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Abstract

Consider observations (representing lifelengths) taken on a random field indexed by lattice points. Our
purpose is to estimate the hazard rate r(x), which is the rate of failure at time x for the survivors up to
time x. We estimate r(x) by the nonparametric estimator constructed in terms of a kernel-type estimator for
f (x) and the natural estimator for F̄ (x). Under some general mixing assumptions, the limiting distribution
of the estimator at multiple points is shown to be multivariate normal. The result is useful in establishing
confidence bands for r(x) with x in an interval.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Denote the integer lattice points in the N-dimensional Euclidean space by ZN, N �1. Assume
that Xi is a strictly stationary random field indexed by ZN and defined on some probability space
(�, F, P ). Suppose that Xi, i ∈ ZN , takes values in Rd and has distribution function F and
probability density function f with respect to Lebesgue measure. Our purpose is to estimate the
hazard rate r(x), defined as

r(x) = f (x)

F̄ (x)
, F̄ (x) = P(X > x), F̄ (x) > 0.

The hazard rate is the rate of failure at time x for the survivors up to time x. The estimation of
r(x) in the case of independently and identically observed random variables has been studied
extensively. For background information on this, see for example, Ahmad [1], Antoniadis et al.
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[2], Basu [3], Hollander and Proschan [8], Puri and Rubin [13], Rice and Rosenblatt [14], Watson
and Leadbetter [19,20] and the references therein. In the classical theory of competing risks, it is
assumed that competing risks are independent and that death does not result from simultaneous
causes. But these assumptions are not always true. For example, lifelengths of animals in certain
locations might be dependent since the animals compete for the same food sources. Landberg et al.
[10] have studied the estimation of dependent lifelengths. Roussas [16] investigated the estimation
of the hazard rate under various dependence conditions. In the present paper, we assume that the
underlying r.v.’s come from a strictly stationary random field satisfying some weak dependence
conditions.

A point i in ZN will be referred to as a site and written as i = 〈i1, i2, . . . , iN 〉. Let S and
S ′ be two sets of sites. The Borel fields B(S) = B(Xi, i ∈ S) and B(S ′) = B(Xi, i ∈ S ′) are
the �-fields generated by the random variables Xi with i in, respectively, S and S ′. Define the
distance between S and S ′ as follows: d̂(S, S ′) = inf(d̂(i, j) : i ∈ S, j ∈ S ′), where d̂(i, j) is the
Euclidean distance between i and j. We assume that Xi, i ∈ ZN , satisfies the following mixing
condition: there exists a function �(t) ↓ 0 as t → ∞, such that whenever S, S ′ ⊂ ZN,

�(B(S), B(S ′)) = sup{|P(AB) − P(A)P (B)|, A ∈ B(S), B ∈ B(S ′)}
� f̂ (Card(S), Card(S ′))�(d̂(S, S ′)), (1.1)

where Card(S) denote the cardinality of S and f̂ is a symmetric positive function nondecreasing
in each variable. We assume that f̂ satisfies

f̂ (n, m)� min(m, n) (1.2)

or

f̂ (n, m)�C(n + m + 1)� (1.3)

for some � with � > 1 and some C > 0. Conditions (1.2) and (1.3) are widely used in literature.
Note that condition (1.3) is more general than (1.2). Guyon [6] showed that the class of linear
processes Xi = ∑

j∈ZN gjZi−j, where Zj’s are independent random variables, satisfies mixing

conditions (1.1) and (1.3) under general conditions. If f̂ ≡ 1, then Xi is called strongly mixing,
for which the limit theorem is widely investigated. For detailed information on strongly mixing,
the readers are referred to Bradley [4]. Let In be a rectangular region defined by In = {i :
i ∈ ZN, 1� ik �nk, k = 1, . . . , N}. Assume that we observe Xi on In. We write n → ∞ if
min(n1, . . . , nN) → ∞ . Let n̂ = n1 . . . nN . In the proof, the letter C denotes a generic constant
whose values are unimportant and may vary from line to line.

Assume that the density f (x) and hazard rate r(x) have no parametric forms. We propose a
nonparametric estimator rn(x) given by

rn(x) = fn(x)

F̄n(x)
,

where F̄n(x) is the proportion of the X′
is exceeding x and fn(x) is the nonparametric kernel

density estimator given by

fn(x) = (n̂bd
n)−1

nk∑
ik=1

k=1...N

K((x − Xi)/bn), (1.4)
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where bn is a sequence of bandwidths tending to zero as n → ∞. The nonparametric estimator
rn(x) is quite simple and has been discussed in literature under different situations. For instance,
Roussas [16] investigated both pointwise convergence and uniform convergence of the estimator
in nonspatial case.

