-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

e T ; DISCRETE
*.” ScienceDirect APPLIED
MATHEMATICS

Discrete Applied Mathematics 156 (2008) 924—-949

www.elsevier.com/locate/dam

A framework for incremental generation of closed itemsets

Petko Valtchev®¢-*, Rokia Missaoui®, Robert Godin®

ADIRO, Université de Montréal, CP 6128, Succ. Centre-Ville, Montréal, Qué., Canada H3C 3J7
bDépartement d’informatique et d’ingénierie, UQO, C.P. 1250, succursale B, Gatineau, Qué., Canada J8X 3X7
¢Département d’Informatique, UOAM, C.P. 8888, succ. “Centre Ville”, Montréal, Qué., Canada H3C 3P8

Received 2 May 2002; received in revised form 24 June 2007; accepted 11 July 2007
Available online 1 October 2007

Abstract

Association rule mining from a transaction database (TDB) requires the detection of frequently occurring patterns, called frequent
itemsets (FIs), whereby the number of FIs may be potentially huge. Recent approaches for FI/ mining use the closed itemset paradigm
to limit the mining effort to a subset of the entire F/ family, the frequent closed itemsets (FCIs). We show here how FClIs can be mined
incrementally yet efficiently whenever a new transaction is added to a database whose mining results are available. Our approach
for mining FIs in dynamic databases relies on recent results about lattice incremental restructuring and lattice construction. The
fundamentals of the incremental FCI mining task are discussed and its reduction to the problem of lattice update, via the CI family,
is made explicit. The related structural results underlie two algorithms for updating the set of F'CIs of a given TDB upon the insertion
of a new transaction. A straightforward method searches for necessary completions throughout the entire CI family, whereas a
second method exploits lattice properties to limit the search to CIs which share at least one item with the new transaction. Efficient
implementations of the parsimonious method is discussed in the paper together with a set of results from a preliminary study of the
method’s practical performances.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Frequent closed itemsets; Incremental data mining; Galois lattices; Formal concept analysis

1. Introduction

Association rule mining from a transaction database (TDB) [2] is a classical data mining topic, whereby the most
challenging problem is the detection of frequent patterns (itemsets) in the transaction set [1,6,22]. A major difficulty
with association rules is the prohibitive number of frequent itemsets (FIs) (and hence rules) that can be generated
even from a reasonably sized data set. The frequent closed itemsets (FCIs) research topic [27,29,43,44,46,47] consti-
tutes a promising solution to the problem of reducing the number of the reported associations. Yet another difficulty
arises with dynamic databases where the transaction set is frequently updated. Although the necessity of process-
ing volatile data in an incremental manner has been repeatedly emphasized in the general data mining literature
(e.g., in [20]), a few incremental mining algorithms have been reported so far [3,13,14,17,30,34]. All these studies

* Corresponding author. DIRO, Université de Montréal, CP 6128, Succ. Centre-Ville, Montréal, Qué., Canada H3C 3J7.
E-mail address: Petko.Valtchev@UMontreal.CA (P. Valtchev).

0166-218X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2007.08.004

https://core.ac.uk/display/82374557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
mailto:Petko.Valtchev@UMontreal.CA

P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924 —949 925

have highlighted the need for some additional storage and/or some supplementary database passes to cope with data
set evolution.

Our own approach to incremental FI mining is motivated by the belief that FCIs provide the key to compact rule sets
and low storage requirements. Therefore, we have been investigating the potential benefits of using concept analysis
as a formal basis for the resolution of the F'CIs mining problem. The ultimate goal of our study is the definition of a
complete framework for that problem, i.e., a consistent body of theoretical knowledge that underlies a set of high-level
algorithms which are in turn realized by effective mining tools. It is to be completed by experimental evidence about
its strength drawn from practical studies on association mining test-beds.

In this paper, we present an initial, but complete version of our framework: the core theoretical part is presented
together with some further structural results that pertain to a minimalist approach toward the incremental F7 generation.
The approach consists in reducing the dynamic F/ mining problem to a one-by-one insertion of transactions into an
available database. The resulting incremental FI problem is successfully mapped into a lattice maintenance problem
[35] and the underlying theory is adapted to the association rule paradigm so that efficient algorithms can be designed
based on the structural properties. First, we establish the correspondence between basic elements of both frameworks.
Then, we present a way to transform a recent enhancement of a classical lattice algorithm into an FCI-miner. As
the resulting approach relies on extensive exploration of the temporary FCI family upon each update, we investigate
possible pruning strategies to reduce the set of examined F'CIs. To that end, we provide a set of characteristic properties
of the involved lattice substructures and embody them into a new method that only processes relevant lattice nodes.
Efficient implementation of the method yields an incremental F'CI-miner whose performances are compared to those of
a known batch procedure [29]. The paper starts with summaries on association rule mining (Section 2) and on lattices
and dedicated algorithms (Section 3). The theoretical foundations of our framework are presented in Section 4. Our
generic mining approach, GALICIA, is outlined in Section 5 together with two methods, a straightforward one and an
optimized one. Section 6 presents an implementation of the second method. Section 7 lists related work and Section 8
discusses theoretical worst-case complexity as well as preliminary results about the practical performances of our
methods.

2. Association rule mining problem

The association rule mining problem targets all strong and significant associations between items within a TDB. Let
S =iy, iy, ...,Iin} be a set of m distinct items. A transaction 7 contains a set of items in .#, and has an associated
unique identifier called TID. A subset X of .# where k = | X| is referred to as a k-itemset (or simply an itemset), and
k is called the length of X. A TDB, say Z, is a set of transactions. The number of transactions in & that contains an
itemset X is called the absolute support of X, whereas the fraction of these is called its relative support (both denoted
by supp(X)). For example, the support of efhi in Table 1 is 33%. Thus, an itemset is frequent (or large) when supp(X)
reaches at least a user-specified minimum threshold called minsupp.

As arunning example, let us consider Table 1 which shows a supermarket database with a sample set of transactions
2 ={1,...,9} involving items from the set .# = {a, ..., h}. The itemsets whose support is higher than 30% of |Z|
are given in Table 1(B).

2.1. Association rule generation

An association rule is an implication of the form X = Y, where X and Y are subsets of #,and X N Y =0 (e.g,,
e = h). The support of a rule X = Y is defined as supp(X U Y) while its confidence is computed as the ratio
supp(X U'Y)/supp(X). For example, the support and confidence of e = h are 33% and 75%, respectively.

The problem of mining association rules with given minimum support and confidence (called minconf) can be split
into two steps:

e Detecting all FIs, i.e., having support > minsupp.
e Generating strong association rules from large itemsets, i.e., with confidence > minconf.

The second step is relatively straightforward. However, the first step presents a great challenge because the set of FIs
may grow exponentially with |.7].

926 P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924—949

Table 1

TID Items

(A) A sample transaction database

1 a,b,c,d, e f, g h

2 a,b,c,e, f

3 c,d, f, g h

4 ef gh

5 8

6 efh

7 a, b, c,d

8 b,c,d

9 d

i-set Supp. i-set Supp. i-set Supp.
(B) Itemsets X of support greater than 30%

a 3 4 c 5
d 5 e 4 f 5
g 4 h 4

ab 3 ac 3 bc 4
bd 3 cd 4 cf 3
ef 4 eh 3 fe 3
fh 4 gh 3

abc 3 bed 3 efh 3
Jgh 3

2.2. Frequent closed itemsets

Since the most time consuming operation in association rule generation is the computation of FIs, recent work has
concentrated on the benefits of keeping FCIs only [27,46]. An itemset X is closed if adding an arbitrary item i from
4 — X to X yields an itemset of strictly lower support (see Section 3 for a detailed discussion):

Vie s —X, supp(XU({i})<supp(X).

The following table provides the set of all Cls, both frequent (support greater than 30%) and infrequent ones, relative
to the TDB of the previous example (see Table 1).

Set of CI Closed itemsets
FCI ¢, d, g, f, be, cd, cf, ef, fh, abc, bcd, efh, fgh
CI-FCI abcd, abcef, cdfgh, efgh, abcdefgh

A key property in the CI framework states that any itemset has the same support as its closure, hence it is just as
frequent. For example, the closure of the itemset b is bc and both have a support of 4. Previous work [20,27] has
shown that FCIs constitute a compact lossless encoding of all FIs whose retrieval requires no further access to the
TDB. Moreover, similar representations for association rules can be derived from either the FCIs [33] or the lattice of
Cls [46].

2.3. Incremental generation
In real-life situations, data sets tend to be very large and volatile. One way to deal with these features in data mining

is to process data incrementally yet efficiently. In association rule mining, this means that the available FCIs need to
be updated without restarting the mining task from scratch each time new transactions are added.

P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924 —949 927

As an introductory example, let us consider the following data set. Assume that the initial TDB, &, includes only
transactions {1, 2, 4, ..., 9} while the increment is made of transaction 3. Thus, the augmented TDB gt is the union
of Z and the increment. The following table provides the sets of CI for both the initial TDB and the increment.

Set of CI Closed itemsets
CI d, g, bc, ef, abc, bed, efh, abed, abcef, efgh, abcdefgh
Increment ¢, f, cd, cf, fh, fgh, cdfgh

A batch algorithm would have to start mining the CIs in 2 from scratch. In contrast, an incremental method will
use both the new transaction and the existing set of CIs from & to compute the new CIs and thus compose the entire
family corresponding to 2.

2.4. Mining FCI within a dynamic database

We argue that there is a significant potential to combine the benefits from a flexible computation method with a
theoretical framework that insures more compact results. Just like in the general case of FIs, there is clearly a room for
incremental techniques which maintain efficiently the FCIs upon the insertion of new transactions.

In its most general form, the problem of dynamic FCI mining would require the “merge” of two families of FCIs
corresponding to two TDB that share the same global set of items .#. In terms of concept lattices, this could be modeled
as the assembly of two upper semi-lattices (obtained from both F'CI families). In a recent work, we already addressed
the problem of assembling entire Galois lattices [42] and the extension of the proposed approach on truncated lattices,
also called iceberg lattices [32], is under investigation.

However, as a starting point for the present study of connections between maintaining a Galois lattice and computing
dynamically a F'CI family, we have chosen a less complex version of both problems which only considers adding one
transaction to the data set. This allows a body of available results about lattices to be explored and enhanced to yield the
definition of an complete framework for FCI mining. Indeed, the results presented here already provide a solution for
the general problem of dynamic FCI mining. Moreover, following our work on lattices, we are currently generalizing
them to the multi-transaction case.

