
Topology Vol. 31, No. 4. pp. 847-855, 1992. 

Printed in Great Britian 
oo40-9383/92 $5.00 + 0.00 

0 1992 Pergamon Press Ltd 

THE MARKED LENGTH-SPECTRUM OF A SURFACE OF 
NONPOSITIVE CURVATURE? 

C. CROKE. A. FATHI and J. FELDMAN 

(Receioed 11 June 1990; in revisedform 12 September 1991) 

IF M is a manifold and gl, g2 are two Riemannian metrics, we say that they have the same 

marked length spectrum if in each homotopy class of closed curves in M the infinimum of 

g,-lengths of curves and the infinimum of g,-lengths of curves are the same. The marked 

length spectrum problem in general is to show that two metrics with the same marked 

length spectrum are isometric. Of course, this cannot hold for arbitrary metrics (for example 

if A4 is simply connected). This problem was stated as a conjecture in [l] in the case where 

M is a closed surface and g1 and g2 are of negative curvature. This conjecture was solved by 

J. P. Otal [12] and independently by C. Croke [3]-see also [4]. Previous work on the 

problem was done by Guillemin and Kazhdan [7]. 

In this work, using Otal’s approach, we improve some of these results by proving the 

following theorem: 

THEOREM A. Let M be a closed surface and let gl, g2 be Riemannian metrics on M, with g1 
of nonpositive curvature and g2 without conjugate points. Zf g1 and g2 have the same marked 
length-spectrum then they are isometric by an isometry homotopic to the identity. 

We will also prove the following fact, which reduces the length spectrum and curvature 

condition to the assumption that the Morse correspondence preserves angles-see 51 for the 

definition of the Morse correspondence. 

THEOREM B. Let M be a closed surface of genus 2 2, and let gl, g2 be Riemannian metrics 
without conjugate points on M. Zf g1 and g2 have the same marked length-spectrum and the 
Morse correspondence preserves angles then they are isometric by an isometry homotopic to 
the identity. 

Finally, we obtain a third result of a more dynamical nature. This is a generalization of 

a question raised in [S, 6.3, p. 703, see also [3] and [2] where this question is solved. 

THEOREM C. Let (MI, gI) and (M,, g2) be Riemannian closed surfaces of genus 2 2 
without conjugate points. Zf one of the two metrics has nonpositive curvature, then any time 
preserving semi-conjugacy from the geodesic flow of (M 1, g1 ) to the geodesic frow of (MZ, g2) 
comes from a Riemannian submersion composed with a shift by some fixed time. 

tWork partially supported by NSF Grant #DMS-8722998 (CC) DMS-8801749, DMS-8505550 (AF), 

DMS-8403182 (JF). This work was done while C. Croke and A. Fathi were at MSRI. 
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848 C. Croke, A. Fathi and J. Feldman 

We introduce here some definitions and notation. If g is a Riemannian metric on the 

surface M we will denote by I the curvature of g at a point m E M. The lift of g to the 

universal cover fi of M will be denoted by 0. A d-strip in ii?i is a closed subset of 

6 homeomorphic to R x [0, l] whose boundary consists of two &geodesics which remain 

at bounded distance from each other. Any two disjoint &geodesics which remain at 

bounded distance from one another and are closed as subsets of G bound a &strip. 

A g-strip is flat if the curvature of g is zero on the strip. If two Q-geodesics G and G’ intersect 

at a unique point, we will denote by L ,(G, G’) E ] 0, rc [ the angle at the point of intersection. 

1. BACKGROUND 

We fix a reference Riemannian metric go of (strictly) negative curvature on M. The 

following theorem is due to Morse [lo]. 