Our paper is organized as follows: in Section 2, we present some preliminaries. An application
example is given in Section 3. We then establish the basic asymptotic properties of Fn(x) in
Section 4. The results of Section 4 are also of independent interest. In Section 5, we study the
covariance of kernel density estimate at distinct points. Finally, in Section 6, the joint asymptotic
normality of rn(x) at multiple points is established. Note that, to construct confidence bands for
r(x) with x in an interval, the joint asymptotic normality at multiple points is needed.

2. Preliminary results

In this section, we gather the assumptions under which results in the paper hold true and then
present some preliminary results.

Assumption 2.1. Suppose for any x, y ∈ Rd and some constant � > 0,

|f (x) − f (y)|��‖x − y‖.

Remark 2.1. Note that Assumption 2.1 implies that f (x) is bounded.

Assumption 2.2. (i) K(x) is a bounded probability density function on Rd and∫
Rd

‖x‖K(x) dx < ∞.

(ii) Assume K has an integrable radial majorant, that is, Q(x) ≡ sup{K(y) : ‖y‖ > ‖x‖} is
integrable.

Assumption 2.3. The joint probability density fi,j(x, y) of Xi and Xj exists and satisfies |fi,j
(x, y) −f (x)f (y)|�C for some C and for all x, y and i, j.

Assumption 2.4. For some a such that 0 < a < 1
2 ,
∑∞

i=1 iN−1�(i)a < ∞.

Remark 2.2. Suppose �(i) = i−�, then Assumption 2.4 is satisfied if 1
2 > a > N

� .

Assumption 2.5. For some 0 < r < 1,
(i) The bandwidth bn tends to zero in a manner such that n̂b

d(1+(1−r)2N)
n → ∞.

(ii) There exist three sequences of positive integers with q = qn → ∞, sn → ∞, such that

qn = o((n̂bd(1+(1−r)2N)
n )1/(2N)),

snqn = o((n̂bd(1+(1−r)2N)
n )1/(2N)),

pn = p = (n̂bd
n)1/(2N)/sn,

n̂�(q) → 0.

(Aii) Assume the conditions in (ii) are satisfied except with the last condition replaced by
(n̂�+1/p̂)�(q) → 0 where p̂ = pN

n .
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(iii) bn tends to zero in such a manner that b
−d(1−r)
n

∑∞
i=q iN−1�(i)1−r → 0.

(iv) The bandwidth bn tends to zero in a manner such that n̂bd+2
n → 0.

The following example demonstrates that Assumption 2.5 is easily satisfied. In the example, we
consider the case where �(i) decreases to zero at an exponential rate. It is generally used in mixing
conditions.

Example 2.1. Let bn = n̂−a with dN(1 − r) < 1
2a

− d
2 < 1; q = (̂nb

d(1+(1−r)2N)
n )1/2N n̂−b

with b > 1
2N

− ad
2N

− ad(1 − r); sn = n̂c with 0 < c < min{ 1−ad
2N

, b}. Suppose �(x) = O(e−	x)

for some 	 > 0 and

(̂nbd(1+(1−r)2N)
n )1/2N/(̂nb log n̂) → ∞. (2.1)

Then Assumption 2.5 (i)–(iv) holds.

Proof. Note that 1−ad(1+(1−r)2N) > 0, hence n̂b
d(1+(1−r)2N)
n = n̂1−ad(1+(1−r)2N) → ∞;

the convergence n̂bd+2
n = n̂1−a(d+2) → 0 follows from 1 − a(d + 2) < 0. Since b > 0 from

the fact dN(1 − r) < 1
2a

− d
2 , it follows that q

(̂nb
d(1+(1−r)2N)
n )1/2N

= n̂−b → 0 . By the choice of

c, snqn

(̂nb
d(1+(1−r)2N)
n )1/2N

= n̂c−b → 0 and p = (̂nbd
n)1/(2N)/sn = n̂(1−ad)/2N−c → ∞. By Eq. (2.1)

and the choice of q, for arbitrary C > 0 and sufficiently large n̂,

q > C log n̂. (2.2)

Hence, n̂�(q)�C n̂e−	q �C n̂ exp{−	C log n̂} = Cn̂1−	C → 0 by choosing C > 1
	 . For 
 < 	,

∞∑
i=q

iN−1�(i)1−r � C

∞∑
i=q

iN−1e−	i(1−r)

� C

∞∑
i=q

e−
i(1−r)

� Ce−
q(1−r).

By Eq. (2.2), it follows that e−
q(1−r) < n̂−
C(1−r) for sufficiently large n̂. Also for arbitrary
C > 0 and sufficiently large n̂, bd

n = n̂−ad �Cn̂−1. Therefore,

b−d(1−r)
n

∞∑
i=q

iN−1�(i)1−r �Cn̂1−r n̂−
C(1−r) → 0

by choosing C > 1

 . �

Define

�2 := f (x)

∫
Rd

K2(u) du.