In summary, the rest of the paper presents an incremental F'CI mining approach, which, to the best of our knowledge,
has no equivalent in the literature.

3. Background on Galois/concept lattices

We recall basic results on Galois lattice [4] and formal concept analysis (FCA) [19,45], which constitute the basis
of our approach toward incremental generation of FClIs.

3.1. The basics of ordered structures

P=(G, < p)isapartial order (poset) over a ground set G and a binary relation < p if < p is reflexive, antisymmetric
and transitive. For a pair of elements a, b in G, if b < pa we shall say that a succeeds (is greater than) b and, inversely, b
precedes a.If neither b < pa nora < pb, then a and b are said to be incomparable. All common successors (predecessors)
of a and b are called upper (lower) bounds. The precedence relation <p in P is the transitive reduction of < p, i.e.,
a<pb if a< pb and all ¢ such that a < pc < pb satisfy ¢ = a or ¢ = b. Given such a pair, a will be referred to as an
immediate predecessor of b and b as an immediate successor of a. Usually, P is represented by its covering graph
Cov(P)=(G, <p).In this graph, each element a in G is connected to any of its immediate predecessors and immediate
successors. A poset is visualized by its Hasse diagram, that is the line diagram of the covering graph where an element
is located “below” all its successors.

A lattice L = (G, <) is a poset where any pair of elements a, b has a unique greatest lower bound (GLB) and
a unique least upper bound (LUB). GLB and LUB define binary operators on G called, respectively, join (a\/; b)
and meet (a/\; b). In a complete lattice L, for all finite A € G, \/; A and /\; A exist. In particular, for finite G,

928 P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924—949

a b ¢ d e f g h 12456789 O @

1[X X X X X X X X #1
21X X X X X #2 #3 #5

1789 O'd 1278 Q) bc 145 Q 1246 1D ef
4 X X X X

#7 #8

5 X #6 Q) abc O efh
6 X X X 178 &
XX x X 17 3 abcef 14 0 efgh
8 X X X #9 11
9 X
3 X X X X X 10 abcdefgh

Fig. 1. Left: Binary table #" = (O = {1,2,4,...,9}, A={a, b, ..., h}, I) and the object 3 to be added. Right: The Hasse diagram of the Galois
lattice derived from 4.

there are unique maximal (top, T) and minimal (bottom, L) elements in the lattice. A structure with only one of the
above operations is called semi-lattice, e.g., the existence of a unique GLB for any couple (set) of elements implies a
(complete) meet semi-lattice structure.

3.2. Fundamental results about Galois/concept lattices

The focus is on the partially ordered structure [15] induced by a binary relation / over a pair of sets, O (objects)
and A (attributes). Already discussed in the work of Ore [26] and Birkhoff [8], nowadays the structure is known as
the Galois lattice [4] or, more popularly, concept lattice [45]. For example, Fig. 1 on the left shows the binary relation
A =(0, A, I) (or context) drawn from the TDB of Table 1 where transactions are taken as objects, items as attributes,
and ola is to be read as “transaction o has the item a”. Two derivation operators, f and g, summarize the links between
object and attribute subsets induced by 1.

Definition 1. The function f maps a set of objects into a set of common attributes, whereas g is the dual for attribute
sets:

o [:9(0)— p(A), f(X)=X"={a € AlVo € X,0la},
e g:p(A) = 9(0),g(Y)=Y' ={0 € O|Va eY,ola}.

For example, w.r.t. the table in Fig. 1, f(14) = efgh and g(abc) = 127. Hereafter, following a standard FCA
notation, both f and g are expressed by ’, whereas sets are given in a separator-free form. Both ’ operators define a
Galois connection between the Boolean lattices 2 and 24. Consequently, the compound operators ” represent closure
operators over g (O) and g (A), respectively. This means, in particular, that Z € Z” and (Z")" =Z" forany Z € g (A)
or Z € £ (0). Thus, each of the " operators induces a family of closed subsets, further denoted ‘éi{ (from attributes)
and 6°, (from objects), respectively. With the example in Fig. 1, the attribute sets in 6, represent the Cls in the TDB
9 as described in the previous section. It is noteworthy that ¢, induces an equivalence relation on g (A) whereby all
the closed attribute sets are the maxima of their respective equivalence classes. A well-known result states that %,- and
%", ordered by set-theoretical inclusion, form two complete semi-lattices which are: (i) sub-semi-lattices of 20 and
24, respectively, (ii) complete lattices, since finite semi-lattices. Moreover, both mappings between ¢°, and ¢°,, are
bijective and represent dual isomorphisms between the underlying lattices. This yields a unique structure comprising
all pairs of mutually corresponding closures.

Definition 2. A concept is a pair of sets (X, Y) where X € 9(0),Y € p(A), X =Y and Y = X’'. X is called the
extent and Y the intent of the concept.

P. Valtchev et al./ Discrete Applied Mathematics 156 (2008) 924 —949 929

For example, (178, bcd) is a concept, but (16, e) is not. In mining terms, a concept comprises closed itemset Y and
the (closed) set X of all transactions including ¥, i.e., the supporting 77D set. Furthermore, the set % - of all concepts
of # = (0, A, I) is partially ordered by intent/extent inclusion:

X1, YD<xyr X2, Y2) & X1S X0, 1Y

The partial order (€ 4, <) actually forms a complete lattice, called Galois or concept lattice whereby the lattice
operators are given in the following property (see [4,45]).

Theorem 3. ¥ = (€, < _y) is a complete lattice with join and meet defined as follows:

o Vo (Xi, Y = (Ut X0, N2, Yo,
o N (Xi, Yo = (Nl X, (U).

The Hasse diagram of the lattice ¥ drawn from 7" = ({1,2,4,...,9}, A, I) is shown on the right side of Fig. 1
where itemsets and transaction sets are drawn on both sides of a node representing a concept. For example, the join
and the meet of the concepts ¢y = (178, bed) and c; = (127, abc) are (1278, be) and (17, abed), respectively.

The lattice provides a hierarchical organization of all concepts which may be used to speed-up their computation and
subsequent retrieval. This is particularly useful when the set of concepts is to be generated incrementally, a problem
which is addressed in the remainder of this section.

3.3. Incremental lattice update

The incremental construction of a lattice ¢ is an iterative process starting by %o = ({(J, A)}, @). At the ith iteration,
the lattice .#; corresponding to #'; = (0; ={o1, ..., 0i}, A, IN O; x A) is obtained by incorporating the object o; into
Zi_1. To that end, a set of modifications of the data structure storing .%;_1, typically the graph of its Hasse diagram,
are performed.

The generic incremental problem amounts to incorporating the structures generated by a new object o into the lattice
& of acontext # = (0, A, I). The original solution in [21] exploits the basic fact that a closure family is itself closed
under set intersection [4]. Thus, the restructuring boils down to closing the family %°, U {0’} for intersection. To that
end, all possible intersections of o" with the intents in %), are produced. Part of these are new, i.e., represent non-closed
sets in 4", whereas the remainder are already in %*).. Consequently, one of the goals is to identify all concepts whose
intents correspond to new closures (in the family $“* of the extended context #* = (O U {0}, A, I U {0} x 0')) and
integrate them into (the data structure storing) Z.

The reshuffling of .# is based on the recognition of two subsets of concepts, the modified and the genitors, denoted by
M(0) and G(0), respectively. Modified concepts correspond to intersections that are already closed in ¢ and transform
into homologous concepts in £ after a minimal fix: their extents expand to include o. The genitor concepts—a hint
to their parental role—serve both as seeds and as milestones for the creation of new concepts. Thus, on the one hand,
both the extent and the intent of a new concept are derived from the corresponding elements of its genitor (e.g., new
extent is the genitor one plus o). On the other hand, a genitor marks the place of a new concept in the lattice cover
relation. Finally, the old, or unchanged, concepts (denoted by U(0)), i.e., neither modified nor genitors, are identical
in both & and £ ™.

In summary, a reconstruction algorithm needs to identify M(o) and G(o) within ., physically create the new
concepts (N7 (0)), and subsequently integrate these in the existing lattice structure. A theoretical framework for these
tasks has been initially proposed in [41] and then enhanced in [37] (see Section 4.1 for a summary).

Algorithm 1 provides an overview of the basic steps from the incremental method in [21]. Hereafter, details about the
lattice order updates (primitive UPDATE-ORDER) are skipped as irrelevant. Technically speaking, the concepts are first
sorted by increasing intent sizes thus yielding a (decreasing) linear extension of the lattice order (line 3). Each concept
is then examined in order to identify its actual category (lines 4—11). Modified concepts have intents that are included
in the description of the new object, i.e., {0}’ (line 6). A remaining concept is potentially old unless the corresponding
intersection with {0}’ is met for the first time, in which case the concept is a genitor and a new concept is created. A
property which remains implicit in the code states that a genitor is the maximum of the set of concepts which generate

930 P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924—949

Fig. 2. The Hasse diagram of the lattice derived from 4" with O ={1,2,3,...,9}.
a new intent (since the first one to meet down the decreasing order). The previously mentioned dependancy between
the respective intent and extent in a genitor and in its corresponding new may be observed here in action (line 10).

Algorithm 1. Update of a Galois (concept) lattice upon an insertion of a new object.
1: procedure ADD-OBJECT(In: . a lattice, 0 an object)

2:

3: SORT(Z) {in ascending order of intent sizes}

4: for all ¢cin ¥ do

5: if Intent(¢) C {0} then

6 ADD(Extent(c),0) {(¢) is amodified concept}

7 else

8: Int < Intent(c) N {o} {(¢) is an old concept}

9 if not (In?, Int) € £ then
10: ¢ < NEW-CONCEPT(Extent(c) U {o}, Int) {(c) is a genitor}
11 UPDATE-ORDER(c, ¢) ; ADD(Y, ¢)

As an illustration, assume that the object 3 is to be inserted into the lattice induced by O = {12456789} (in
Fig. 1, on the right). Following Algorithm 1, the relevant concept sets are U(o) = {c47, cao}, M(0) = {cs1, c#2, c#a}, and
G(0) ={cu3, cs, cu6, C#8, C#10, C#11, C#12}- The new concepts correspond to the intents c, f, cd, cf, fh, fgh, and cdfgh.
Fig. 2 depicts the updated lattice.

