

Contents lists available at ScienceDirect

Linear Algebra and its Applications

journalhomepage:www.elsevier.com/locate/laa

Signless Laplacian spectral radius and Hamiltonicity *

Bo Zhou

Department of Mathematics, South China Normal University, Guangzhou 510631, PR China

ARTICLE INFO

Article history: Received 23 May 2009 Accepted 1 September 2009 Available online 28 October 2009

Submitted by R.A. Brualdi

AMS classification: 05C50 05C35

Keywords: Signless Laplacian spectral radius Hamiltonian path Hamiltonian cycle

1. Introduction

Let *G* be a simple graph on *n* vertices. Let $\mathbf{A}(G)$ be the adjacency matrix of *G*. The spectral radius of *G* is the largest eigenvalue of $\mathbf{A}(G)$, denoted by $\mu(G)$, see [3].

Let K_n be the complete graph on n vertices. Write $K_{n-1} + v$ for K_{n-1} together with an isolated vertex, and $K_{n-1} + e$ for K_{n-1} with a pendent edge. Recently, Fiedler and Nikiforov [5] gave tight conditions on spectral radius of a graph for the existence of Hamiltonian paths and cycles:

Theorem 1. Let G be a graph on n vertices.

(i) If $\mu(G) \ge n - 2$ and $G \ne K_{n-1} + v$, then G contains a Hamiltonian path.

(ii) If $\mu(G) > n - 2$ and $G \neq K_{n-1} + e$, then G contains a Hamiltonian cycle.

0024-3795/\$ - see front matter © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2009.09.004

ABSTRACT

We give tight conditions on the signless Laplacian spectral radius of a graph for the existence of Hamiltonian paths and cycles. © 2009 Elsevier Inc. All rights reserved.

^{*} The work was supported by National Natural Science Foundation of China (10671076). *E-mail address:* zhoubo@scnu.edu.cn

Theorem 2. Let *G* be a graph on *n* vertices with complement \overline{G} .

- (i) If $\mu(\overline{G}) \leq \sqrt{n-1}$ and $G \neq K_{n-1} + v$, then G contains a Hamiltonian path.
- (ii) If $\mu(\overline{G}) \leq \sqrt{n-2}$ and $G \neq K_{n-1} + e$, then G contains a Hamiltonian cycle.

Let *G* be a graph on *n* vertices. Let $\mathbf{D}(G)$ be the diagonal matrix of order *n* whose (i, i)-entry is the degree (number of neighbors) of the *i*th vertex of *G*. The matrix $\mathbf{L}^+(G) = \mathbf{D}(G) + \mathbf{A}(G)$ is the signless Laplacian matrix, for details see [4]. The signless Laplacian spectral radius of *G* is the largest eigenvalue of $\mathbf{L}^+(G)$, denoted by $\gamma(G)$.

In this note we give tight conditions on the signless Laplacian spectral radius of a graph for the existence of Hamiltonian paths and cycles.

2. Preliminaries

Let *G* be a graph with vertex set *V*(*G*) and edge set E(G). Let e(G) = |E(G)|. Let $d_G(u)$ be the degree of vertex *u* in *G*.

For an integer $k \ge 0$, the *k*-closure of the graph *G* is a graph obtained from *G* by successively joining pairs of nonadjacent vertices whose degree sum is at least *k* (in the resulting graph at each stage) until no such pair remains [1]. Write $C_k(G)$ for the *k*-closure of *G*. Note that $d_{C_k(G)}(u) + d_{C_k(G)}(v) \le k - 1$ for any pair of nonadjacent vertices *u* and *v* in $C_k(G)$. The following lemma is due essentially to Ore [8].

Lemma 1. (i) A graph G on n vertices has a Hamiltonian path if and only if $C_{n-1}(G)$ has one. (ii) A graph G on n vertices has a Hamiltonian cycle if and only if $C_n(G)$ has one.

Lemma 2 [8]. Let G be a graph on n vertices.

- (i) If $d_G(u) + d_G(v) \ge n 1$ for any pair of nonadjacent vertices u and v in G, then G contains a Hamiltonian path.
- (ii) $lf d_G(u) + d_G(v) \ge n$ for any pair of nonadjacent vertices u and v in G, then G contains a Hamiltonian cycle.

For a graph *G*, let *Z*(*G*) be the sum of the squares of the degrees of *G*, i.e., $Z(G) = \sum_{u \in V(G)} d_G(u)^2$. Obviously, $Z(G) = \sum_{uv \in E(G)} (d_G(u) + d_G(v))$. This quantity has been studied in the literature, see [2, 7,9]. Let $\mathcal{L}(G)$ be the line graph of the graph *G*.