Lemma 2.1. Suppose that Assumptions 2.2–2.5 (i)–(iii) hold and Xn satisfies (1.1) and (1.2).
Then

(n̂bd
n)1/2(fn(x) − E[fn(x)]) → N(0, �2) in distribution as n → ∞.
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Lemma 2.2. Suppose that Assumptions 2.2–2.5 (i), (Aii), (iii) hold and Xn satisfies (1.1) and
(1.3). Then

(n̂bd
n)1/2(fn(x) − E[fn(x)]) → N(0, �2) in distribution as n → ∞.

The proofs of the two lemmas above are presented in Tran [18].

3. Convergence result of F̄n(x)

Recall that for each x in Rd ,

F̄ (x) = P(X > x), F̄n(x) = n̂−1
nk∑

ik=1
k=1...N

Yi(x),

where Yi(x) = 1 if Xi > x and Yi(x) = 0 otherwise.

Lemma 3.1. (1) Suppose (1.1) holds. Let Lr (F) denote the class of F-measurable r.v.’s X satis-
fying ‖X‖r = (E|X|r )1/r < ∞. Let X ∈ Lr (B(S)) and Y ∈ Ls(B(S ′)). Suppose 1�r, s, h < ∞
and r−1 + s−1 + h−1 = 1. Then

|EXY − EXEY |�C‖X‖r‖Y‖s{f̂ (Card(S), Card(S ′))�(d̂(S, S ′))}1/h. (3.1)

(2) For r.v.’s bounded with probability 1, the right-hand side of (3.1) can be replaced by

Cf̂ (Card(S), Card(S ′))�(d̂(S, S ′)).

For more information on this lemma, see Ibragimov and Linnik [9] or Deo [5].

Lemma 3.2. Suppose that Assumption 2.4 holds and Xn satisfies (1.1) and (1.3). Then (n̂bd
n)1/2

(F̄n(x) − F̄ (x)) → 0 in probability as n → ∞.

Proof. Clearly, EYi(x) = P(Xi > x) = F̄ (x) by definition of Yi(x) and stationarity of Xi.
Therefore,

F̄n(x) − F̄ (x) = n̂−1
nk∑

ik=1
k=1...N

(Yi(x) − EYi(x)).

For any given � > 0,

P((n̂bd
n)1/2|F̄n(x) − F̄ (x)| > �)

= P((n̂−1bd
n)1/2|

nk∑
ik=1

k=1...N

(Yi(x) − EYi(x))| > �)
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� bd
n

n̂�2 Var

⎛⎜⎜⎝ nk∑
ik=1

k=1...N

Yi(x)

⎞⎟⎟⎠

� bd
n

n̂�2

⎛⎜⎜⎜⎜⎜⎝
nk∑

ik=1
k=1...N

Var(Yi(x)) +
nk∑

ik=1
k=1...N

nk∑
jk=1

k=1...N
ik =jk for some k

|Cov(Yi(x), Yj(x))|

⎞⎟⎟⎟⎟⎟⎠ .

Set

Kn =
nk∑

ik=1
k=1...N

Var(Yi(x))

and

Rn =
nk∑

ik=1
k=1...N

nk∑
jk=1

k=1...N
ik =jk for some k

|Cov(Yi(x), Yj(x))|.

Note that Var(Yi(x))�EY 2
i (x) = P(Xi > x) = F̄ (x). Thus,

Kn � n̂F̄ (x)

and subsequently,

bd
nKn

n̂�2 � bd
nF̄ (x)

�2 → 0 as n → ∞. (3.2)

Since Yi equals either 0 or 1, by Lemma 3.1 for bounded random variables,

|Cov(Yi(x), Yj(x))|�Cf̂ (1, 1)�(d̂(i, j))�C�(‖i − j‖).

A simple computation shows that

Rn � C

nk∑
ik=1

k=1...N

nk∑
jk=1

k=1...N
ik =jk for some k

�(‖i − j‖)

� C n̂
nk∑

ik=1
k=1...N

�(‖i‖)
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� C n̂
∞∑

j=1

∑
j �‖i‖<j+1

�(‖i‖)

� C n̂
∞∑

j=1

�(j)
∑

j �‖i‖<j+1

1

� C n̂
∞∑

j=1

jN−1�(j). (3.3)

Also since �(t) ↓ 0 as t → ∞, there exists some i0 such that for i > i0, 0��(i)�1, which
implies that �(i)��(i)a . Recall that 0 < a < 1

2 . Hence
∞∑
i=1

iN−1�(i) =
i0∑

i=1

iN−1�(i) +
∞∑

i=i0+1

iN−1�(i)

�
i0∑

i=1

iN−1�(i) +
∞∑

i=i0+1

iN−1�(i)a

< ∞. (3.4)

The last inequality follows from Assumption 2.4. By (3.3) and (3.4),

Rn �Cn̂.