THEOREM 1.1. (Morse). Let g be a Riemannian metric on M. Let g and go be the Zifts of 
g and of the Riemannian metric go of (strictly) negative curvature to the universal cover fi of 
M. Then there exists a constant K > 0, which depends only on g and go, such that any 
go-geodesic contains in its K-neighborhood a minimizing g-geodesic, and any minimizing 
g-geodesic contains a unique go-geodesic in its K-neighborhood. The map @: 2 -+ go from 
the space 2 of &minimizing geodesics to the space go of go-geodesics which sends a minimiz- 
ing g-geodesic to the go-geodesic in its K-neighborhood is continuous and proper. (When g has 
no conjugate points then &? is of course the space @ of all g-geodesics.) Moreover, the map .!? is 
n,(M) equivariant. 

We will call the map 9 a Morse map. 

COROLLARY 1.2. For every Riemannian metric g without conjugate points on M, there is 
a constant C such that any g strip in 6 has width I C. 

Proof The Morse map sends all &geodesics entirely contained in a given strip to the 

same go-geodesic. 0 

It will be convenient to introduce the following concept. If gi and g2 are metrics on M, 
we say that the g,-geodesic Gi and the g”,-geodesic GZ, both in 6, are Morse correspondent 

and we will write Gi - Gz, if they remain at bounded distance, i.e. if we have: 

sup d(m, G2) < co and sup d(m, Gi) < 00, 
PEG, ltEG2 

where d is a metric on h? coming from a Riemannian metric on M. Since M is compact, the 

condition does not depend on the choice of d. It is not assumed that the Riemannian metrics 

gr and g2 are distinct. As before go will be a fixed reference Riemannian metric of (strictly) 

negative curvature on M. Suppose gi and g2 are Riemannian metrics without conjugate 

points on M. Call ?i: g1 + go (resp. gZ: g-2 + go) the Morse map from the set of 

Q,-geodesics (resp. Q,-geodesics) onto the set of go-geodesics. If Gi is a gl-geodesic and G2 is 

a g”,-geodesic, then Gi - G2 if and only if @‘,(G,) = GZ(GZ). The following two statements 

are easy consequences of the work of Leon Green [6, Corollary 3.2 p. 536 and Theorem 4.1 

p. 5593: 

PROPOSITION 1.3. Let g be a Riemannian metric without conjugate points on M. Let G and 
G’ be two g-geodesics (in h?). Zf G - G’ then either G = G’ or G and G’ do not intersect; 
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moreover, in the latter case they bound a g-strip, and through each point y of this g-strip there 

passes a unique g-geodesic G, such that G - G,. If g is of nonpositive curvature then all 

g-strips are flat. 

COROLLARY 1.4. Let g1 and g2 be Riemannian metrics without conjugate points of M. Let 
G1 and G; (resp. Gz and G;) be two g,-geodesics (resp. gz-geodesics) in h?. If G1 - G2 and 
G; - G$ then G1 and G; intersect transversally if and only if Gz and G> intersect trans- 
versally. 

We will now show how to adapt Otal’s arguments [12] to prove the following lemma: 

LEMMA 1.5. Let g1 and g2 be two Riemannian metrics without conjugate points on M. 
Suppose that g2 is of nonpositive curvature and that g1 and g2 have the same length spectrum. 
Then: 

For every pair (G,, G;) of g”,-geodesics, and every pair (G2, G;) of g2-geodesics, if G, - G2 
and G; - G$, then L~,(G,, G;) = L~,(G~, G;). 

Consequently the metric g1 also has nonpositive curvature. 

Sketch of Proof: We will use the setting of [4] to show how to adapt the arguments of 
Otal. Let go be a metric of (strictly) negative curvature on M. Let gl: @I + C? (resp. 
g2 : g2 + &) be the Morse map from the space of g,-geodesics (resp. Q2-geodesics) onto the 
space of &-geodesics, as described above. As in [4], using g1 and g2, we obtain, from the 
Liouville measures, geodesic currents &1 and I,, . By [ 12, theoreme 21, we obtain I,, = I,, . 