In the remainder, we focus on an adaptation of the above technique to the incremental generation of CI families
which is rooted in a formalization of the manipulated lattice substructures.

4. Lattice-based framework for incremental itemset mining

The aforementioned concept sets are formally defined and translated into subsets of CIs whose role in the mining
process is investigated.

4.1. Definitions

We need to formally define concept categories in .# " as Godin et al. only considered their homologous elements in
. To avoid confusion, operators " hereafter will be denoted so as to reflect the underlying context, i.e., I for # and
_/ for #" (we assume J = I U {0} x o’). First, two maps are defined between contexts linking concepts that share
one dimension or both.

P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924 —949 931
Definition 4. Leto: 4 — 5 0(X,Y)=(Y/,Y)andy: 4T — %; (X, Y) = (X1, X)), where X; = X — {o}.

In other terms, o preserves the concept intent, whereas) preserves extents up to a difference of {o}. Now new
concepts are exactly those whose extents comprise o but whenever o is removed, the result is a valid extent, whereas
for a modified extent the removal does not yield an extent.

Definition 5. The set of new concepts in £ is
N 0) = {(X, IX. V) e %50 € X5 (X — {o)" =X — {o}}.
M(o) and M (o) are characterized by intent preserving upon swaps of o in the extent.

Definition 6. The sets of modified concepts in £+ and in . are, respectively:

e M*(0) = {(X,V)|(X,Y) € 650 € X; (X — fo}) =Y},
e M(o)={(X.")I(X,Y) € 6; (XU{o})! =Y}.

Genitor definition is the reverse of the new concept one: The genitor of a concept (X, Y) in N*(0) has an extent
X — {o}in both # and #"T.

Definition 7. The sets of genitor concepts in £ and in . are:

e Gto)={(X,V)|o¢ X; (XU o)’/ =X U{o}};
e G(o)={(X,NIXU{oh)?!! =X U{o}; ¥ # (X Ufoh7’;).

A definition closer to the one used by Godin et al. states that genitor intents are the closures of the underlying
intersections with {0}’ while themselves not included in {0}”:

Proposition 8. The set of genitors in & is G(o) = (X, Y)|YZ{o}’; Y = (Y N {o}/)!1}.

To sum up, both genitors and modified intents in .% represent the closures of their own intersections with o/, whereby
the intersection is an intent in ¥ for a modified but not for a genitor.

4.2. Bridging the gap between concepts and Cls

We start with some notations to support further discussion. Recall that the family of CIs of a TDB & roughly
corresponds the set of intents in the equivalent context representation 4" . In fact, the only notorious difference is that
under no circumstances will the target structure for mining comprise the empty set (should it be closed) as it carries
no useful information. The following table presents a summary of the mathematical notations used in the remainder of
the text. These slightly diverge from the standard notations in data mining literature.

Symbol Stands for

T, The new transaction

9 The current database

€7, The set of ClIs in &

06" Set difference %‘éﬁ - %%,
I, The itemset of 7},

gt % augmented with 7,
G The set of CIs in &

ue ClIs from & included in I,

932 P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924—949

The following storage structures for CIs appear in algorithmic code:

e FamilyClI: the data structure for 47,
e NewCl: the data structure for 66“.

Moreover, the nodes e of FamilyCI will have fields itemset, support.

Further to Section 3.3, the updating of %7, upon the arrival of a new transaction 7, amounts to computing all
intersections of existing CI with its itemset ,, which further fall into two cases: itemsets already in ¢, (hence closed
and in u%“) and new Cls, i.e., closed only in %‘;Z+ (hence in 0%“). A straightforward method could generate all
intersections and add the new ones to %7,

Step two is the calculation of the support for the CIs in (o +. Intuitively, for any intersection Y7 in 64“ U u%“,

its absolute support in 27 is exactly the support of Y7 in & plus one. However, the latter is not directly available as
Y7 may be obtained by more than one intersection, e.g., in Fig. 1, ¢ is the result of intersecting cdfgh with bc or abc.
Here we recall a key property from Section 2: Y7 shares the support value with its closure Y. %I (since a transaction
comprising Y7 also comprises Y. %I). This suggests the following procedure for support computation: (i) find the closure
Y%I , (i) extract its support in &, and (iii) add one (two more operations necessary if support is relative). The procedure
stresses the importance within the CI framework of the notions of genitor and modified intent which, as indicated in
Section 4.1, represent the respective closures for intersections in 6% U u%“. The next concern is the efficient detection
of the closure of Y7 with its support. It is addressed below through an alternative definition of closures that is readily
embodied into an algorithm.

4.3. Extremal status of closures

Back to concept analysis we focus on the structure that a new transaction induces on the current C/ family. It is rooted
in a basic property of closures stating that, set in our mining terminology, given an intersection Y7, its closure in & is
the smallest CI comprising Y7. In the case of genitor and modified CIs, the property can be strenghtened using further
constructs, a set-valued function and the equivalence it induces on 67, Both are part of a homogeneous characterization
for genitor and modified concepts that generalizes the initial results of Godin et al. (see [37]). First, the function 2
maps 67, into g (#) by computing the respective intersections with I,.

Definition 9. The function 2 : (6?2 — e (SF) computes: 2(e) = e.itemset N I,.

2 induces an equivalence relation on 6%, whereby each class []5 has a unique minimal element for set inclusion,
which is exactly the closure of the respective 2 value.
Proposition 10. Ve € (5?@, d e = min([e]), where by e.itemset = (e.itemset N In)”.

Let E(7,,) be the set of class minima. From Proposition 8 and the trivial fact M(7,,) € E(7},), we conclude that class
minima are exactly the genitor and modified CIs.

Proposition 11. The set of all class minima in 6%, is E(T,) = G(T,,) UM(T,).

To sum up, the target Cls lay at the bottom of their respective classes. A key observation here is that the overall
bottom of the closures is also the minimum of the class induced by the smallest Y7. If Y7 =0, i.e., practically in every
realistic case, the class will not require any processing, albeit covering a large proportion of the current Cls, since the
empty itemset is of no value.

5. Incremental generation of FCIs with GALICIA

The GALICIA (for GAlois Lattice-based Incremental Closed Itemset Approach) mining approach is presented below
together with two high-level methods (low-level design is discussed in Section 6): a first one mirroring the method in
[21], used for comparison purposes here (see [39] for details), and a second method using a novel search strategy to
spot relevant CIs.

P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924 —949 933

5.1. Straightforward incremental method

Algorithm 1 may be turned into a CI miner by limiting processing to relevant concept elements.

5.1.1. Principles of the approach

Our aim is, given a TDB & and its CI family %7,, to construct 6% p reflecting ¥ = % U {T},} only by looking at
T, and %7,. A straightforward strategy consists in examining every CI in €7, and computing its intersection with ,,.
Instead of keeping an intersection at each CI, every known intersection Y7 could keep track of the (so far) smallest CI
that produced it. This requires no direct comparison of CIs since supports are just as good: the minimum of a class has
also the highest support. Thus, the traversal of 47, can also yield the closure of each Y7.

A less exhaustive approach could process differently modified and new CIs. Thus, while new intersections require
explicit storage and support computation, the existing ones are almost done once detected: The CI that such an inter-
section represents is in 6, and it only needs a support increase by one (once during the entire traversal). This implies
a more complex control structure with lookups within (5?@ (to check whether Y7 is inside) and in 0% (actually, the
known part thereof). Section 5.1.2 presents a method which applies this strategy.

Finally, let us observe that incremental methods are forced to work with the entire set of Cls, including infrequent
ones. First, the frequent status depends on the portion of the TDB already processed: some of the FCIs at a given time
point may become infrequent after some further insertions, and vice versa. Then, discarding infrequent genitors will
prevent the discovery of the respective new CIs which may well be frequent. For instance, assume transactions (10, abcd)
and (11, abcde) are added to & (see Table 1). FCls cf, efh, fgh become now infrequent CIs (27%) while abcd is frequent
(36%). If abcef was initially discarded as infrequent CI (22%), then the new CI abce would have been missed.

5.1.2. Algorithmic design

Algorithm 2 hereafter preserves the main control structure of its lattice counterpart: each CI of the current collection
(FamilyCI) is examined to establish its specific category (modified, old or genitor of a new CI). Modified Cls simply
get their support increased (line 9) and old ones remain unchanged (line 11). Processing genitors diverges from the
lattice version since no particular order is assumed on FamilyCI. Indeed, as one cannot rely on a specific ordering
within that collection, a class minimum can be established only after the traversal of the entire class, which, in turn,
cannot be reliably assumed as fully accomplished before every member of FamilyCI has been examined. To that end,
it is enough to keep track of the minimal generating CI for every new intersection along the global traversal. In doing
that, set inclusion tests can be advantageously replaced by support comparison. Actually, each new CI is stored together
with the maximal support already reached for that CI. Thus, each time the CI is generated (lines 13—17), the support is
tentatively updated. Furthermore, the storage of new Cls is organized separately (collection NewCI) so that unnecessary
tests can be avoided.

Algorithm 2. Update of the CI family upon a new transaction arrival.
: procedure UPDATE-CLOSED(In: T, a transaction, FamilyCl a collection of itemsets)

Local : NewCl a collection of itemsets

NewCl < @ ; I, < T,.itemset
for all e in FamilyCl do

I, < e.itemset

if I, C I, then

e.support ++ {e is modified, update its support}

else
11: Y < I,N1,;ey < lookup(FamilyCl, Y) {e may be old or genitor}
12: ifey = NULL then

AN A A S

13: ey < lookup(NewCl,Y) {e is a potential genitor}

14: if ey = NULL then

15: node < create-Cl(Y, e.support + 1) ; NewCl <— NewCl U {node}
16: else

17: ey .support <— max(e.support + 1, ey .support)

18: FamilyCl <— FamilyCIU NewC]

934 P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924—949

The above computation yields the correct supports at the end of the global traversal. This fact is strongly reinforced
by an implementation proposal which utilizes trie structures in order to reduce redundancy in both storage and update
of the CI family.

It is noteworthy that the gains due to the use of a linear extension of the lattice order in the immediate detection of
genitors (as in [21]) are offset by the overhead of the order maintenance.

