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1. Introduction

Let G be a simple graph on n vertices. Let A(G) be the adjacency matrix of G. The spectral radius of
G is the largest eigenvalue of A(G), denoted by 1 (G), see [3].

Let K, be the complete graph on n vertices. Write K,_1 + v for K1 together with anisolated vertex,
and K, + e for K,_1 with a pendent edge. Recently, Fiedler and Nikiforov [5] gave tight conditions
on spectral radius of a graph for the existence of Hamiltonian paths and cycles:

Theorem 1. Let G be a graph on n vertices.

(i) If u(G) 2n — 2 and G # Kn—1 + v, then G contains a Hamiltonian path.
(ii) If u(G) > n — 2 and G # Kn—1 + e, then G contains a Hamiltonian cycle.
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Theorem 2. Let G be a graph on n vertices with complement G.

(i) f u(G) < +/n— 1and G # K,_1 + v, then G contains a Hamiltonian path.
(i) If u(G) < /n — 2 and G # Kn—1 + e, then G contains a Hamiltonian cycle.

Let G be a graph on n vertices. Let D(G) be the diagonal matrix of order n whose (i, i)-entry is the
degree (number of neighbors) of the ith vertex of G. The matrix LT (G) = D(G) + A(G) is the signless
Laplacian matrix, for details see [4]. The signless Laplacian spectral radius of G is the largest eigenvalue
of L*(G), denoted by ¥ (G).

In this note we give tight conditions on the signless Laplacian spectral radius of a graph for the
existence of Hamiltonian paths and cycles.

2. Preliminaries

Let G be a graph with vertex set V(G) and edge set E(G). Let e(G) = |E(G)|. Let d¢(u) be the degree
of vertex u in G.

For an integer k > 0, the k-closure of the graph G is a graph obtained from G by successively joining
pairs of nonadjacent vertices whose degree sum is at least k (in the resulting graph at each stage) until
no such pair remains [1]. Write Ci(G) for the k-closure of G. Note that dc, ) (1) + dc, (V) <k — 1
for any pair of nonadjacent vertices u and v in Cx (G). The following lemma is due essentially to Ore [8].

Lemma 1. (i) A graph G on n vertices has a Hamiltonian path if and only if C,—1(G) has one.
(ii) A graph G on n vertices has a Hamiltonian cycle if and only if C,(G) has one.

Lemma 2 [8]. Let G be a graph on n vertices.

(i) If dg(u) + dg(v) >n — 1 for any pair of nonadjacent vertices u and v in G, then G contains a
Hamiltonian path.

(ii) Ifdg(u) + dg(v) = nfor any pair of nonadjacent vertices u and v in G, then G contains a Hamiltonian
cycle.

For a graph G, let Z(G) be the sum of the squares of the degrees of G, i.e., Z(G) = 3_,cv(c) de(u)?.
Obviously, Z(G) = > yvek(c) (de(w) + dg(v)). This quantity has been studied in the literature, see [2,
7,9]. Let £(G) be the line graph of the graph G.

Lemma 3. Let G be a graph with at least one edge. Then

7(G)

Proof. Letm = e(G). Let B(G) be the vertex—edge incidence matrix of G. ThenL* (G) = B(G)B(G)" and
B(G)'B(G) = 2I,, + A(£(G)) (see [3]), where I;, stands for the unit matrix of order m. Since B(G)B(G)*
and B(G)'B(G) have the same non-zero eigenvalues, we have

v(G) = u(£(G)) + 2.
Note that for a graph H, ;¢ (H) is bounded from below by the average degree a(H) of H [3]. Obviously,
a(£(G)) = % Y uevc) (dcz(u)) = % — 2. Then the result follows. [J

We mention that the bound in previous lemma is attained if and only if £(G) is regular, as for the
graph H, u(H) = a(H) if and only if H is regular. A semi-regular graph is a bipartite graph for which
every vertex in the same partite set has the same degree. For a connected graph G, £(G) is regular if
and only if dg (1) + d¢(v) is a constant for any edge uv € E(G) if and only if G is regular or semi-regular.
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Lemma 4 [6]. Every k-regular graph on 2k + 1 vertices contains a Hamiltonian cycle, where k > 2.

3. Result

Let G and H be vertex-disjoint graphs. The join of G and H is the graph formed from the (vertex-
disjoint) union of G and H by adding all possible edges between them.

Let EP, be the set of graphs of the following three types of graphs on n vertices: (a) a regular graph
of degree % — 1,(b) a graph consisting of two complete components, and (c) the join of a regular graph
of degree g — 1 —rand a graph on r vertices, where 1 <r < g -1

Let EC,, be the set of graphs of the following two types of graphs on n vertices: (a) the join of a
trivial graph iand a graph consisting of two complete components, and (b) the join of a regular graph

e

of degree 5= — r and a graph on r vertices, where 1 <r < %

Our result is:
Theorem 3. Let G be a graph on n vertices with complement G.

() Ify(G) < nand G ¢ EPy, then G contains a Hamiltonian path.
(ii) Ifn=3, y(G)<n—1and G ¢ EC,, then G contains a Hamiltonian cycle.

Proof. We use the techniques from Fiedler and Nikiforov [5]. Let H = C;—1(G). If H = Kj,, then the
result follows from Lemma 1(i). Suppose that H # K, and G has no Hamiltonian path. By Lemma 1(i),
H has no Hamiltonian path either. By Lemma 2(i) and the property of (n — 1)-closure of G, dy (u) +
dy(v) <n — 2 for any pair of nonadjacent vertices u and v (always existing) in H. Thus

dg(u) +dg(v) =n—1—dy(u) +n—1—-dy(v)=2n
for any edge uv € E(H). It follows that

ZH) = ) (dg() + dg(v)) > ne(H).

uveE(H)
By Lemma 3, we have

y(H) > @ >n.
e(H)

Since H is a subgraph of G, by the Perron-Frobenius theorem,
y(©) =y (H) >n.