We define for each pair (G, G’) of transversally intersecting &,-geodesics the angle 8(G, G’) 
as the g2 angle of any pair (G,, CL) of g”,-geodesics such that g2(G2) = G and 
p2(G;) = G’. The fact that this angle is independent of the choices follows from the flatness 
of the g2-strips-see Proposition 1.3. It is not very difficult now to adapt Otal’s arguments 
[12] as in [4], to prove the angle condition of the lemma. 

This angle condition, taken with the fact that g2 has nonpositive curvature, implies that 
the sum of the angles of any triangle whose sides are g,-geodesics is I rr. It follows from the 
Gauss-Bonnet theorem that gi also has nonpositive curvature. 0 

2. PROOF OF THEOREM A 

Because, the sphere is simply connected the genus of M has to be 2 1. A theorem of 
Hopf says that a metric without conjugate points on a torus or a Klein bottle is flat. 
Theorem A follows for the torus and the Klein bottle-see [3, pp. 167-1681. So we assume 
for the rest of the section that the genus of M is 2 2. Since we want to use the work done in 
this section to prove other theorems, we will use general arguments as often as possible. 

Definition 2.1. Suppose g1 and g2 are Riemannian metrics without conjugate points on 

M. We define a partial relation .%? on h? in the following way mBm’, if every g,-geodesic 
through m’ is at bounded distance from some al-geodesic through m. 

LEMMA 2.2. Suppose g1 and g2 are Riemannian metrics without conjugate points on M. If 
mBm’, then every g”,-geodesic through m is at bounded distancefrom some g2-geodesic through 

I m. 
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Proof: Let go be a metric of (strictly) negative curvature on M. As before, let @i : gl + C? 

(resp. pz: ‘+?12 -+ @) be the Morse map from the space of g,-geodesics (resp. &-geodesics) 

onto the space of go-geodesics. We have m.@m’ if and 
?z{GE&“ZIm’EG} 

only if 

c PI {GE &I Im E G}. But by Proposition 1.3, the map pi (resp. pz) is 

injective on {G E %I (m E G} (resp. (G E ?Zz 1 m’ E G}). Hence we have a natural l-l continuous 

map from the circle of &-geodesics through m’ to the circle of #i-geodesics through m. Such 

a map must be a homeomorphism, so we are done. 0 

LEMMA 2.3. Suppose g1 and g2 are Riemannian metrics without conjugate points on M, 

and every gI-strip ispat. If ml.%?m’ and m2Wm’, then ml = m2. If every g2-strip is also pat, 

then 9? is the graph of a bijection cp between the domain o”I of 9 and its range o”?. Both 6, and 

6, are invariant under the action of rtl(M), and moreover, the map CP is x1(M) equivariant. 

Proof From Lemma 2.2 and the definition of 9%‘, it follows that if G is a gi-geodesic 

through ml it is at bounded distance from some g”,-geodesic G’ through m2. If ml # m2 and 

G is not the geodesic through m, and m2, then G and G’ bound a g,-strip which by 

hypothesis must be flat. This implies that the curvature of g1 along every Q1-geodesic 

through ml is 0 (by continuity this is also true for the geodesic between m, and m2). The 

completeness of g1 implies that g1 is flat which is impossible since the genus of M is 2 2. 
The equivariance is obvious. 0 

Let us now suppose that the Riemannian metrics g1 and g2 without conjugate points on 

M have the same length spectrum and one of them has non positive curvature. By 1.5, both 

of them have nonpositive curvature, and by 1.3 all g1 and g2 strips are flat and by 2.3 the 

relation 9Y is the graph of a bijection. 

Let u”i, i = 1,2, be {mE61tc~i(m) # O}. 

LEMMA 2.4. Under the hypothesis of Theorem A, let G1 and G; be gl-geodesics which 
intersect transversally at a point m which is in fi,. Suppose that G2 and G; are g2-geodesics 

with G1 - G2 and G; - G;. If m’ is the point of intersection of G2 and G; then m9?m’. In 
particular, the set fil is contained in the domain fiI of the map cp given by 2.3. 