5.1.3. Limitations of the exhaustive traversal

Although the utilization of advanced data structures may lead to some gains both in memory consumption and
efficiency, the complete exploration of the CI family upon each insertion may still prove too expensive for large
databases (see [39] for details). This observation emerged from our preliminary experimental studies. In fact, in large
and sparse databases, the insertion of a new transaction requires the processing of only a limited set of existing Cls
(modified and genitors). The size of this set is usually far smaller than the size of the entire CI family %°, (down
to 0.1%). Thus, the overwhelming number of computations done by the exhaustive algorithm will not trigger any
modification of the CI family.

This fact motivates the design of improved search strategies, e.g., one that only processes potential genitors and
modified while skipping a large portion of the old CIs as discussed below.

5.2. Narrowing the set of examined Cls

In the ideal case, the incremental algorithm should be able to pinpoint members of E(7;,) with a minimal search
outside that set. For instance, the method in [41] relies on lattice order to move quickly within an equivalence class
toward its maximal concept, i.e., minimal intent, while skipping many of its non-maximal members. However, as order
has been deliberately excluded here, a different criterion for eliminating old Cls is necessary. Let us now observe that
all non-empty genitor and modified CIs share at least one item with 7,,. Thus, a possible superset of E(7},) to target
with an algorithm is the set of existing CIs having a non-empty intersection with I,,, denoted S(7},):

S(T,) = {e € € |e.itemset N I,, #).

In fact, unless the data set is very dense, S(7},) will be orders of magnitude smaller than %*,.

In the light of the above arguments, the task of a parsimonious update of %*, could be split into subtasks as follows:
(i) detecting all the elements of S(7},); (ii) computing the value of 2 for each cin S(T,); (iii) partitioning of S(7},) into
classes with respect to 2; (iv) detecting the minimal element in each class, i.e., E(7}); (v) determining the category of
each minimum; (vi) performing the updates in the CI family.

Task (i) requires an efficient means for the detection of S(7},), e.g., an indexing structure associating to each item
i the set of CIs that share i. Thus, the exploration of %, can be limited to Cls that belong to at least one list of an
item from 7,,. Moreover, this enables gradual computlng of intersections, i.e., by adding the current item to partial
intersections (see below). The identification of distinguished Cls involves support comparisons within classes hence
S(T,,) must be split to form these classes.

5.3. Parsimonious CI mining

The overall control structure of a method focusing exclusively on S(7},) splits into three steps: (i) traversal of S(7},)
with simultaneous intersection calculation, (ii) partitioning of S(7},) into classes, and (iii) detection of class minima
with the subsequent updates. The main improvement here is the removal of the entire class generated by 2 = ¢ from
the search space. The efficiency gain thereof, as compared to the one presented in [39], is particularly high with sparse
transaction sets where each item is shared by a small proportion of all transactions while many CIs generate empty
intersections with 7,,.

The new method uses CI storage similar to the one in Section 5.1. In addition, it stores with a CI e the (partial)
intersection of its itemset with /,,. Its computation relies on Itemlndex, an index of CIs by their member items (see
example below).

Algorithm 3 starts with a traversal of all CI lists corresponding to the items from 7, (lines 6-8). At each CI e from a
list 7, the item i is added to the current value of the intersection. Next, examined ClIs are split into classes following the
intersections (line 9). Then, class minima are computed and their status is determined followed by the respective updates

P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924 —949 935

(support increase, new CI creation, etc.). At any creation of a new CI ¢ it is added to each of the lists corresponding to
an item from é.itemset (lines 15-16). It is noteworthy that as intersections are stored at each CI, there is no need for a
global structure to host them.

Algorithm 3. Parsimonious update of the CI family of a transaction database.
1: procedure UPDATE-CLOSED-BIS (In: T}, a transaction, In/Qut: FamilyCl a collection of
Cls, ItemIndex an indexed set of C/lists)

2:

3: Local : Qclasses a trie indexing sets of Cls

4.

5. I, < T,.itemset

6: foralliel,do

7 for all ¢ € ItemIndex(i) do

8: add(e.intersection, i) {gradually construct all non-trivial intersections}
9: Qclasses <— SEPARATECLASSES(FamilyCl) {separate the classes in ¢“}
10: for each class ® € Qclasses do

11: e < MIN(®) {extracts the node of highest support in O}
12: if e.itemset C I, then

13: e.support + +

14 : else

15: ¢ < create-Cl(e.itemset N I,, e.support + 1)

16: add(FamilyCl.e)

17: for all i € ¢.itemset do

18: add(/temindex(i),e)

To illustrate the algorithm, assume the TDB 2 = {1, 2, 3, ..., 9} from Section 3.3. The CIs of & are provided below
together with their respective IDs and supports:

Clid i-set Supp.
#1 abcdefgh 1
#2 abcd 2
#3 cdfgh 2
#4 abcef 2
#5 efgh 2
#6 bed 3
#7 efh 3
#8 cd 4
#9 abc 3
#10 cf 3
#11 Sfeh 3
#12 ef 4
#13 bc 4
#14 fh 4
#15 d 5
#16 ¢ 5
#17 g 4
#18 f 5

936 P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924—949

We consider the insertion of a transaction (10, bcgh) into &. The following table illustrates the CI lists associated to
items in 7,, within ltemIndex.

Item CI id lists

b #1, #2, #4, #6, #9, #13

c #1, #2, #3, #4, #6, #8, #9, #10, #13, #16
g #1, #3, #5, #11, #17

h #1, #3, #5, #7, #11, #14

The content of Qclasses after the sorting step (line 10) is presented in the table below, together with the indication
of the class minimum and its respective status (genitor or modified).

2(c) [12 min. Status
¢ #8, #10, #16 #16 mod
g #17 #17 mod
h #7, #14 #14 gen
bc #2, #4, #6, #9, #13 #13 mod
gh #5, #11 #11 gen
cgh #3 #3 gen
begh #1 #1 gen

As aresult, at the end of the traversal of Qclasses (lines 10—18) the new Cls are created, whereas modified CIs have
their support increased. These are provided by the following two tables:

New ClIs (6C%)

Clid #19 #20 #21 #22
Ttemset bcgh cgh gh h
Genitor #1 #3 #11 #14
Support 2 3 4 5
Modified CIs (uC*%)

Clid #13 #16 #17
Support 5 6 5

Finally, the new state of the relevant lists in the index structure is as follows:

Item CI id lists

b #1, #2, #4, #6, #9, #13, #19

c #1, #2, #3, #4, #6, #8, #9, #10, #13, #16, #19, #20
g #1,#3, #5, #11, #17, #19, #20, #21

h #1,#3, #5, #7, #11, #14, #19, #20, #21, #22

6. Implementing the parsimonious incremental method

Algorithm 3 already uses an indexing structure on all Cls to carry out steps (i) and (ii) simultaneously. We propose
to extend the simultaneous processing to cover steps (iii) and (iv) as well, which amounts to yielding E(7},) at the end
of the initial traversal of S(7},).

P. Valtchev et al./ Discrete Applied Mathematics 156 (2008) 924 —949 937

*7
#13
*6
: @ #3
© #16
(&)

#17
initial trie item = b item = ¢ item = g

Fig. 3. The evolution of Intersections: state of the trie after each of the first three steps. Terminal nodes are drawn in dark gray.

6.1. Principles

To enable an even more limited search, we use a compact storage of the produced intersections: Instead of keeping a
copy of its intersection locally, each CI ¢ stores only a reference to a global trie structure, Intersections, that represents
intersections and their shared prefixes only once.

Tries [23] provide a good trade-off between storage requirements and manipulation cost, hence they are frequently
used to store large data sets, e.g., collections of words over an alphabet. In its basic form, a trie is a tree with letters
assigned to vertices (or to edges), so that each word corresponds to a unique path (see Fig. 3). Nodes corresponding to
the end of a word, called terminal nodes, are distinguished from the rest.

Tries compact the information since all prefixes common to two or more words are stored only once in the trie. Such
factorization not only reduces the storage space, but also provides for more efficient operations, e.g., search or insertion
of a word into the trie. Tries where words represent sets—as in our case—provide very efficient operations which can
be carried out in a time linear in the size of the alphabet, regardless of the size of the trie.

In Intersections, a node is a record with fields item, successors, current-min and nb-refs. The
successors field is a sorted, indexed and extendible collection. The third field is a pointer to the current ele-
ment of maximal support, while the fourth one reflects the number of CIs pointing at the node via their last-item
fields. A CI record has fields 1d, support, and last-item. The last one points at the node n from Intersections
such that path(n) (see below) corresponds to the already processed part of the intersection.

Technically speaking, a CI ¢ stores a pointer to the terminal node in the trie which corresponds to a path labeled by
the intersection 2(c). As the intersections are computed gradually during the traversal of the item index, the trie also
grows with every item from 7I,,. At any moment, the pointer indicates a node labeled by the last item in 2(c) that has
been examined so far. In this way, at the end of the traversal, the pointer of a CI c is directed at the last node of the path
representing the 2(c). Consequently, the class [c] is implicitly represented as the set of all CIs pointing at the trie
node with the last item of 2(c) (see Section 6.4). This reduced view on classes nevertheless yields both class minima
and the associated 2(c) value.

A class minimum emerges by keeping track of all CIs that point, or have pointed, to a node, and then selecting the
most frequent one. For simplicity, it will be referred to by a reverse pointer stored at a trie node and updated during
the traversal. 2(c) is represented by the path from the trie root up to the terminal node, denoted path(). A counting
mechanism helps spot the terminal trie nodes which are otherwise hard to detect as the last item of a CI is not available
through the index structure. Thus, nodes with a strictly positive number of references from Cls are terminal, whereas
the others are not.

To separate genitors from modified (subtask (v) in Section 5.2), the CI c¢ indicated by the reverse pointer at
a node n is retrieved and its size is compared to the size of 2(c) which is the length of path(n). Equality of
sizes witnesses modified CIs and inequality genitors. In summary, after the first stage, class minima are pointed
at by trie nodes marking the end of the intersection path. Stage two recognizes categories and carries out up-
dates in a way similar to Algorithm 3. A noteworthy difference, trie paths are traversed to form the
new CIs.