Hence,

bd
nRn

n̂�2 � C bd
n

�2 → 0 as n → ∞. (3.5)

By (3.2) and (3.5), (n̂bd
n)1/2(F̄n(x) − F̄ (x)) → 0 in probability. �

4. Covariance of density estimates at multiple points

In this section, we establish that for any two distinct points xr and xs ,

n̂bd
n Cov(fn(xr), fn(xs)) → 0.

We make the following assumption:

Assumption 4.1. Suppose that

lim‖x‖→∞ K(x) = 0.

Define Kri = 1
bd

n
K(

xr−Xi
bn

) .

Lemma 4.1. Suppose that Assumptions 2.1, 2.2 and 4.1 hold. Then,

n̂−1bd
n

nk∑
ik=1

k=1...N

Cov(Kri, Ksi) → 0.
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Proof. Now for xr and xs in Rd with xr = xs .

bd
n E[KriKsi] = 1

bd
n

∫
K

(
xr − u

bn

)
K

(
xs − u

bn

)
f (u) du

= 1

bd
n

∫
K

(
u

bn

)
K

(
xs − xr + u

bn

)
f (xr − u) du

:= 1

bd
n

∫
S du.

Note,

1

bd
n

∫
‖u‖��

S du�M

∫
K(u)K

(
xs − xr

bn
+ u

)
du → 0. (4.1)

The inequality follows from uniform boundedness of f (x) by Remark 2.1 after Assumption 2.1.
The integrand in (4.1) converges to 0 by Assumption 4.1 and is bounded by a constant multiple of
K(u) by the uniform boundedness of K . Therefore Eq. (4.1) follows from Lebesgue Dominated
Convergence Theorem. We know that

1

bd
n

∫
‖u‖��

S du

�C
1

bd
n

∫
‖u‖��

K

(
u

bn

)
du

�C

∫
‖u‖��

‖ u ‖
bd

n
K

(
u

bn

)
du

�C

∫ ‖ u ‖
bd

n
K

(
u

bn

)
du

�C

∫
bn ‖ u ‖ K(u) du

�Cbn → 0. (4.2)

The first inequality follows from the uniform boundedness of K(x) and f (x). The last inequality
follows from Assumption 2.2 (i). By (4.1) and (4.2),

bd
n E[KriKsi] → 0.

Similarly,

E[Kri] → f (xr)

∫
Rd

K(u) du.

Hence,

bd
n Cov(Kri, Ksi) → 0.

Therefore,

n̂−1bd
n

nk∑
ik=1

k=1...N

Cov(Kri, Ksi) = bd
n Cov(Kr1, Ks1) → 0. �
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Lemma 4.2. Suppose that Assumptions 2.2–2.4 hold and Xn satisfies (1.1) and (1.3). Then

S := n̂−1bd
n

nk∑
ik=1

k=1...N

nk∑
jk=1

k=1...N
ik =jk for some k

|Cov(Kri, Ksj)| → 0.

Let cn = b
−d(1−)/�
n where � = −N −ε+(1−)Na−1 with  and ε being small positive numbers

such that a−1−(N +ε)(N(1−))−1 > 1. This can be done since 0 < a < 1
2 . Thus, � > N(1−).

Note cn → ∞ as n → ∞. Define

S1 = {i, j ∈ In|0 < d̂(i, j)�cn},
S2 = {i, j ∈ In|d̂(i, j) > cn}.

We can decompose the sum S in the following way:

S = n̂−1bd
n

∑
i,j∈S1

|Cov(Kri, Ksj)| + n̂−1bd
n

∑
i,j∈S2

|Cov(Kri, Ksj)| := J1 + J2. (4.3)

Since

bd
n|Cov(Kri, Ksj)|�

∫ ∫
K

(
xr − u

bn

)
K

(
xs − �

bn

)
1

bd
n
|f (u, �) − f (u)f (�)| du d�,

it follows that

J1 � Cn̂−1bd
n

{∫
K(u) du

}2 ∑
i,j∈S1

1

� Cbd
ncN

n �Cb
d(1−N(1−)/�)
n → 0. (4.4)

The convergence follows from the fact that � > N(1 − ).
Now let � = 2(1 − )/. Note  = 2/(2 + �) and �/(2 + �) = 1 − . To prove J2 → 0, we

apply Lemma 3.1 with r = s = 2 + � and h = (2 + �)/�.

|Cov(Kri, Ksj)|�C{EK2+�
ri }1/(2+�){EK2+�

sj }1/(2+�){f̂ (1, 1)�(d̂(i, j))}1−.