Moreover, every g,-geodesic which is at bounded distance from a g”,-geodesic through 

m must also pass through m, and every ij,-geodesic which is at bounded distance from 
a @,-geodesic through m’ must also pass through m’. 

Proof: If H is a G,-geodesic which is at bounded distance from some g2-geodesic which 

passes through m’, the angle condition of Lemma 1.5 shows that Gi, G; and H bound 

a triangle T whose sum of angles is rc. But g1 is of nonpositive curvature and one of the 

vertices of the triangle, namely m, satisfies rcg, (m) # 0, so from the Gauss-Bonnet theorem it 

follows that T is degenerate and that H goes through m. This proves that mam’. 

Since gl-strips are flat, the point m cannot be contained in a g,-strip. So every 

g,-geodesic which is at bounded distance from some gl-geodesic through m must also pass 

through m. 
It remains to prove that every g,-geodesic which is at bounded distance from a g2- 

geodesic through m’ must also pass through m’. Let H; and H;’ be two g2-geodesics that 

remain at bounded distance and suppose that rn;E Hi, m’ $ H;’ and m” E H’;. We know from 

the first part that both Hi and K, the Q2-geodesic through m’ and m”, are at bounded 

distance from gl-geodesics that pass through m. It follows that the pair H’;, K of transverse 

g2-geodesics are at bounded distance from Q,-geodesics through m. By the first part of the 

lemma mL&!m”. From Lemma 2.3, we obtain m’ = m”. This is a contradiction. 0 
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LEMMA 2.5. Under the hypothesis of Theorem A, if m, m’ E cl, then d,, (m, ml) = 

d,-,(cp(m), q(m)), where cp is given by Lemma 2.3. In particular, the map cp induces an isometry 

between 6, and 6,. 

Proof. Fix a Riemannian metric go on M of (strictly) negative curvature and let 
@l:gl-,@andg,:&, -+ % the Morse maps described above. It is not difficult to see, 
using Lemma 2.4, that there exists a set d c 4 such that 9 ;’ (&‘) (resp. p’;‘(d)) is the 
subset of $?I (resp. gZ) consisting of g,-geodesics (resp. &-geodesics) that intersect the 
#,-geodesic (resp. a,-geodesic) segment between m and m’ (resp. cp(m) and cp(m’)). Using the 
fact that the Liouville currents obtained from g1 and g2 are the same, an application of the 
Crofton formula finishes the proof of the first part. 

It follows from [ll] that cp is differentiable on d, and hence it is also a Riemannian 
isometry on U1. This implies cp(fii) c 0,. Exchanging the role of g1 and g2 gives 
cp(fil) = &. q 

LEMMA 2.6. Let g1 and g2 be Riemannian metrics without conjugate points on M, for which 

g1 and g2 strips are flat. Suppose that the map 40 induces a bijection between 

0, = (mE&?;ixe,(m) # 0} and d, = {mEfi/tcICg,(m) # 0}, and that for every m, m’E oI, we 

have d,-, (m, m’) = d,-, (q(m), cp(m’)). Then cp extends to a Riemannian isometry of (fi, gl) onto 
(fi, g2) which is equivariant under the action of 7c1. Hence the Riemannian metrics g1 and g2 

are isometric by an isometry homotopic to the identity of M. 

Proof As above cp induces a Riemannian isometry on fii. If PE ol, call T,cp the 
derivative of cp at p. One can check that the map (p = expg,‘, T,cp(expi’)- ’ extends rp to fi. 
Moreover, the extension @ preserves curvature, since along any geodesic through p the map 
will be an isometry at points of or, namely cp, and will take points of zero curvature to 
points of zero curvature. From the well-known relation between Jacobi fields and 
the derivative of the exponential map-see [8, Lemma 5.4.3 p. 102]-it follows that 
@: (a, S1 ) -+ (A, d2) is an isometry. The fact that (p is equivariant under n, (M) follows 
from the fact that cp is equivariant under the same action. q 

The proof of Theorem A follows from the above lemmas. 