938 P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924—949
6.2. Algorithmic design

At its first stage the method (see Algorithm 4) loops over the items in 7, (outer loop, line 6-11), then over the list of
Cls associated to an item i (inner loop). Within the inner loop, the intersection of the current CIs with /,, is updated by
adding i to it. This may or may not involve a creation of a node labeled i in Intersections, depending on whether the
underlying path exists in the trie or not. Moreover, for already encountered CIs (line 9), the lookup for i starts from the
last trie node in the current intersection path which is actually referred to by the last-1tem field. If i is the first item
of the intersection, i.e., if last-1tem is NULL, then the search starts at the root of the trie (line 11).

Algorithm 4. Update of the CI family of a transaction database.
I: procedure UPDATE-FAMILYCI(In: T, a transaction, In/Qut:FamilyCl a collection of
Cls, ItemIndex an indexed set of C/ lists)

2:
3: Local : Intersections a trie of itemsets indexing Cls
4.
5. I, < T,.itemset
6: foralli € I, do
7: for all ¢ € ItemIndex(i) do
8: if e.last-item = NULL then
9: UPDATE-INTERSECTION(e, i, root(Intersections))
10: else
11: UPDATE-INTERSECTION(e, i, e.last-item)
12: for each terminal node n € Intersections do
13: e < n. current-min {returns the minimum the class corresponding to path(n)}
14: if e.size = n.depth then
15: e.support+ + {modified Cl}
16: else
17: ¢ < create-Cl(path(n), e.support+ 1) {creates a new Cl}
18: add(FamilyCl, e)
19: for all i € path(n) do
20: add(/temIndex(i), é)

The lookup/insertion (primitive UPDATE-INTERSECTION, Algorithm 5) first checks the existence of a node i among
the successors of the current trie node (line 3). A negative outcome triggers the creation of such a node (lines 5-6)
with appropriate field values. For existing nodes, the current minimal CI is tested for possible update (lines 8-9). The
number of references in both the previous and the current last items for the CI is properly modified (line 10).

Algorithm 5. Update of the intersection trie nodes.
1: procedure UPDATE-INTERSECTION(In: ¢a Cl,ian item,na trie node)

n < get-successor(n,i)
if 7 = NULL then
n < create-node(i, @, e, 0) {initializes item, successors, current-min, nb-refs}
add-successor(n,n)
else
if n.current-min.support-max < e.support then
n.current-min < e
n.nb-ref+ +; n.nb-ref — —
e.last-item < n;

TeYRXIINREWD

—_

The next stage of Algorithm 4 is the partition of minima into modified and genitors and the modification of the data
structures. Minimal CIs are retrieved from the terminal nodes of Intersections (line 12). Depth of a node, i.e., the length
of the path from the root, is used to recognize modified CIs. Moreover, new CI are recovered by effectively traversing
the path from the terminal node down to the trie root (line 17). Finally, the index is updated with new Cls which are
added to the appropriate lists (lines 19-20).

P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924 —949 939

#13
) (#2,44,#6 #9,#13)
*10
6 0
*1 "3 ")
/.#16
(#8.#10,#16)

2

#17 #11
#17) (#5.#11)

#1447 414

Fig. 4. Final state of the trie induced by the insertion of bcgh. The value of the nb-ref counter is visualized above each node. Terminal nodes are
given with the set of all CIs that point to them.

6.3. Example

As an illustration, assume again that (10, bcgh) must be inserted into & = {1, 2,3, ..., 9}. Since the content of
ItemIndex does not differ from what was given in Section 5.3, we only show the evolution of Intersections and the
related last-1item field in the extended CI structure.

The execution trace below follows the steps of the external for loop: It provides the 1ast-1item values and the
content of Intersections at the end of each step. Pointers to trie nodes are given in tabular form, while the subsequent
modifications of Intersections are visualized in Figs. 3 and 4. To ease distinction between Cls and trie nodes while
keeping the notations succinct, the latter nodes are denoted by a * sign preceding a numeric identifier, i.e., from *1 up.

As an initialization, the fields last-1item in FamilyCI nodes are set to NULL (x below), whereas Intersections
is set to a root node whose item field is void ({}) as depicted in Fig. 3. The processing of b yields a new successor of
the root. The exploration of CIs associated with b—#1, #2, #4, #6, #9, #13—assigns the id of the current node, *2, to
the respective last-1item fields. The id of the current minimal CI and the number of CIs pointing to the node *2 are
stored as well. At its end, step b of the loop yields the results in the next table (see also Fig. 3).

id last
#1 *2
#2 *2
#3 X
#4 *2
#5 X
#6 *2
#7 X
#8 X
#9 *2
#10 X
#11 X
#12 X
#13 *2
#14 X
#15 X
#16 X
#17 X
#18 X

940 P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924—949

The step focusing on ¢ examines CIs #1, #2, #3, #4, #6, #8, #9, #10, #13, #16 and extends both trie paths, i.e., {}
and b, with a node ¢ each. In addition, all the above CIs point now to nodes c. In particular, the number of references
to the node b is decreased to 0, since all ClIs that previously pointed to %2 have been reset to 4. This reflects the fact
that bc is the closure of b. This step of the loop leaves the trie in a state given in Fig. 3, whereas the relevant fields in
the Cls are given by the next table.

id last
#1 *4
#2 *4
#3 *3
#4 *4
#5 X
#6 *4
#7 X
#8 *3
#9 *4
#10 *3
#11 X
#12 X
#13 *4
#14 X
#15 X
#16 *3
#17 X
#18 X

The links from the CIs to the trie nodes after the processing of g are depicted in the next table. Fig. 3, again, provides
the content of the trie itself.

id last
#1 *7
#2 *4
#3 *6
#4 *4
#5 *5
#6 *4
#7 *8
#8 *3
#9 *4
#10 *3
#11 *9
#12 X
#13 *4
#14 *8
#15 X
#16 *3
#17 *5

#18 X

P. Valtchev et al./ Discrete Applied Mathematics 156 (2008) 924 —949 941

The values of 1ast-1item after the processing of i are given in the table below.

id last
#1 *11
#2 *4
#3 *10
#4 *4
#5 *9
#6 *4
#7 *8
#8 *3
#9 *4
#10 *3
#11 *9
#12 X
#13 *4
#14 *8
#15 X
#16 *3
#17 *5
#18 X

Fig. 4 illustrates the final state of Intersections which is to be explored by the second phase of the method. For each
terminal node 7, the figure shows the CIs from the class induced by 2.

6.4. Soundness results

The correctness of the minima computation, i.e., the recognition of their status and category, is rooted in the following
two properties. First, we prove that at the end of stage one, for any terminal node n, the CI pointed by current-min
is exactly the minimal element of the class generated by the itemset corresponding to path(n).

Proposition 12. Given a trie node n, and let n be terminal. If c is the CI that n. current-min points at, then
e =min([e]) and path(n) = 2(e).

Proof (Sketch). The key idea is to show that given a CI e with its class [¢]y and the corresponding node 7, such that
path(n) = 2(e), the minimal element in [e] 9, say ¢ = min([e] 9) is more frequent than any other CI ¢ such that 2(e) is
a prefix of 2(e). O

To complete the proof of Proposition 12 one must show that that terminal nodes can be correctly recognized, i.e.,
that at the end of stage one (lines 611 of Algorithm 4), only trie nodes n such that path(n) = 2(e) for some e have a
non-zero value for nb-refs. In fact, the property below reflects the way the trie is constructed, hence it holds.

Proposition 13. Given a node n in the trie and a CI e, at the end of the computation, e.last-1item = n if and only
if path(n) = 2(e).

7. Related work

Frequent pattern mining is a key step in many data mining tasks such as the discovery of association rules, sequential
patterns, and episodes. In the following, we report in a non-exhaustive way related work on incremental FI mining or
extraction of CIs as well as on connected aspects of FCA algorithmic practice, especially on concept computation and
lattice construction.

942 P. Valtchev et al. / Discrete Applied Mathematics 156 (2008) 924 —949
7.1. Concept computation

Early algorithms calculating the set of concepts (under different names) may be found in [12,25], but the first one
dedicated to the task is NEXTCLOSURE [18]. It uses a classical listing technique for combinatorial objects based on an
order, called /ectic, on attribute sets and can actually compute any closure family provided with an explicit closure
operator. NEXTCLOSURE explores g (A) with closure tests on candidates while listing closures in the lectic order based
on a canonical representation thereof, i.e., a lectically minimal generating prefix. The bases of the incremental concept
formation approach were laid in the work of Godin et al. [21]. GALOIS [11] is another pioneering incremental method.
Recently, deeper insights into the incremental update mechanisms founded the design of smarter methods, e.g., an
off-spring of a data partitioning framework [38] or a bottom-up traversal strategy for the lattice graph [41]. Finally,
[37] proposed a generic algorithmic scheme for the incremental lattice computation.

7.2. FI mining

Historically, the reference FI mining algorithm is APRIORI [2]. It performs a level-wise generation of FIs within the
powerset lattice 27, starting with singleton sets and moving upwards and level-wise in 2. At level i + 1, the candidates
are generated by joining FIs from level i that differ by a single element. Candidates having at least one infrequent subset
are pruned a priori, i.e., without looking at the database to calculate frequencies. APRIORI was followed by a variety of
competing mining approaches. A large part of them aim at improving the efficiency of the basic method [22], whereby
the key difficulty is the potentially huge number of FIs.

As a remedy, characteristic subsets of the FI family were brought to light, most prominently, the closed Fls
[47,27,5,29] and the maximal FIs [7,10], i.e., FIs having only infrequent supersets (MFIs). It is noteworthy that
while there can be exponentially more CFIs than MFIs, CFI encode the family of FIs faithfully, whereas MFIs
only retrieve FIs without supports. On the complexity axis, it was shown in [9] that listing all MFIs is an NP-hard
problem while listing CFIs can be done in incremental polynomial time (see [16] for a description of complexity
classes).

7.3. Batch FCI mining

ACLOSE and CLOSE [28] are among the first F'CI miners. Like APRIORI, ACLOSE performs level-wise traversal of 27,
but exploits the generators, i.e., the minimal itemsets producing a CI by means of ”. Generators replace candidates in
the APRIORI framework; they guide the F'CI lookup in the database. TITANIC [32] improves ACLOSE, in that it relies on
further properties of generators, e.g., easy computing of closures through supersets, to avoid redundant computation.