% = n, and then dg(u) + dg(v) = n for any uv € E(H),

implying that H contains exactly one nontrivial component F, which is either regular or semi-regular,
where % + 1< |V(F)| < n. Suppose that F is semi-regular. Then F = H is a complete bipartite graph.
Since y (G) = y (H), H is a subgraph of G, we have by applying the Perron-Frobenius theorem (to the
signless Laplacian matrices of G and H) that G = H, and then G consists of two complete components,
which contradicts the condition that G is not such a graph. Thus F is a regular graph of degree g that
is not semi-regular. B o o _

IfF = H, thensince y (G) = y (H) and H is a subgraph of G, we have by the Perron-Frobenius theo-
rem that G = H, and thus G(= H) is a regular graph of degree g — 1, which contradicts the condition
that G is not such a graph. Thus H consists of F and additional r = n — |V (F)| isolated vertices, where
1<r< g — 1. Note that ¥ (G) = y(H) and H is a subgraph of G. By the Perron-Frobenius theorem, G
consists of vertex-disjoint graph F and a graph F; on r vertices. Thus G is the join of F (aregular graph
of degree % — 1 —r)and F; (a graph on r vertices), which contradicts the condition that G is not such
a graph. This proves (i).

Since y (G) <n, we have ¥ (G) = y(H) =
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Now we prove (ii). Let H = C,(G). If H' = K, then the result follows from Lemma 1(ii). Suppose
that H # K, and G has no Hamiltonian cycle. By Lemma 1(ii), H has no Hamiltonian cycle either. By
Lemma 2(ii) and the property of n-closure of G, dy(u) + dy (v) <n — 1 for any pair of nonadjacent
vertices u and v (always existing) in H'. Thus

d) +d(v) =n—1—dyw+n—1—dy(v)2n—1
for any edge uv € E(H’). It follows that
ZH) = Y (dg) + () >(n — De(H).

uveE(H")
By Lemma 3, we have

\Y
|
\%
=
[
—

y(H)

Since H’ is a subgraph of G, by the Perron-Frobenius theorem, we have
yG=yH)=n—1.

Since ¥ (G) <n — 1, we have y(G) = y(H') = i%:; = n — 1, and then dg7(u) + dgr(v) = n — 1 for
any uv € E(H’), implying that H' contains exactly one nontrivial component F, which is either regular
or semi-regular, where % < |V(F")| < n. Suppose that F’ is semi-regular. Then F’ contains at least
n — 1 vertices. Suppose that H' is connected. For u € V(H'), let N(u) be the set of neighbors of u in H'.
Foruv € E(H’), there is a vertex w such that V(H') = N(u) U N(v) U {w}. Then (N (1), N(v) U {w}) or
(N(u) U {w}, N(v)), say the former is a bipartition of H’, and thus dr(W)dgr(v) = (dr(v) + Ddgr(w),
which is a contradiction. Then H’ is disconnected, and thus it consists of a complete bipartite graph
F’ and an additional isolated vertex. Since y(G) = y (H’) and H’ is a subgraph of G, we have by the
Perron-Frobenius theorem that G = H’, and then G is the join of a trivial graph and a graph consisting
of two complete components, which contradicts the condition that G is not such a graph. Thus F/ is a
regular graph of degree % that is not semi-regular.

If F/ = H’, then by the Perron-Frobenius theorem, G = H’, and thus G (= H’) is a regular graph
of degree ”;1, which contradicts the conclusion of Lemma 4. Thus H’ consists of F/ and additional
r =n — |V(F")| isolated vertices, where 1<r < ">1. Note that y(G) = y(H’) and H' is a subgraph
of G. By the Perron-Frobenius theorem, G consists of vertex-disjoint graph F’ and a graph Fionr

vertices. Thus G is the join of F’ (a regular graph of degree % —r)and F{ (a graph on r vertices),
which contradicts the condition that G is not such a graph. This proves (ii). [

Let K, s be the complete bipartite graph with r and s vertices in the two partite sets. Then (K, s) =

N

For a bipartite graph G with n vertices, if G is not connected, then y (G) = n.

Example. There are graphs to which Theorem 3 may apply but Theorems 1 and 2 may not.

(a)Forodd n > 5, consider G = K(n—1)/2,(n+1)/2- Then u(G) = —V";*] Since G consists of two com-
ponents K(n—1)/2 and K(n41/2, and noting that (K;) = r — 1, we have u(G) = u(Kn11)/2) = %
Thus G does not satisfy the condition ©«(G) >n — 2 of Theorem 1 (i) and (for n > 7) the condition
w1 (G) < +/n — 1 of Theorem 2(i). However, y (G) = y (K(n+1)/2) = % + 1 (Kny1)/2) =n —1,and
thus G satisfies the conditions of Theorem 3(i), implying that G contains a Hamiltonian path.

(b)Forevenn >4, consider G’ = Ky /2,n/2. As above, we have j1(G') = 5, u(G') = u(Ky2) = 5 — 1
and y (G) = ¥ (Knj2) = n — 2.Thus G’ does not satisfy the condition ;£ (G") > n — 2 of Theorem 1(ii)
and (for n > 8) the condition M(W) < 4/n — 2 of Theorem 2(ii), but satisfies the conditions of Theorem
3(ii), implying that G’ contains a Hamiltonian cycle.
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