3. PROOF OF THEOREM B 

In this section we assume that g1 and g2 are Riemannian metrics without conjugate 
points on M, and that the angle hypothesis of Theorem B is satisfied, i.e.: 

For every pair (G,, G;) of g”,-geodesics, and every pair (G2, G;) of g,-geodesics, 

Gi - G2 and G; - G; = L~,(G,, G;) = L,-,(Gz, W. 

AS before let oi = {mE&Irc,i(m) # 0}, i = 1,2. 

We first prove three more lemmas. 

LEMMA 3.1. All strips for gI and g2 areJEat. Consequently, no point of u”, (resp. 02) is 

contained in a gI (resp. g2) scrip. 

Proof: We will show the result for gi. A consequence of the hypothesis of Theorem 3.1, 
is that if the Q,-geodesics G, G’ remain at bounded distance then any other g,-geodesic cuts 
them at the same angle. By the result of Leon Green, Proposition 1.3, any strip bounded by 
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two gl-geodesics can be foliated by infinite gl-geodesics. It is easy to deduce that any point 
inside the strip is contained in arbitrarily small geodesic triangles whose sum of interior 
angles is z It follows from the Gauss-Bonnet theorem that the strip is flat. cl 

LEMMA3.2. Let~,={G,E~11(G1nU"1#0}and~~=(GZE~"213G1E~"1,G1NGZ}. 

The formula Gz - PC, defines a continuous surjective map 9: 4; -+ gI. Of course 4, is 
open; moreover, the set 6; is also open. 

Proof: By Lemma 3.1, if G, G’ are g,-geodesics with GE&~ and G - G’ then G = G’. As 
above, let 91: $?I + 9? and p’,: g-z --) ?? the Morse maps obtained in 1.1. From the 
observation just made, g1 induces a bijection from &!I --* 9, (el) and g; r 8, (4,) = 4,. 
It is not difficult, using the fact that g1 is continuous and proper, to conclude that g1 (gl) 
is open and that g1 restricts to a homeomorphism from 4, onto g,(&“,). The lemma 
follows since 4; = 9,‘(9,(&‘,)) and 9 = 9;‘9,. 0 

LEMMA 3.3. Suppose that the gz-geodesics G2, G; are in 8; and that PC, and PC> 
intersect transversally at a point m which is in 0,. Ifm’ is the point of intersection of G2 and 

G; then mL%m’. Moreover, every gl-geodesic which is at bounded distance from some gI- 

geodesic through m must also pass through m, and every g2-geodesic which is at bounded 
distance from some g2-geodesic through m’ must also pass through m’. 

Proof: Let Gz and G; be d,-geodesics passing through m’ such that Gz - Gr and 
G; - G; where Gr and G\ are gl-geodesics passing through m. For 8 E [0, rc], let G; (resp. 
G;“) be the g,-geodesic through m’ making an angle 8 with Gz (resp. G;). Let T be the set of 
8~ [0, rr] such that there exists g,-geodesics CT and G>” through m with G”, - CT and 

10 G;” - Cr. 
Since two geodesics that stay at a bounded distance must stay within a constant distance 

depending only on go, g1 and g2 we see that T must be closed. 
Since T is non-empty we need only show that T is open. Let $ E T. Since Gf and G;* are 

in &; and 6; is open, if 13 is close enough to $, the gz-geodesics G: and Gie are also in 
4; and hence there exists unique geodesics Gy and Gie with G”, - G”, and G;” - G’/. 

Let E > 0 be so small that B(m, E), the s-ball for S1 about m, is convex and has non-zero 
curvature for g1 at every point. By transversality and continuity of the map 9 : 4; -+ & 1 we 
see that for all 13 sufficiently close to $ the intersection points of Gt and G;” and G;“, G;* and 
G’t, CT and G;‘, and CT and G\* all lie in B(m, E). 