CHARM [47] is another closed pattern miner which generates F'Cls in a tree organized by inclusion. Closure and
support computations rely on storage and intersection of TID-sets. To speed-up closure computation, CHARM uses
diffsets, the set difference on the TID-sets of a given node and of its unique parent node in the tree.

CLOSET and its recent improvement CLOSET+ [43] both generate FCIs as maximal branches of a FP-tree, a structure
that is basically a prefix tree (or trie) augmented with transversal lists of pointers. The global FP-tree of a database is
projected into a set of conditional FP-trees that organize patterns sharing the same suffix. Support values are compared
in order to compute the closure of a given branch in the FP-tree. BAMBOO [44] is an improved version of CLOSET+
producing a reduced result set and with better performance and scalability features than the latter. BAMBOO exploits
various pruning and optimization techniques to accelerate the mining process. For instance, the length-decreasing
support constraint defines the minimal support as a non-increasing function of itemset length based on the observation
that short itemsets may be interesting if they have a high support, while long itemsets may still be relevant even when
their support is below but close to minsupp. However, the key problem of defining a good length-decreasing support
function for a specific data set has not been tackled by the authors.

7.4. Incremental FI mining
On-line mining algorithms were introduced to cope with data evolution at low cost, i.e., without starting from scratch.

Early incremental FI miners were based on the APRIORI framework. FUP [13] (for Fast Update with Pruning) updates
the set of association rules whenever some new transactions are added. The candidates for the incremental transaction

P. Valtchev et al./ Discrete Applied Mathematics 156 (2008) 924 —949 943

set are generated with respect to their frequencies in the initial database which are in turn deduced from some pre-
computed support values for the TDB. Fup-2, the sequel of FUP, admits a larger set of operations on the database,
including insertion, removal and modification of transactions.

An alternative on-line paradigm relies on the notion of negative border [24], i.e., the infrequent itemsets that are
minimal for inclusion (see [17,34] for concrete methods). In [3], the UWEP incremental algorithm performs a look-ahead
pruning by discarding as early as possible itemsets that will become infrequent. A recent work reported in [30] extends
the limits of incremental approaches by allowing changes to the basic parameters of the mining process such as support
threshold, and analyzing the impact of the increment on the mining process.

7.5. Incremental FCI mining

Based on the criteria described in [30], we believe that our approach has the following attractive features: (i) it is
incremental, (ii) it allows flexible changes to the support threshold, and (iii) it helps capture the effects of the update.
The last feature is enabled by the Intersections structure (see Section 6) which contains the newly discovered FCls and
the modified ones. Such a structure can be explored, for instance in a market basket analysis framework, in order to
analyze the impact of some actions (e.g., new marketing strategies) taken between a previous mining process of a TDB
and the current one (i.e., the mining of the increment only).

It is nevertheless a difficult task to combine strict computation of FCIs with the incremental mode. The key obstacle
for the direct application of the genitor-modified-new framework, regardless of the concrete method, is a phenomenon
that may be qualified as CI drift: Some CIs may bounce back and forth between the frequent and the unfrequent part
of the CI family all along the incremental construction. In particular, infrequent genitors may give rise to frequent new
ClIs while modified concepts may show instability around the cut-off point by “crossing” it upon a single increment
just to be back some steps later. In [31], we presented the schema of an incremental FCI miner. The study of various
implementations thereof has shown that invariably the most expensive task in a single update step is the management
of the drifting CIs. To limit its cost, we have designed a method exploiting the order between CIs. As order is not
provided for in the above algorithmic proposition, further research will be necessary to determine the appropriate
trade-off between parsimony in F'CI traversal and drifting CI recovery.

8. Performance results of the incremental methods

In the light of previous work on the performance of CI and FCI miners, we discuss here the way our work compares
to existing methods and known complexity results.

8.1. Complexity analysis

Before tackling the complexity of Algorithm 4, a relevant fact to recall is the potentially exponential growth of the
lattice in the number of objects/attributes. Consequently, lattice methods cannot be polynomial, unless the size of the
initial lattice becomes a factor in the complexity function. However, as the ultimate goal is to compare our algorithm
to other methods, we shall consider it as a step of the larger process of batch computing of the CI family and stick to
classical evaluation, i.e., ignore, if possible, the size of the intermediate results.

To start with the complexity order, let m, k and [be the sizes of &, .4 and %i‘@, respectively. First, the cost of
Algorithm 4 is split into two additive factors. The first one reflects the trie construction effort (lines 6-11). The outer
loop is executed as many times as the size of /,, (bound by k). The inner loop iterates on the set of CIs having a given
item, and will thus be executed at most / times. Line 8 is carried out in constant time, as are lines 9 and 11, since
the corresponding trie operations take O(1) time. Recall that in the Intersections trie all nodes of the same label i are
inserted during the traversal of the list associated to i in ItemlIndex. Hence, the current item i can only be located at
the end of the successor list at each node of the trie (since all other successors are indexed by items preceding i in I,,).
Therefore, a lookup for a successor indexed by i, or the creation of such a successor, takes a constant time (one pointer
access) provided a list pointer is maintained to this end. In short, trie construction is in O(/k).

The second factor reflects the cost of creating the representation of new Cls and their integration into ItemIndex
(lines 12-20). The outer loop is executed once for each intersection, whereby for modified ones only support update
is carried out. For a new CI, the corresponding structure is created (constant time) and the node is inserted in all the

944 P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924—949

ClI lists of the belonging items. The constitution of the new itemset amounts to a root-bound traversal of the trie and
therefore has a O(k) cost. The insertion in each list in ItemIndex has a constant time cost. Consequently, the second
cost factor is also in O(lk) since there are at most / modified and new concepts.

The global cost of UPDATE-FAMILYCI is thus in O(/k). Based on this observation, a rough cost assessment for the
complete construction of the C/ family from scratch, i.e., by repeated transaction insertions, would put the result to
O(lkm) (as UPDATE-FAMILYCI is called m times). However, a finer estimation brings the cost to the less expensive
O(In) where n is the size of the incidence relation (n = |R]), i.e., the total number of Xs in the context.

To come to this figure, the global cost is again split into the previous pair of factors which are now summed up along
the set of object insertions. Thus, the cost of all m trie constructions is a function of the number of “hits” that will
trigger a call of UPDATE-INTERSECTION. Given a CI ¢ with an itemset /; and its corresponding concept ¢ in the context
of &, this number can be assessed as follows. Let ¢ = (I,’ , I;), then the number of times ¢ will be “hit” in the ItemIndex
is exactly the total number of Xs in the columns of the items from I;,) ;. AL ’|. Indeed, a concept is hit by exactly
those objects that share at least one item with I;, i.e., those having Xs in the columns of ;. Moreover, each o of this
category hits ¢ a number of times equal to [0’ N I;], hence the figure. Finally, the number) ;. AL ’| is clearly bounded
by n. Thus, the global cost of all trie constructions is in O(/n) instead of O(lkm).

To assess the second factor, recall that a modified CI is processed in constant time while the creation of a new one
has an O(k) cost. CIs are created once, so globally they cost O(lk). In contrast, a concept ¢ = (X, Y) is processed as
modified a number of times that nears its extent size: |X| — 1, i.e., once for each non-creating object. Thus, the total
time spent in modifying is in O(/m), hence the second cost factor is in O(l(k + m)). Consequently, the cost of the CI
family computation is in O(/n). To the best of our knowledge, this is the lowest complexity figure for a CI mining
algorithm, be it batch or incremental. Algorithm 2 is clearly of lesser interest since its complexity cannot be put below
O(lm) in the general case, hence an O(/mk) total complexity of the C/ mining. Indeed, whatever the data structures
used in its implementation, these cannot help examining each existing CI at least once. The complexity of the plain
intersection being evaluated to O(m), this yields O(Im) cost for Algorithm 2.

Taken as a CI listing procedure, UPDATE-FAMILYCI is polynomial in its input (with respect to complexity classes
described in [16]), provided the initial CIs are considered as data. Otherwise, it is clearly output polynomial since it
may take up to exponential time (in m) before the first new or modified CI is produced by the algorithm (because
exponentially many Cls from the initial family may be hit by an object o). In contrast, the global construction of all
ClIs cannot be polynomial under any assumption. However, it is clearly incremental polynomial since the processing
of a new transaction, i.e., UPDATE-FAMILYCI, takes polynomial time in the size of the current solution set, i.e., the
CI family. Following the unbound initial delay of UPDATE-FAMILYCI the global algorithm cannot be polynomial
delay.

As far as maintenance of the FClIs is concerned, a basic fact is that their number is not bound to any of the above
parameters. Actually, depending on the minimal support value, the size of the FCI family may vary between zero and
l. Hence, it is hard to assess the cost of Algorithm 4 with respect to the number of FCIs. However, as the experimental
results in the next section indicate, even in the cases of large discrepancies in the sizes of both families, i.e., CIs and
FCls, it may still be more advantageous to run our tool a small number of times with the entire set of closures than to
construct once from scratch the frequent ones with a batch miner.

8.2. Experimental results

We conducted a set of tests in which both variants of GALICIA, further called GALICIA-M (a direct implementation of
Algorithm 3) and GALICIA-P (Algorithm 4), have been compared to CLOSET [29]. The latter was chosen as a reference
method for two reasons: First, like the algorithms in the GALICIA family, it works with F'CIs. Then, both GALICIA-P and
CLOSET use trie-like data structures. Moreover, CLOSET was chosen since it is one of the most efficient algorithms for
FCls generation. To ensure fair comparison, our own implementation was preferred to the available executable version
of CLOSET. Thus, all three algorithms were implemented in Java™ and on top of the same low-level data structures,
whereas CLOSET was enhanced by adding an additional trie structure that supports the inclusion tests between confirmed
and candidate FClIs. The following experiments were carried out on a Windows 2000 platform (1.3 GHz AMD TB
processor with 1.2 GB RAM).