Note that, for any x ∈ c(f ),{∫ [
1

bd
n
K

(
x − u

bn

)]2+�

f (u) du

}1/(2+�)

�b
−d(1+�)/(2+�)
n

{∫
1

bd
n

[
K

(
x − u

bn

)]2+�

f (u) du

}1/(2+�)

�Cb
−d(1+�)/(2+�)
n .
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Hence,

J2 � Cn̂−1bd
nb

−2d(1+�)/(2+�)
n

∑
i,j∈S2

�(‖i − j‖)1−

� Cn̂−1b
−d(1−)
n

∑
i,j∈S2

�(‖i − j‖)1−

� Cb
−d(1−)
n

∑
‖i‖>cn

�(‖i‖)1−. (4.5)

By Assumption 2.4, iN−1�(i)a = o(1/i) or �(i) = o(i−N/a) as i → ∞. Since � is a nonin-
creasing function, we have �(x) = o(x−N/a) as x → ∞. Therefore,

‖i‖��(‖i‖)1−

= ‖i‖−N−ε+(1−)Na−1
�(‖i‖)1−

= ‖i‖−N−ε‖i‖(1−)Na−1
�(‖i‖)1−.

The last equality implies that

‖i‖��(‖i‖)1− = o(‖i‖−N−ε).

Turning to (4.5), we have

J2 � Cb
−d(1−)
n

∑
‖i‖>cn

�(‖i‖)1−

� Cb
−d(1−)
n c−�

n

∑
‖i‖>cn

‖i‖��(‖i‖)1−

� C
∑

‖i‖>cn

‖i‖−N−ε

� C

∞∑
j=cn

∑
j �‖i‖<j+1

‖i‖−N−ε

� C

∞∑
j=cn

j−N−εjN−1 → 0 as cn → ∞. (4.6)

The convergence is from the following:

C

∞∑
j=1

j−N−εjN−1 = C

∞∑
j=1

j−1−ε < ∞.

By (4.4) and (4.6), lemma is established. �

Lemma 4.3. Suppose that Assumptions 2.1–2.4 and 4.1 hold and Xn satisfies (1.1) and (1.3).
Then

n̂bd
n Cov(fn(xr), fn(xs)) → 0.
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Proof. By Lemmas 4.1 and 4.2,

n̂bd
n Cov(fn(xr), fn(xs))

= n̂−1bd
n

nk∑
ik=1

k=1...N

Cov(Kri, Ksi) + n̂−1bd
n

nk∑
ik=1

k=1...N

nk∑
jk=1

k=1...N
ik =jk for some k

Cov(Kri, Ksj) → 0. �

5. Asymptotic normality at multiple points

In this section, we first want to establish that for any points x1, . . . , xt of f (x), the vector
(fn(x1), . . . , fn(xt )) is asymptotically normal after proper normalization. By the Cramer-Wold
device, it suffices to prove the asymptotic normality of �n = ∑t

r=1 cr�nr for arbitrary but fixed
real constants c1, . . . , ct , where

�nr = (n̂bd
n)1/2(fn(xr) − Efn(xr)).

Note that,

Var(�n) =
t∑

r=1

c2
r Var(�nr ) + 2

∑
1� r<s � t

crcs Cov(�nr , �ns).

Following the proof of Lemmas 4.1 and 4.2, we have

Var(�nr ) = n̂bd
n Var(fn(xr)) → f (xr)

∫
K2(u) du := �2

r ,

Also

Cov(�nr , �ns) = n̂bd
n Cov(fn(xr), fn(xs)) → 0,

where the convergence follows from Lemma 4.3. Thus,

Var(�n) →
t∑

r=1

c2
r �

2
r .

Set

Zri = b
d/2
n (Kri − EKri), Snr =

nk∑
ik=1

k=1...N

Zri,

Sn =
t∑

r=1

crSnr , Snr = n̂1/2�nr , Sn = n̂1/2�n.
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Next we set Snr into large and small blocks. Define

