is said to be of uniformly ab solutely continuous
norm whenever, given e> 0 and an y sequence of measurable sets En t 0,
there exists an index N such that e(XEnf)< e for all n :;;. N and for all I E S
simultaneously.

The 0 r em 2. 3 . L et the norm-bounded subset S C L a be 01 unilormly
absolutely continuous norm . Then S is condition ally a(Lp, L /) sequentially
compact .

Pr o of. Ob viously Lp ' sat isfies the condit ions required for M in
t heorem 2.1. Since S is norm bounded , t here exist s a number G such
t ha t e (f )<; G for all I E S. Hen ce,

N (g) = sup { SIlgldft : I E S} <; sup {e (f )!!' (g) : I E S} ..;; Ge' (g) < oo

for every g E L~'. Furthermore, if En t 0 is a sequence of measurable sets,
then

for every g E L/ , since S is of uniformly absolutely continuous norm.
By t heo rem 2.1 we conclude that S is condit ionally a(Lp ' L p' ) sequentially
compact.

§ a. Integral Operators

We shall restrict our attention to a certain class of integral operators
mapping the Banach function space Lp into itself, i.e., the class of operators
ha ving L a-kernels.

Defini ti on 3. 1. The (ft x ft )-measurable [unction. T(x ,y) defin ed on
X x X is called an L u-kernel whenever

SIT (x , y)/(y) ldft(y) E t.; l or every I E L a'

Let 'I't», y) be an Lu-kcrn el. Then the following properties are well
known ([IJ, [3J).

(a) TI = S'l'( x , y)/(y)dft(Y) defines a bounded linear operator on La'
(b) T = 0 (the null operator) if and only if T(x, y) = 0 holds (ft x ft)-a .e.

on X xX.
(c) T(x , y) is an La-kern el if and only if

SIT (x, y)g (x) ldft(x) E L / for every g E Le'.
In other words , T (x , y) is an La-kernel if and only if T-(x , y) = T(y, x) is
an L a'-kernel.

(d) The operator T- with kernel T-(x , y) is the restriction of the
adjoint operator T* t o the subspace La' of La*.

(e) If T1 and T 2 are integral operators with corresponding La-kernels
T1(x , y) and T 2( x , y) respectively, then T a,-,-, T 1T 2 is an integral operator
with La-kernel Ta( x , y), where

T 3(x , y) = S'l'l( X, z )T 2(z, y)dp(z) .
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§ 4. Compactness 01 Integral Operators

We recall that the subset S of a Banach space W is called conditionally
sequentially compact whenever every sequence in S contains a subse
quence which converges to some element of W. The linear operator T,
mapping a Banach space V into a Banach space W is called compact
whenever T maps the closed unit ball of V into a conditionally sequentially
compact subset of W.

In this section we shall give a necessary and sufficient condition for
an integral operator T with Lp-kernel T(x, y) to be compact. We shall,
however, make one restrictive assumption concerning the operator T ,
namely, that the range R(T) of T is a subset of the space LQa.

The following lemma is essentially due to W. A. J. LUXEMBUHG [2].

Lemma 4.1 . Let In(n= 1,2, ... ) be a sequence in LQwhich converges
pointwise u-a.e . to a [unciion. 10 E L

Q
such that the set {In: n = I, 2, ... } is

01 umiiormls] absolutely continuous norm. Then In converges in norm to 10,
i.e ., e(fn -/0) ---+ 0 as n ---+ 00.

Proof. Let (n): X k t X be any LQ-admissable sequence. Then In con
verges pointwise f1'-a.e. on X k for every k. Determine for k = I, 2, ...
subsets Zk of Xk such that p.(Xk-Zk)< I jk and such that In converges
uniformly on Zk. This is possible by Egoroff's theorem. We may assume
that the sequence Zk is ascending and hence Zk ~ X is an LQ-admissable
sequence. By the uniformly absolute continuity of the In, we have for
some index N that e(xx-zNln) < ej4 for all n. Hence,

e{xx -zN(fn-lm)} <ej2 for all m and n .

On ZN, the sequence In converges uniformly and we therefore have that

e{xzN(fn-Im)} <e j2 for m,n >N1.

Hence, for all m , n >N}, we have

e(fn-Im) <, e{xx z.v(fn-Im)} I (!{xz.v(fn--Im)} ..:::.e.

This holds for arbitrarily given 13 > 0, so the sequence In converges in norm
to some g E Lea . But then some subsequence of In converges pointwise
p,-a.e. to g. By hypothesis In converges pointwise p,-a.e. to 10 and hence
g = to holds u-e:«. on X. This shows that g(fo- tn) ---+ 0 as n ---+ 00, which
ends the proof.