Our performance study involves two synthetic databases, T25.120.D100K and T25.110.D10K, randomly generated
by the tool described in [2]. T25.120.D100K has 100,000 transactions over 10,000 items, hence it represents a sparse

P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924 —949 945

Table 2
TDB size nb. CIs nb. FClIs supp. 50 nb. FClIs supp. 500
(A) Evolution of the numbers of CIs and FClIs for T25.110.D10K (suport of 50)
2000 281,209 544
4000 826,114 2275
6000 1,562,211 6977
8000 2,479,770 14,701
10,000 3,530,786 23,852
(B) Evolution of the numbers of CIs and FCIs for T25.120.D100K (supports of 50 and 500)
10,000 420,144 22,326 11
20,000 1,148,803 73,851 52
90,000 10,895,757 271,074 22,998
100,000 12,868,438 313,409 27,112
GALICIA vs CLOSET (Time on T25120D100K) GALICIA vs CLOSET Time per update (T25120D100K)
100000 —#— GALICIA-P Total Time 10000.0000
—A— GALICIA-M Total Time
—>¢— CLOSET Ti 50
10000 {—-CLOSET TIZ;:US’L‘:)p 500 1000.0000 1
8 2 100.0000 - «
g 1000 g '
8] x— X
o i 10.0000 . . : .
: : EPREE Yy
F = 1.0000 T % ~
10 —— GALICIA (global average)
0.1000 A ~M- GALICIA (average over 10K)
—A— CLOSET Total (supp 50)
1 S 0.0100 —X— CLOSET Total (supp 500)
10000 20000 30000 40000 50000 60000 70000 80000
Nb of transactions Number of transactions

Fig. 5. Left: Total CPU-time for GALICIA-P, GALICIA-M, and CLOSET for increasing prefixes of T25.120.D100K, with min-supp fixed to absolute
values (50 and 500). Right: CPU-time for the insertion of a single transaction with GALICIA-P, average over both the total set and the current batch
of 10,000 transactions compared to the CPU-time for running CLOSET on the entire transaction set.

data set. Transactions have 25 items on average, and the average size of the maximal potentially FIs is 20. There
are about 12.8M ClIs in the lattice of T25.120.D100K with some 0.3M of them being more frequent than 0.05%
(50 transactions) and 27.1K more frequent than 0.5% (500 transactions). T25.110.D10K, contains 10,000 transac-
tions over 1000 items with average values of 25 and 10 for transaction and maximal FI sizes, respectively. It is
therefore considerably smaller but denser than T25.120.D100K. It generates a total of some 3.5M CIs, whereby only
23.8K of them have a support larger than 0.5% (50 transactions). A dynamic picture of the evolution in the CI and
FCI figures is provided in Table 2 which follows a series of increasing subsets of the entire data sets. Technically
speaking, the data sets were cut into segments of equal length, 2000 transactions for T25.110.D10K and 10,000
for T25.120.D100K, and the respective numbers recorded at the end of each data set prefix, i.e., set of consecutive
segments.

CPU-time was measured for three types of tasks performed with every combination of algorithm and data set:
processing a single new transaction, processing an entire segment of new transactions, and processing the entire data
set. Moreover, CLOSET used support thresholds of 50 for both data sets plus an additional 500 value for T25.120.D100K.

Performances were compared under two viewpoints, each involving a specific set of metrics. The first one sees all
the algorithms as batch CI miners processing various prefixes of a data set. Hence it compares the total CPU-time for
every prefix. The graphs on the left-hand side of Figs. 5 (for T25.120.D100K) and 6 (for T25.110.D10K) indicate that
both GALICIA-P and GALICIA-M are dominated by CLOSET in this setting. More precisely, for reasonable values of the

946 P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924—949

GALICIA vs CLOSET (Time on T25110D10K) GALICIA vs CLOSET Timeper update (T25110D10K)
10000 100.000
_m- GALICIA-P total time —&— GALICIA (global average)
“A— GALICIA-M total time ~M- GALICIA (average over 2K)
1000 { =% CLOSET Time supp 50 10.000 - &~ CLOSET Total (supp 50)

[72] 1]

E E

o o

3]

& 100 A @ 1,000 -

£ c

: 2 /
= =

10 0.100 Q./ T T :
Q Q Q Q Q
\) \) \) Q
P ® & $ N
1 4 : . : T T 0.010
0 2000 4000 6000 8000 10000
Nb of transactions Number of transactions

Fig. 6. Left: Total CPU-time for both GALICIA-P and CLOSET for increasing subsets of T25.110.D10K, with min-supp fixed to an absolute value of 50.
Right: CPU-time for the insertion of a single transaction, average over both the total set and the current increment of 2000 transactions, compared
to the CPU-time for running CLOSET on the entire transaction set.

support threshold (comparable to an absolute value of 500 transactions), CLOSET proved to be up to 8 times faster on
T25.120.D100K and up to 20 times faster on T25.110.D10K. Only tiny support values that force almost all the CIs to
be retrieved tend to favor our method.

The second way of analyzing test results is oriented toward on-line processing. Indeed, it opposes the performance
of GALICIA-P (GALICIA-M was ignored since the differences were insignificant) as an incremental FCI miner, i.e.,
the cost of integrating a transaction/segment, to the cost of re-running CLOSET on the whole updated database. The
corresponding graphs are shown on the right-hand side of Figs. 5 (for T25.120.D100K) and 6 (for T25.110.D10K). Both
diagrams show important trends. First, while the total time taken by CLOSET might lay orders of magnitude lower than
that of GALICIA, it is also orders of magnitude higher than the update time for a single new transaction. For example,
when T25.120.D100K is considered, the processing of half the database, i.e., 50,000 transactions, may well take 1.5h
for GALICIA and only 20 min for CLOSET (see Fig. 5 on the left). In the same time, the insertion of a single transaction
in GALICIA “costs” just below a second (0.4 s, Fig. 5 on the right). Next, with the sparse data set, the average insertion
cost for GALICIA and the total mining cost for CLOSET are quasi-linear functions of the data set size.

Memory consumption in run-time was also considered for comparison purposes within this study. In a very general
manner, we have registered a surge in the storage space required by GALICIA. For example, its consumption in the case
of T25.120.D100K exceeded the available 1 GB! for roughly 80K transactions with GALICIA-P (85K for GALICIA-M).
The following table summarizes the total memory consumption of both algorithms on the various settings:

Data set GALICIA-M GALICIA-P CLOSET supp. 50 CLOSET supp. 500
T25.110.D10K 456 MB 368 MB 63 MB -
T25.120.D100K 1GB 1GB 823 MB 389 MB

(swap after 85K trans.) (swap after 80K trans.)

8.3. Discussion

The above facts provide some evidence to support the benefits of the incremental approach. In fact, running CLOSET
once with an augmented data set may cost up to 100 times more than the time spent for inserting a single transaction with
GALICIA. In other words, one may run, say, several hundreds of insertions with GALICIA while CLOSET is working on the
entire data set. Of course, this does not make our algorithm more efficient for the whole task as the total execution time

! This seems to be the maximally allowed RAM allocation for the Java VM on our platform.

P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924 —949 947

remains too high. However, with a dynamic database, the mining process is spread over the entire database life-cycle
(usually long) so that the main question becomes the establishment of a proper trade-off between the update costs and
the urgent need for intermediate results.

When taken as a whole, the experimental results suggest that the benefits of the parsimonious update strategy in
GALICIA-P, as opposed to the more straightforward one in GALICIA-M, are more substantial with sparse data sets than
with dense ones. An important factor behind those gains, although probably not the only one, is the difference in
complexity order for both algorithms. To spell it in figures, while GALICIA-M depends more heavily on the size of the
context seen as a matrix, i.e., on the number of items/transactions (see Section 8.1), GALICIA-P only depends on the
total number of items in the database. One may express the underlying dependency as follows: execution time gains
of GALICIA-P with respect to GALICIA-M inversely depend on the ratio between the number of examined elements and
the total size of the CI family. Clearly, the denser the data set, the larger the ratio. Therefore, we hypothesize that sparse
data sets will generally tend to favor the parsimonious update in GALICIA-P.

9. Conclusion

Incrementality is a major challenge in data mining. The proposed framework for incremental FCI mining is a first step
toward achieving that goal. The framework is based on FCA and lattices whose benefits for the association rule mining
problem have already been demonstrated. Two concrete mining algorithms have been devised within the framework,
one straightforward and the other one using a pruning mechanism, with an additional valuable feature which is the
low-cost response to readjustments in the support threshold.

Appropriate implementation of the basic algorithms have been discussed and their respective practical performances
were compared to those of a major batch algorithm. The results of a preliminary experimental study on two synthetic data
sets of contrasted profiles revealed some potential benefits but also important limitations in the incremental paradigm.
When taken as a whole, they seem to suggest that a straightforward incremental approach of the kind described here
will most probably prove inefficient in purely static databases when the target support threshold is known beforehand.
However, the approach will certainly be more appealing for database applications and data mining tasks where data
stores are very dynamic and the mining task is carried out in an exploratory manner. More precisely, incremental
mining procedures may be very helpful in environments where the user may want to frequently: (i) modify the support
threshold of Fls for a given TDB and/or (ii) process new transactions in dynamic databases and analyze their impact
on the mining result.

The scalability of our incremental approach is clearly obstructed by the necessity of maintaining the whole set of
CIs. Therefore, we are now focusing on parsimonious updating only of its frequent part. As a first step, the MAGALICE
algorithm [31] was devised. It helped identify the CI drift phenomenon and its high computational cost. Hence there is
still room for further research on parsimonious traversal of FCls. Another promising track seems to reside in the joint
use of GALICIA and an efficient FCI miner, e.g., CLOSET, ACLOSE or CHARM. The latter could extract the FClIs plus
their border from the known part of a data set while leaving the subsequent maintenance of the result to GALICIA. The
idea reflects to a different yet somewhat related aspect of our lattice-based framework, i.e., the incremental integration
of batches of transactions by lattice merge procedures (see [42]). The underlying framework offers a large choice of
operations reflecting updates in the data set such as the removal of transaction batches.

Clearly other data mining tasks could be translated into the FCA framework. For example, the computation of non-
redundant bases for association rules has already been researched from the perspective of the implication extraction
in FCA [33,36]. A discussion of the potential benefits of applying FCA to a wide range of data mining tasks may be
found in [40].

Acknowledgments

The research described here was partially funded by the Canadian NSERC (National Science and Engineering
Research Council) grants held by the authors as well as the team grant from FQRNT (Fonds de Recherche sur la Nature
et les Technologies) of Quebec. The authors would like to thank anonymous referees for their critical remarks that
helped greatly improve the paper.