U(1, n, xr , j) :=
jk(p+q)+p∑

ik=jk(p+q)+1
k=1,... ,N

Zri,

U(2, n, xr , j) :=
jk(p+q)+p∑

ik=jk(p+q)+1
k=1,... ,N−1

(jN+1)(p+q)∑
iN=jN (p+q)+p+1

Zri,

U(3, n, xr , j) :=
jk(p+q)+p∑

ik=jk(p+q)+1
k=1,... ,N−2

(jN−1+1)(p+q)∑
iN−1=jN−1(p+q)+p+1

jN (p+q)+p∑
iN=jN (p+q)+1

Zri,

U(4, n, xr , j) :=
jk(p+q)+p∑

ik=jk(p+q)+1
k=1,... ,N−2

(jN−1+1)(p+q)∑
iN−1=jN−1(p+q)+p+1

(jN+1)(p+q)∑
iN=jN (p+q)+p+1

Zri,

and so on. Note that

U(2N − 1, n, xr , j) :=
(jk+1)(p+q)∑

ik=jk(p+q)+p+1
k=1,... ,N−1

jN (p+q)+p∑
iN=jN (p+q)+1

Zri

and

U(2N, n, xr , j) :=
(jk+1)(p+q)∑

ik=jk(p+q)+p+1
k=1,... ,N

Zri.

For each integer 1� i�2N , denote

T (n, xr , i) :=
rk−1∑
jk=0

k=1,... ,N

U(i, n, xr , j).

Clearly Snr = ∑2N

i=1 T (n, xr , i). Define

T (n, x, i) :=
t∑

r=1

crT (n, xr , i).
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Thus, Sn = ∑2N

i=1 T (n, x, i). By Eq. (3.9) in Tran [18], we have for r = 1, . . . , t and 2� i�2N ,

n̂−1ET 2(n, xr , i) −→ 0 . (5.1)

By Minkowski inequality, it follows that

‖T (n, x, i)‖2 := ‖
t∑

r=1

crT (n, xr , i)‖2,

�
t∑

r=1

|cr |‖T (n, xr , i)‖2. (5.2)

Multiply n̂−1/2 on both sides of (5.2), we have

√
n̂−1ET 2(n, x, i)�

t∑
r=1

|cr |
√

n̂−1ET 2(n, xr , i). (5.3)

By (5.1) and (5.3), for each 2� i�2N,

n̂−1ET 2(n, x, i) −→ 0. (5.4)

Define

Q2 ≡
2N∑
i=2

T (n, x, i).

Then by the same argument, we have

n̂−1EQ2
2 → 0.

Now,

T (n, x, 1) = Sn − Q2 =
t∑

r=1

rk−1∑
jk=0

k=1,... ,N

crU(1, n, xr , j).

Let U(1, n, r, j), with r = 1, . . . , t and jk = 0, . . . , rk − 1, where k = 1, . . . , N , be indepen-
dent random variables having the same distribution as cr n̂−1/2U(1, n, xr , j). Set V (1, n, r, j) =
U(1, n, r, j)/tn where

t2
n :=

t∑
r=1

rk−1∑
jk=0

k=1,... ,N

Var(U(1, n, r, j))

=
t∑

r=1

c2
r

rk−1∑
jk=0

k=1,... ,N

Var(̂n−1/2U(1, n, xr , j))

→
t∑

r=1

c2
r �

2
r .
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Thus

EV (1, n, r, j) = 0 and
t∑

r=1

rk−1∑
jk=0

k=1,... ,N

Var(V (1, n, r, j)) = 1.

By Lindeberg condition,

t∑
r=1

rk−1∑
jk=0

k=1,... ,N

V (1, n, r, j) → N(0, 1) (5.5)

if and only if g(ε) → 0 where

g(ε) :=
t∑

r=1

rk−1∑
jk=0

k=1,... ,N

EV 2(1, n, r, j)I (|V (1, n, r, j)| > ε).

Observe that

|U(1, n, xr , j)|�
jk(p+q)+p∑

ik=jk(p+q)+1
k=1,... ,N

|Zri|, |Zri| = b
d/2
n |Kri − EKri|� C

b
d/2
n

. (5.6)

By (5.6), we have

|U(1, n, xr , j)|� CpN

b
d/2
n

.

Hence,

g(ε) � Cp2N

ε2n̂bd
n t2

n

t∑
r=1

rk−1∑
jk=0

k=1,... ,N

Var(V (1, n, r, j))

= Cp2N

ε2n̂bd
n t2

n
→ 0,

where the convergence follows from the choice of p and the fact sn → ∞ in Assumption 2.5.
The convergence of (5.5) implies that

n̂−1/2T (n, x, 1) =
t∑

r=1

rk−1∑
jk=0

k=1,... ,N

cr n̂−1/2U(1, n, xr , j) → N

(
0,

t∑
r=1

c2
r �

2
r

)
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provided the following is true:∣∣∣∣∣∣∣∣E exp

⎧⎪⎪⎨⎪⎪⎩it

t∑
r=1

rk−1∑
jk=0

k=1,...,N

cr n̂−1/2U(1, n, xr , j)