Lemma 3. Let G be a graph with at least one edge. Then

$$\gamma(G) \geq \frac{Z(G)}{e(G)}.$$

Proof. Let m = e(G). Let $\mathbf{B}(G)$ be the vertex–edge incidence matrix of G. Then $\mathbf{L}^+(G) = \mathbf{B}(G)\mathbf{B}(\mathbf{G})^t$ and $\mathbf{B}(G)^t\mathbf{B}(\mathbf{G}) = 2\mathbf{I}_m + \mathbf{A}(\mathcal{L}(G))$ (see [3]), where \mathbf{I}_m stands for the unit matrix of order m. Since $\mathbf{B}(G)\mathbf{B}(G)^t$ and $\mathbf{B}(G)^t\mathbf{B}(G)$ have the same non-zero eigenvalues, we have

$$\gamma(G) = \mu(\mathcal{L}(G)) + 2.$$

Note that for a graph H, $\mu(H)$ is bounded from below by the average degree a(H) of H [3]. Obviously, $a(\mathcal{L}(G)) = \frac{2}{e(G)} \sum_{u \in V(G)} {\binom{d_G(u)}{2}} = \frac{Z(G)}{e(G)} - 2$. Then the result follows. \Box

We mention that the bound in previous lemma is attained if and only if $\mathcal{L}(G)$ is regular, as for the graph H, $\mu(H) = a(H)$ if and only if H is regular. A semi-regular graph is a bipartite graph for which every vertex in the same partite set has the same degree. For a connected graph G, $\mathcal{L}(G)$ is regular if and only if $d_G(u) + d_G(v)$ is a constant for any edge $uv \in E(G)$ if and only if G is regular or semi-regular.

Lemma 4 [6]. Every k-regular graph on 2k + 1 vertices contains a Hamiltonian cycle, where $k \ge 2$.

3. Result

Let *G* and *H* be vertex-disjoint graphs. The join of *G* and *H* is the graph formed from the (vertex-disjoint) union of *G* and *H* by adding all possible edges between them.

Let \mathbb{EP}_n be the set of graphs of the following three types of graphs on *n* vertices: (a) a regular graph of degree $\frac{n}{2} - 1$, (b) a graph consisting of two complete components, and (c) the join of a regular graph of degree $\frac{n}{2} - 1 - r$ and a graph on *r* vertices, where $1 \le r \le \frac{n}{2} - 1$.

Let $\mathbb{E}\mathbb{C}_n^r$ be the set of graphs of the following two types of graphs on *n* vertices: (a) the join of a trivial graph and a graph consisting of two complete components, and (b) the join of a regular graph of degree $\frac{n-1}{2} - r$ and a graph on *r* vertices, where $1 \le r \le \frac{n-1}{2}$.

Our result is:

Theorem 3. Let *G* be a graph on *n* vertices with complement \overline{G} .

(i) If $\gamma(\overline{G}) \leq n$ and $G \notin \mathbb{EP}_n$, then G contains a Hamiltonian path.

(ii) If $n \ge 3$, $\gamma(\overline{G}) \le n - 1$ and $G \notin \mathbb{E}\mathbb{C}_n$, then G contains a Hamiltonian cycle.

Proof. We use the techniques from Fiedler and Nikiforov [5]. Let $H = C_{n-1}(G)$. If $H = K_n$, then the result follows from Lemma 1(i). Suppose that $H \neq K_n$ and *G* has no Hamiltonian path. By Lemma 1(i), *H* has no Hamiltonian path either. By Lemma 2(i) and the property of (n - 1)-closure of *G*, $d_H(u) + d_H(v) \leq n - 2$ for any pair of nonadjacent vertices *u* and *v* (always existing) in *H*. Thus

$$d_{\overline{H}}(u) + d_{\overline{H}}(v) = n - 1 - d_H(u) + n - 1 - d_H(v) \ge n$$

for any edge $uv \in E(\overline{H})$. It follows that

$$Z(\overline{H}) = \sum_{uv \in E(\overline{H})} \left(d_{\overline{H}}(u) + d_{\overline{H}}(v) \right) \ge ne(\overline{H}).$$