A direct proof without making use of Egoroff's theorem is possible [IJ.

We now come to our main theorem.

Theorem 4.2. Let T be an integral operator with LQ-kernel T(x, y)
and let R(T) C Len. Then T is compact it and only it
(i) {Tt: e(f) <, 1} is a set 01 unilormly absolutely continuous norm.

(ii) Every sequence tn(n= 1,2, ... ) with e(fn) <, 1 contains a subsequence /In
such that Thn converges pointwise p,-a.e. on X.
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Proof. We first prove that the conditions are sufficient. This readily
follows from the preceding lemma, for if t« is a sequence such that e(fn) <: 1,
then we have that Thn converges pointwise p,-a.e. on X for some subse
quence hn of i« (by condition (ii)). By condition (i) we have that the set
{Thn: n= 1,2, ... } is of uniformly absolutely continuous norm and so we
conclude from the lemma that the sequence Thn converges in norm to
some element of Le. This shows that T is compact.

To prove the necessity of condition (i) suppose that T is compact but
that (i) does not hold. Then there exist a sequence of ,u-measurable sets
En C X with En {, 0, a number 10>0, and a sequence fn with e(fn)<:I,
such that e(XEnTfn) > 8 for n = 1, 2, .... On account of the compactness
of T, we may assume that e(Tfn-g) --+ 0 for some g E L/. Hence,
e(Tfn-g)<8/2 for all n>Nl, and e(XEng) <10/2 for all n>N2• But then,
for n:» max (Nl, N 2 ) , we have

e(XEnTfn) <:e{XEn(Tfn -g)} +e(XEng) < 10,

which yields a contradiction. It follows that the set {Tf: e(f) < I} is of
uniformly absolutely continuous norm.

That the compactness of T implies (ii) is a direct consequence of the
fact that every convergent sequence in L e contains a subsequence which
is pointwise convergent ,u-a.e. on X.

To apply the above theorem successfully, we should have available
conditions under which (i) and (ii) hold.

It is easily seen that if there exists a function i(X) E Lea such that,
for all f E Le with e(f) <: 1, we have

(1) IS T(x, y)f(y)d,u(y) I<: [i(X)[,

then the set {Tf: e(f) <: I} is of uniformly absolutely continuous norm,
i.e., (i) holds. We shall discuss this matter further when considering an
example.

The next lemma presents a sufficient condition in order that condition
(ii) of our theorem holds.

Lemma 4.3. Let T be an integral operator with Le-kernel T(x, y)
satisfying

S[T(x, y)g(x)ld,u(x) E Le,a for every g E Le'.

Then every sequence fn (n = 1, 2, ... ) in Le with e(fn) <: 1 contains a subse
quence fn' such that Tfn' converges pointwise u-a.e. on X.

Proof. It is known (see [3], lemma 7.2) that under the stated con
ditions we have, for any ,u-measurable set E C X such that e' (XE) < 00,

that the sequence XETfn is conditionally sequentially compact with respect
to the Ll-norm. Let (n): X k t X be any Le-admissable as well as Le'
admissable sequence. Then Tfn has a subsequence converging on Xl
with respect to the Ll-norm, and hence Tfn has a subsequence Thn con-
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verging pointwise f-l-a.e. on Xl. Similarly, T/In contains a subsequence
TI2n converging pointwise f-l-a.e. on X 2, and so on. The diagonal sequence
Tlnn converges pointwise u-e:e. on X. Hence, if we put In' = Inn, then In'
is the required subsequence of In.

W. A. J. LUXEMBURG and A. C. ZAANEN proved in [3] that if T(x, y)
IS a {f-l x f-l)-measurable function satisfying

(2) { (a) SIT(x, y)/(Y)ldf-l(Y) E Lea for every IE t.;
(b) SIT(x, y)g(x)ldf-l(x) E Lu,a for every g E Lu',

then T is compact if and only if the set {TI: e(f).;;; I} is of uniformly
absolutely continuous norm. It is clear that this statement is an immediate
consequence of theorem 4.2 and lemma 4.3. (Note that condition (2) (a)
implies that R(T) C Lua.)

By implementing the results of section 2, we can supply other con
ditions which imply the pointwise convergence required in condition (ii)
of theorem 4.2. The following two theorems show how this can be done.

Theorem 4.4. Let T be an integral operator with Lu-kernel T(x, y)
such that Tz(y)=T(x, y) E Lu,a lor almost every x E X, and let R(T) C Lua.
Then T is compact il and only il {TI: e(f).;;; I} is 01 unilormly absolutely
continuous norm.