We consider two cases. First assume Gi intersects Gy inside B(m, E) (or similarly that 
G;” intersects G’r* inside B(m, 6)). Then the geodesic triangles Gf , Gy , G;* and Gt , G$‘, 
G’: both lie inside B(m, E). By preservation of angles both have interior angles that sum to X, 
but since the curvature is never zero in these triangles, the Gauss-Bonnet theorem forces 
them to be degenerate triangles which forces all these geodesics to pass through the 
common point m, so m%m’. 

If on the other hand, both the intersections of G”, with Gf and Gie with G\* occur outside 
B(m, E) we see that CT, Gy, G\“, G;@ form a quadrilateral inside B(m, E). Again the 
Gauss-Bonnet theorem forces this quadrilateral to be degenerate and all geodesics pass 
through m, and again m.%?m’. 

Again by flatness of strips, every g,-geodesic at a bounded distance from some Q1- 
geodesic through m passes through m. Let G; and G;’ be g,-geodesics with G; - Gi and 
m/E-G;, m’#G;‘. Let Gr be the g,-geodesic through m with G1 - G; hence Gr - G’,‘. Pick 
m”E G; and let H2 be the g2-geodesic through m’ and m”. We know that there is a gr- 
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geodesic through m such that HI - H2 since mL%?m’. On the other hand, since m” = H n G;’ 
the first part of the lemma yields mB?m”. Now Lemma 2.3 yields m’ = m”. 0 

COROLLARY 3.4. Under the assumptions of this section u”, is contained in the domain fiI of 
th relation 9 and o’z is contained in is range fi2. 

Proof This is immediate from Lemma 3.3. q 

Proof of Theorem B: We now proceed as in the proof of Theorem A, using 

Lemma 2.6. 0 

4. PROOF OF THEOREM C 

Part of the arguments are already in [2] and [3]. It is easy to see, by taking an orientable 

cover, that one can reduce the proof to the case where M1 is orientable. We will assume that 

this is the case in the sequel. 

LEMMA 4.1. Suppose S(M) is the unit tangent bundle of the closed surface M of genus 2 2. 
Zf a subgroup of nI(M) has non trivial center then it is isomorphic to Z. Call pM: S(M) + M 
the canonical projection. The center of x1 (S(M)) is contained in the kernel of the induced map 
pMu,: 7c1 (S(M)) -+ x1(M). Moreover, tfM is orientable the kernel of pMM, is precisely the center 

of n,(S(M)). 

Proof This is well-known and can be proven using elementary hyperbolic 

geometry. q 

LEMMA 4.2. Suppose MI and Mz are closed surfaces of genus 2 2 endowed respectively 
with Riemannian metrics g1 and g2. Suppose that h: S(M,) + S(M,) is a time preserving 
semi-conjugacy between the geodesic flow g: of g1 and the geodesic g: of g2. If g2 has no 
conjugate points, then h maps the center of zl(S(M1)) in the center of rc,(S(M,)), hence it 
induces a map h, : rcI(M) -+ rc1(M2). The map h, is injective. 

Proof: Let us look at the composition 8: S(M,) + S(M,) + M2, where the first arrow is 

h and the second one is pM,. We want to show that 8,: rt,S((M,)) + rt1(M2) sends the 

center of zlS((M,)) to 0. Suppose this is not the case, then by 4.1 the image G of 0.+ is 

a cyclic subgroup of 7rc1 (M2) which is isomorphic to Z. Let us call P: C --+ Mz the covering of 