⎫⎪⎪⎬⎪⎪⎭−E exp

⎧⎪⎪⎨⎪⎪⎩it

t∑
r=1

rk−1∑
jk=0

k=1,...,N

U(1, n, r, j)

⎫⎪⎪⎬⎪⎪⎭
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣E
rk−1∏
jk=0

k=1,... ,N

exp

{
it

t∑
r=1

cr n̂−1/2U(1, n, xr , j)

}

−
rk−1∏
jk=0

k=1,... ,N

E exp

{
it

t∑
r=1

cr n̂−1/2U(1, n, xr , j)

}∣∣∣∣∣∣∣∣
→ 0. (5.7)

Let

I (1, n, j) := {i : jk(p + q) + 1� ik �jk(p + q) + p, k = 1, . . . , N} .

Note that
∑t

r=1 cr n̂−1/2U(1, n, xr , j) is measurable with respect to {Xi, i ∈ I (1, n, j)}. The
distance between two distinct sets I (1, n, j) and I (1, n, j′) is at least q and I (1, n, j) contains pN

sites. Following the proof of Lemma 5.3 and (5.18) in Hallin et al. [7], we obtain that under (1.2),
(5.7) is bounded by n̂�(q), which is convergent to 0 by (ii) in Assumption (2.5).

Define

� = diag(�2
1, . . . , �2

t ).

By Lemmas 2.1 and 4.3, the above result in the section is summarized in the following.

Theorem 5.1. Suppose Assumptions 2.1–2.5 (i)–(iii) and Assumption 4.1 hold and Xn satisfies
(1.1) and (1.2). Then, for distinct points x1, x2, . . . , xt ,

(n̂bd
n)1/2(fn(x1) − Efn(x1), . . . , fn(xt ) − Efn(xt ))

′ → N(0, �) as n → ∞.

Theorem 5.2. Suppose Assumptions 2.1–2.5 (i)–(iv) and Assumption 4.1 hold and Xn satisfies
(1.1) and (1.2). Then for distinct points x1, x2, . . . , xt ,

(n̂bd
n)1/2(fn(x1) − f (x1), . . . , fn(xt ) − f (xt ))

′ → N(0, �) as n → ∞.

Proof. Let

	nr = (n̂bd
n)1/2(fn(xr) − f (xr)),

	n =
t∑

r=1

cr	nr .

Employing Assumptions 2.1, (i) of Assumption 2.2 and (iv) of Assumption 2.5, it follows that

�n − 	n → 0. (5.8)

By Theorem 5.1 and (5.8), the Cramer–Wold device yields the desired result. �
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Define

� = diag

(
�2

1

F̄ 2(x1)
, . . . ,

�2
t

F̄ 2(xt )

)
.

Theorem 5.3. Suppose Assumptions 2.1–2.5 (i)–(iv) and Assumption 4.1 hold. In addition, sup-
pose (1.1) and (1.2) hold. Then for distinct points x1, x2, . . . , xt ,

(n̂bd
n)1/2(rn(x1) − r(x1), . . . , rn(xt ) − r(xt ))

′ → N(0, �) as n → ∞.

Proof. Define

Qn =
t∑

r=1

cr(n̂bd
n)1/2(rn(xr) − r(xr)) = Un − Vn,

where

Un =
t∑

r=1

cr

1

F̄n(xr)
(n̂bd

n)1/2[fn(xr) − f (xr)],

Vn =
t∑

r=1

cr

f (xr)

F̄n(xr)F̄ (xr )
(n̂bd

n)1/2[F̄n(xr) − F̄ (xr )]. (5.9)

By Lemma 3.2 and continuous mapping theorem,

Vn → 0

in probability as n → ∞. Define,

Un1 =
(

c1

F̄n(x1)
, . . . ,

ct

F̄n(xt )

)
,

Un2 = (n̂bd
n)1/2([fn(x1) − f (x1)], . . . , [fn(xt ) − f (xt )]),

Un = Un1 · U ′
n2.

By Theorem 5.2 and Lemma 3.2, it follows that Un is asymptotically normal with expectation 0 and
variance

∑t
r=1 c2

r �
2
r /F̄

2(xr). Hence, it follows that Qn is asymptotically normal with expectation
0 and variance

∑t
r=1 c2

r �
2
r /F̄

2(xr). Therefore, Theorem 5.3 is established by an application of
Cramer–Wold device. �

Similarly, we have the following.