948 P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924—949

References

[1] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A. Verkamo, Fast discovery of association rules, in: U. Fayyad, G. Piatetsky-Shapiro,
P. Smyth (Eds.), Advances in Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, CA, USA, 1996, pp. 307-328.
[2] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proceedings of the 20th International Conference on Very Large Data
Bases (VLDB’94), Santiago, Chile, 1994, pp. 487-499.
[3] N. Ayan, A. Tansel, M. Arkun, An efficient algorithm to update large itemsets with early pruning, in: Proceedings, KDD-99, ACM Press, San
Diego, CA, USA, 1999, pp. 287-291.
[4] M. Barbut, B. Monjardet, Ordre et Classification: Algebre et combinatoire, Hachette, Paris, 1970.
[5] Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, L. Lakhal, Mining frequent patterns with counting inference, SIGKDD Explorations 2 (2) (2000)
66-75.
[6] R. Bayardo, R. Agrawal, Mining the most interesting rules, in: Proceedings, KDD-99, ACM Press, San Diego, CA, USA, 1999, pp. 145-154.
[7] R.J. Bayardo, Efficiently mining long patterns from databases, in: Proceedings of the ACM SIGMOD 1998 Conference, 1998, pp. 85-93.
[8] G. Birkhoft, Lattice Theory, AMS Colloquium Publications, third ed., vol. XXV, AMS, Providence, RJ, 1967.
[9] E. Boros, V. Gurvich, L. Khachiyan, K. Makino, On the complexity of generating maximal frequent and minimal infrequent sets, in: Symposium
on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, vol. 2285, Springer, Berlin, 2002, pp. 133-141.
[10] D. Burdick, M. Calimlim, J. Gehrke, MAFIA: a maximal frequent itemset algorithm for transactional databases, in: Proceedings of the 17th
IEEE ICDE Conference (ICDE’01), Heidelberg, Germany, 2001, pp. 443-452.
[11] C. Carpineto, G. Romano, A lattice conceptual clustering system and its application to browsing retrieval, Mach. Learning 24 (2) (1996)
95-122.
[12] M. Chein, Algorithme de recherche des sous-matrices premieres d’une matrice, Bull. Math. Soc. Sci. R.S. Roumanie 13 (1969) 21-25.
[13] D.W. Cheung, J. Han, V. Ng, C. Wong, Maintenance of discovered association rules in large databases: an incremental updating technique, in:
Proceedings, ICDE-96, New Orleans, LA, USA, 1996, pp. 106—114.
[14] D.W. Cheung, S.D. Lee, B. Kao, A general incremental technique for maintaining discovered association rules, in: Proceedings, DASFAA-97,
Melbourne, Australia, 1997, pp. 185-194.
[15] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order, second ed., Cambridge University Press, Cambridge, 2002.
[16] T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph and related problems, SIAM J. Comput. 24 (6) (1995) 1278—1304.
[17] R. Feldman, Y. Aumann, A. Amir, H. Mannila, Efficient algorithms for discovering frequent sets in incremental databases, in: Proceedings of
ACM SIGMOD Workshop DMKD’97, Tucson, AZ, USA, Avon Books, NY, 1997, pp. 59-70.
[18] B. Ganter, Two basic algorithms in concept analysis, preprint 831, Technische Hochschule, Darmstadt, 1984.
[19] B. Ganter, R. Wille, Formal Concept Analysis, Mathematical Foundations, Springer, Berlin, 1999.
[20] R. Godin, R. Missaoui, An incremental concept formation approach for learning from databases, Theoret. Comput. Sci. 133 (1994) 378-419.
[21] R. Godin, R. Missaoui, H. Alaoui, Incremental concept formation algorithms based on Galois (concept) lattices, Comput. Intell. 11 (2) (1995)
246-267.
[22] J. Hipp, U. Guentzer, G. Nakhaeizadeh, Algorithms for association rule mining—a general survey and comparison, SIGKDD Explorations 2
(1) (2000) 58—-64.
[23] D.E. Knuth, The Art of Computer Programming, Sorting and Searching, vol. 3, second ed., Addison-Wesley, Reading, MA, 1998.
[24] H. Mannila, H. Toivonen, A. Verkamo, Efficient algorithms for discovering association rules, in: U. Fayyad, R. Uthurusamy (Eds.), Proceedings,
AAAI Workshop on Knowledge Discovery in Databases, AAAI Press, Seattle, WA, USA, 1994, pp. 181-192.
[25] E.M. Norris, An algorithm for computing the maximal rectangles in a binary relation, Rev.Roumaine Math. Pures Appl. 23 (2) (1978)
243-250.
[26] O. Ore, Galois connections, Trans. Amer. Math. Soc. 55 (1944) 493-513.
[27] N. Pasquier, Y. Bastide, T. Taouil, L. Lakhal, Efficient mining of association rules using closed itemset lattices, Inform. Systems 24 (1) (1999)
25-46.
[28] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent closed itemsets for association rules, in: Proceedings, ICDT-99, Jerusalem,
Israel, 1999, pp. 398—-416.
[29] J. Pei, J. Han, R. Mao, CLOSET: an efficient algorithm for mining frequent closed itemsets, in: Proceedings, ACM SIGMOD Workshop
DMKD’00, Dallas, TX, USA, 2000, pp. 21-30.
[30] V. Pudi, J.R. Haritsa, Quantifying the utility of the past in mining large databases, Inform. Systems 25 (5) (2000) 323-343.
[31] M.H. Rouane, K. Nehme, P. Valtchev, R. Godin, On-line maintenance of iceberg concept lattices, in: Contributions to the 12th ICCS, Shaker
Verlag, Huntsville, AL, 2004, pp. 14.
[32] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. Lakhal, Computing iceberg concept lattices with Titanic, Data Knowledge Eng. 42 (2) (2002)
189-222.
[33] R. Taouil, N. Pasquier, Y. Bastide, L. Lakhal, Mining bases for association rules using closed sets, in: Proceedings, ICDE-00, IEEE Computer
Society, San Diego, CA, USA, 2000, p. 307.
[34] S. Thomas, S. Bodagala, K. Alsabti, S. Ranka, An efficient algorithm for the incremental updation of association rules in large databases, in:
Proceedings, KDD-97, New Port Beach, CA, USA, 1997, pp. 263-266.
[35] P. Valtchev, An algorithm for minimal insertion in a type lattice, Comput. Intell. 15 (1) (1999) 63-78.
[36] P. Valtchev, V. Duquenne, Implication-based methods for the merge of factor concept lattices, 32pp, submitted.
[37] P. Valtchev, M.R. Hacene, R. Missaoui, A generic scheme for the design of efficient on-line algorithms for lattices, in: A. de Moor, W. Lex,
B. Ganter (Eds.), Proceedings of the 11th International Conference on Conceptual Structures (ICCS’03), Lecture Notes in Computer Science,
vol. 2746, Springer, Berlin, DE, 2003, pp. 282-295.

P. Valtchev et al./Discrete Applied Mathematics 156 (2008) 924 —949 949

[38] P. Valtchev, R. Missaoui, Building concept (Galois) lattices from parts: generalizing the incremental methods, in: H. Delugach, G. Stumme
(Eds.), Proceedings of the ICCS’01, Lecture Notes in Computer Science, vol. 2120, Springer, Berlin, 2001, pp. 290-303.

[39] P. Valtchev, R. Missaoui, R. Godin, A framework for incremental generation of frequent closed itemsets, in: Proceedings of the First International
Workshop on Discrete Mathematics and Data Mining, Washington, DC, USA, 2002.

[40] P. Valtchev, R. Missaoui, R. Godin, Formal concept analysis for knowledge discovery and data mining: the new challenges, in: P. Eklund (Ed.),
Concept Lattices: Proceedings of the Second International Conference on Formal Concept Analysis (FCA’04), Lecture Notes in Computer
Science, vol. 2961, Springer, Berlin, 2004, pp. 352-371.

[41] P. Valtchev, R. Missaoui, R. Godin, M. Meridji, Generating frequent itemsets incrementally: two novel approaches based on Galois lattice
theory, J. Experimental Theoret. Artificial Intell. 14 (2-3) (2002) 115-142.

[42] P. Valtchev, R. Missaoui, P. Lebrun, A partition-based approach towards building Galois (concept) lattices, Discrete Math. 256 (3) (2002)
801-829.

[43] J. Wang, J. Han, J. Pei, CLOSET+: searching for the best strategies for mining frequent closed itemsets, in: Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’03), Washington, DC, USA, 2003, pp. 236-245.

[44] J. Wang, G. Karypis, Bamboo: accelerating closed itemset mining by deeply pushin the length-decreasing support constraint, in: International
SIAM Conference on Data Mining, 2004.

[45] R. Wille, Restructuring lattice theory: an approach based on hierarchies of concepts, in: I. Rival (Ed.), Ordered Sets, Reidel, Dordrecht, Boston,
1982, pp. 445-470.

[46] M. Zaki, Generating non-redundant association rules, in: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’00), Boston, MA, USA, 2000, pp. 34—43.

[47] M. Zaki, C.-J. Hsiao, CHARM: an efficiently algorithm for closed itemset mining, in: R. Grossman, J. Han, V. Kumar, H. Mannila, R. Motwani
(Eds.), Proceedings of the Second SIAM International Conference on Data Mining (ICDM’02), 2002.

	A framework for incremental generation of closed itemsets
	Introduction
	Association rule mining problem
	Association rule generation
	Frequent closed itemsets
	Incremental generation
	Mining =FCI within a dynamic database

	Background on Galois/concept lattices
	The basics of ordered structures
	Fundamental results about Galois/concept lattices
	Incremental lattice update

	Lattice-based framework for incremental itemset mining
	Definitions
	Bridging the gap between concepts and =CIs
	Extremal status of closures

	Incremental generation of FCIs with GALICIA
	Straightforward incremental method
	Principles of the approach
	Algorithmic design
	Limitations of the exhaustive traversal

	Narrowing the set of examined =CIs
	Parsimonious =CI mining

	Implementing the parsimonious incremental method
	Principles
	Algorithmic design
	Example
	Soundness results

	Related work
	Concept computation
	FI mining
	Batch FCI mining
	Incremental FI mining
	Incremental FCI mining

	Performance results of the incremental methods
	Complexity analysis
	Experimental results
	Discussion

	Conclusion
	Acknowledgments
	References