M2 such that P*(xl(C)) = G. It is easy to see that h can be written as a composition S(P)h” 
where /i: S(M,) + S(C) and S(P): S(C) -+ S(M,) is the tangent map obtained from P. If we 

lift the metric g2 to a metric Q2 on C via P, we obtain that h” is a time preserving 

semi-conjugacy between flows. Using a little bit of the theory described in $1 and the fact 

that C is a cylinder or an open Mobius band without conjugate points, it is not difficult to 

realize that h”sends each g,-geodesic to a g,-geodesic that remain in the strip associated to 

a non-trivial closed g”,-geodesic G of minimum length in C. If H is a @,-geodesic transversal 

to G, using the fact that g2 has no conjugate points, all g2-geodesics that remain in the strip 

of G are also transversal to H. By the connectedness of S(M), we conclude that /isends each 

oriented g,-geodesic to a Q,-geodesic that always raps around C in the same sense. This is 

impossible, because a closed oriented g,-geodesic and its opposite are in opposite 

homotopy classes of closed curves in S(M). 
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To show that h# is injective, let us start with y in rcl(M1), we can find a closed 
g,-geodesic G1 in the free homotopy class of y. Since h is a semi-conjugacy the image h(G,) 
is a closed g,-geodesic. Since g2 has no conjugate points it cannot be homotopic to 0. 0 

Suppose M1 and M2 are closed surfaces of genus 2 2 endowed respectively with 
Riemannian metrics g1 and g2. We assume that g2 has no conjugate points. Since by 4.2, the 
map h # is injective and M 1 and M2 are closed surfaces, the subgroup h # (7~ 1 (M 1 ) ) has finite 
index in x1(M2) (if not then by covering theory xl(M1) would be the fundamental group of 
a connected non-compact surface, but such a group is free and the fundamental group of 
a closed surface is never free). Hence it is easy to reduce to the case where h, is an 
isomorphism. Since all automorphisms of the fundamental group of a surface can be 
realized by diffeomorphisms, we can find a diffeomorphism f: M2 + MI such that the 
induced mapf, on nl is h; I. If we use the diffeomorphismf to transport the metric g2 to 
a metric b2 on MI, it is not difficult to see that 42 has no conjugate points and that g1 and g2 
have the same marked length-spectrum. If both g1 and g2 are without conjugate points and 
one of them is of nonpositive curvature, then we can apply Theorem A to g1 and g2, so if we 
composefwith an isometry homotopic to the identity, we see that the proof of Theorem C is 
reduced to: 

LEMMA 4.3. Let g be a Riemannian metric with nonpositive curvature on a closed 

orientable surface M. If h: S(M) + S(M) is a self semiconjugacy of the geodesicflow of g such 

that h #: n,(M) + x,(M) is the identity then h = g’O for some fixed time to. 

ProoJ It is not difficult to see from the hypothesis on h, that we can lift h to a map 
K: S(A) -+ S(k) homotopic to the identity by a bounded homotopy, where a is the 
universal cover of M. It follows that for any geodesic G of the lift Q of g to the universal cover 
G the geodesic K(G) is bounded distance from G. By Proposition 1.3, the geodesics G and 
h”(G) either coincide or bound a flat strip. By [6] or [9, p. 379, Theorem 3.9.171, there exists 
a geodesic dense in S(M). Suppose that G is the lift to fi of such a geodesic dense in S(M); 

then the second case cannot happen because G has to go through points of negative 
curvature. In fact, the geodesic G and E(G) have to coincide as oriented geodesics since 
K preserves time and is homotopic to the identity by a bounded homotopy. The lemma 
follows easily using the denseness of the image of G in M and the fact that h 

preserves time. 0 

Remark 4.4. Suppose MI and M2 are closed surfaces of genus 2 2 endowed respectively 
with Riemannian metrics g1 and g2. We assume that g2 has nonpositive curvature. If there 
exists a time preserving conjugacy (not necessarily C’) between the geodesic flows of g1 and 
g2, then the arguments in [3, Lemma 3.21 show that g1 has no conjugate points and we can 
apply theorem C to obtain [3, Theorem B] without the assumption that the conjugacy 
is C’. 
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