Theorem 5.4. Suppose Assumptions 2.1–2.5 (i), (Aii), (iii), (iv) and Assumption 4.1 hold. In
addition, suppose (1.1) and (1.3) hold. Then for distinct points x1, x2, . . . , xt ,

(n̂bd
n)1/2(rn(x1) − r(x1), . . . , rn(xt ) − r(xt ))

′ → N(0, �) as n → ∞.
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6. Applications

Consider the case N = 2 and d = 1. Assume that {Yi, i1 �1, i2 �1} is a spatial process fitting
the model:

Yi1,i2 = �Yi1−1,i2 + �Yi1,i2−1 + Zi1,i2 , (6.1)

with Zi’s being independent standard normal random variables and |�| + |�| < 1. Then model
(6.1) can be written as

Yi1,i2 =
∞∑

j1=0

∞∑
j2=0

(
j1 + j2

j1

)
�j1�j2Zi1−j1,i2−j2 .

It is not hard to show that {Yi, i1 �1, i2 �1} is a strictly stationary spatial process satisfying the
mixing conditions (1.1) and (1.3). We choose � = � = 0.25. Suppose Xi1,i2 = F−1

1 (F2(Yi1,i2))

(representing lifelengths), where F1 is an exponential distribution function with mean 1 and F2
is a standard normal distribution function. Then Xi is also a strictly stationary spatial process
satisfying the mixing conditions (1.1) and (1.3). In particular, all Xi’s are exponential random
variables with mean 1. We generate observations of the random field Xi1,i2 at 180 sites on a lattice
of size 9 by 20 (Table 1). We choose bn = 1

10 and x = 0.9. Take K as the standard normal density
function. Simple computation shows that fn(0.9) is 0.445 and F̄n(0.9) is 0.433. Our estimate for
the hazard rate function at x = 0.9 is 1.028, which is fairly close to the actual value. Note that if the
distribution of lifelengths is exponential with mean 1, then the hazard rate is 1. Repeat the above
procedure 20 times, we can obtain the normal probability plot of the estimated hazard rate at 0.9
with bn = 0.1 (Fig. 1). We also provide a reasonable scatter plot of the estimated hazard rate and

Table 1
Observations of lifelengths

Xi 1 2 3 4 5 6 7 8 9

1 3.85 1.41 .05 1.55 0.66 0.36 0.29 0.15 2
2 2.33 1.34 3.44 1.22 1.11 1.78 1 0.16 1.18
3 0.43 0.01 0.99 0.08 6.01 0.91 0.81 1.03 0.09
4 1.95 0.16 0.48 1.23 0.05 0.84 1.08 0.17 0.85
5 0.52 1.07 0.13 0.29 0.08 0.21 0.1 0.08 1.04
6 0.54 0.79 0.95 1.93 0.46 0.01 2.82 0.14 0.61
7 0.04 0.22 0.99 0.1 0.2 1.75 3.39 1.05 3.11
8 0.69 0.22 0.3 2.33 0.61 0.29 0.04 0.72 0.17
9 3.6 0.43 0.16 0.88 0.96 1.03 1.39 1.85 0.001

10 0.59 1.12 0.5 0.96 1.08 1.96 0.4 0.54 0.13
11 2.57 0.01 1.36 0.07 0.06 1.98 1.07 0.08 0.14
12 1.49 1.04 3.84 0.16 0.37 0.07 4.22 0.48 1.16
13 0.77 1.65 0.98 0.24 0.41 1.19 0.2 0.32 1.86
14 3.21 0.01 1.66 0.82 0.04 0.01 0.12 0.21 0.64
15 0.14 1.05 3.33 0.92 0.64 1.08 1.21 0.12 0.33
16 1.56 1.57 0.69 0.04 0.77 2.94 0.23 0.69 1.13
17 3 1.04 0.45 5.4 0.04 0.35 0.02 0.52 0.3
18 0.61 1.61 0.74 1.41 0.19 0.28 0.73 0.46 1.42
19 0.92 2.41 0.32 0.1 1.13 0.14 0.1 1.35 0.28
20 0.08 4.35 0.99 0.26 0.24 2.53 0.51 0.69 1.03
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Fig. 1. Normal probability plot of hazard rate estimate at 0.9 with bn = 0.1 with 95% confidence interval.

Fig. 2. Scatter plot with bn = 0.1.

Fig. 3. Scatter plot with bn = 1.

the actual hazard rate at 18 points in interval (0, 1) with appropriate bn = 0.1 (Fig. 2). We ask
that bn goes to zero not too slow or too fast in the theorem. The scatter plot of the estimated
hazard rate and the actual hazard rate at 18 points in interval (0, 1) with inappropriate bn (Figs.
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Fig. 4. Scatter plot with bn = 0.001.

3, 4) shows the estimation is unreasonable when bn goes to zero too slow (bn = 1) (Fig. 3) or too
fast (bn = 0.001) (Fig. 4). The pointwise 99% confidence intervals for the hazard rate at those 18
points are also included in the scatter plot (Figs. 2–4).
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