Proof. Let In be a sequence such that e(fn)';;; 1. By theorem 2.2 the
set {In: n= 1,2, ... } is conditionally a(Lu' Lu,a) sequentially compact.
Hence, In contains a subsequence /In such that /In is a(Lu' Lu'U) convergent.
Since Tz(y) E Le,a for almost every x E X, we have for these x that

STz(y)/In(y)df-l(Y) = ST(x, y)/In(y)df-l(Y)

is a convergent sequence of complex numbers. In other words,

T/In = ST(x, y)hn(y)df-l(Y)

converges pointwise u-e:«. on X. This shows that condition (ii) of theorem
4.2 holds. By hypothesis, (i) holds as well, so we may conclude that T
is compact. As in theorem 4.2, the compactness of T implies that
{TI: e(f).;;; I} is of uniformly absolutely continuous norm.

Theorem 4.5. Let {TI: e(f)<.l} be a set 01 unilormly absolutely
continuous norm and let Tz(y) E Lu' lor almost every x E X. Then the operator
T2 is compact.

Proof. We prove that the operator T2 satisfies conditions (i) and (ii)
of theorem 4.2, and that R(T2) C Lea.

To prove that T2 satisfies (i), we observe that

{T 2/: e(f) < I} C {Tg: e(g)< IITII},
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and it is easily seen that this last set is of uniformly absolutely continuous
norm whenever {TI: e(f) <:I} is of uniformly absolutely continuous norm.
This shows that the set {T2/: e(f) < I} has the required property.

The set S = {TI: e(f) <: I} is norm bounded and of uniformly absolutely
continuous norm so that, by theorem 2.3, S is conditionally a(Lg , Lg' )

sequentially compact. Hence, if In is a sequence such that e(fn) < 1, then
Tin contains a subsequence Ti,« which is a(Lg , La') convergent. By hy
pothesis Tx(Y) E L g' , and so

T 2hn(x) = S{ST(x, y)T(y, z)dfl(Y)}hn(z)dfl(Z)

= ST(x, y){ ST(y, z)hn(z)dfl(Z)}dfl(y)

= S(Thn)(y)Tx(y)dfl(Y),

converges pointwise fl-a.e. on X. We conclude that condition (ii) holds
for T2.

Finally, let 0 =1= IE R(T), i.e., let 1= Tg for some g E La' g ic O. Consider
the element g' =g/e(g). If En {, 0 is any sequence of measurable sets then,
since e(g') = 1, we have e(XEn Tg') {, 0, i.e., [e(g)]-le(XEnf) {, 0 so that
e(XEnf) {, O. Since this holds for any sequence of measurable sets En {, 0,
and for any I E R(T), we conclude that R(T), and hence also R(T2), is
contained in Lga.

Our final conclusion is therefore that the operator T2 is compact.

The last theorem is obviously a generalization of the fact that the
square of an integral operator of finite double-norm in the Lebesgue space
L 1 is compact.

By way of example we finally consider integral operators of finite
double-norm in Lp (1 <p <: (0). An integral operator T with kernel T(x, y)
is said to be of finite double-norm in L p (1<P < (0) whenever

Note that if T is of finite double-norm then r(x) = IIT(x, y)llq is an element
of L p . This implies that, for 1 <:p < 00, the set {TI: 1I/IIp <: I} is of uniformly
absolutely continuous norm, for

I(TI)(x) 1<: S IT(x, y)/(y) Idfl(Y) <: IIT(x, y)llq·ll/llp <: r(x) E i; = t.».

(See formula (1)). Hence, any integral operator of finite double-norm in L p

(1 <:p < (0) satisfies condition (i) of theorem 4.2. Furthermore, for 1<F< 00,

we have that T x(Y) E Lq= Lqa if T is of finite double-norm. Theorem 4.4
therefore shows that T is compact. If p= 1, then Tx(Y) E L oc' so Tx(Y)
is usually not of absolutely continuous norm (i.e., if fl does not have
atoms), unless of course Tx(Y)=O for almost every x E X. However, T
satisfies all the conditions of theorem 4.5, so we conclude that T2 is
compact. We note that for 1<p < 00, T(x, y) also satisfies the condition
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(2), so that we may also conclude from the theorem of Luxemburg and
Zaanen that T is compact. In general, however, an operator T may have
a kernel T(x, y) satisfying (2) but not the conditions that T x(y) E Le,a or
Tx(Y) E L/, and vice versa.

Potchejstroom University,
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