By Lemma 3, we have

$$\gamma(\overline{H}) \ge \frac{Z(\overline{H})}{e(\overline{H})} \ge n.$$

Since \overline{H} is a subgraph of \overline{G} , by the Perron–Frobenius theorem,

$$\gamma(\overline{G}) \ge \gamma(\overline{H}) \ge n.$$

Since $\gamma(\overline{G}) \leq n$, we have $\gamma(\overline{G}) = \gamma(\overline{H}) = \frac{Z(\overline{H})}{e(\overline{H})} = n$, and then $d_{\overline{H}}(u) + d_{\overline{H}}(v) = n$ for any $uv \in E(\overline{H})$, implying that \overline{H} contains exactly one nontrivial component F, which is either regular or semi-regular, where $\frac{n}{2} + 1 \leq |V(F)| \leq n$. Suppose that F is semi-regular. Then $F = \overline{H}$ is a complete bipartite graph. Since $\gamma(\overline{G}) = \gamma(\overline{H})$, \overline{H} is a subgraph of \overline{G} , we have by applying the Perron–Frobenius theorem (to the signless Laplacian matrices of \overline{G} and \overline{H}) that $\overline{G} = \overline{H}$, and then G consists of two complete components, which contradicts the condition that G is not such a graph. Thus F is a regular graph of degree $\frac{n}{2}$ that is not semi-regular.

If $F = \overline{H}$, then since $\gamma(\overline{G}) = \gamma(\overline{H})$ and \overline{H} is a subgraph of \overline{G} , we have by the Perron–Frobenius theorem that $\overline{G} = \overline{H}$, and thus G(=H) is a regular graph of degree $\frac{n}{2} - 1$, which contradicts the condition that G is not such a graph. Thus \overline{H} consists of F and additional r = n - |V(F)| isolated vertices, where $1 \le r \le \frac{n}{2} - 1$. Note that $\gamma(\overline{G}) = \gamma(\overline{H})$ and \overline{H} is a subgraph of \overline{G} . By the Perron–Frobenius theorem, \overline{G} consists of vertex-disjoint graph F and a graph F_1 on r vertices. Thus G is the join of \overline{F} (a regular graph of degree $\frac{n}{2} - 1 - r$) and $\overline{F_1}$ (a graph on r vertices), which contradicts the condition that G is not such a graph. This proves (i).

Now we prove (ii). Let $H' = C_n(G)$. If $H' = K_n$, then the result follows from Lemma 1(ii). Suppose that $H' \neq K_n$ and G has no Hamiltonian cycle. By Lemma 1(ii), H has no Hamiltonian cycle either. By Lemma 2(ii) and the property of n-closure of G, $d_{H'}(u) + d_{H'}(v) \leq n - 1$ for any pair of nonadjacent vertices u and v (always existing) in H'. Thus

$$d_{\overline{H'}}(u) + d_{\overline{H'}}(v) = n - 1 - d_{H'}(u) + n - 1 - d_{H'}(v) \ge n - 1$$

for any edge $uv \in E(\overline{H'})$. It follows that

$$Z(\overline{H'}) = \sum_{uv \in E(\overline{H'})} \left(d_{\overline{H'}}(u) + d_{\overline{H'}}(v) \right) \ge (n-1)e(\overline{H'}).$$

By Lemma 3, we have

$$\gamma(\overline{H'}) \ge \frac{Z(\overline{H'})}{e(\overline{H'})} \ge n-1.$$

Since $\overline{H'}$ is a subgraph of \overline{G} , by the Perron–Frobenius theorem, we have

$$\gamma(\overline{G}) \ge \gamma(\overline{H'}) \ge n-1.$$

Since $\gamma(\overline{G}) \leq n-1$, we have $\gamma(\overline{G}) = \gamma(\overline{H'}) = \frac{Z(\overline{H'})}{e(H')} = n-1$, and then $d_{\overline{H'}}(u) + d_{\overline{H'}}(v) = n-1$ for any $uv \in E(\overline{H'})$, implying that $\overline{H'}$ contains exactly one nontrivial component F', which is either regular or semi-regular, where $\frac{n+1}{2} \leq |V(F')| \leq n$. Suppose that F' is semi-regular. Then F' contains at least n-1 vertices. Suppose that $\overline{H'}$ is connected. For $u \in V(\overline{H'})$, let N(u) be the set of neighbors of u in $\overline{H'}$. For $uv \in E(\overline{H'})$, there is a vertex w such that $V(\overline{H'}) = N(u) \cup N(v) \cup \{w\}$. Then $(N(u), N(v) \cup \{w\})$ or $(N(u) \cup \{w\}, N(v))$, say the former is a bipartition of $\overline{H'}$, and thus $d_{\overline{H'}}(u)d_{\overline{H'}}(v) = (d_{\overline{H'}}(v) + 1)d_{\overline{H'}}(u)$, which is a contradiction. Then $\overline{H'}$ is disconnected, and thus it consists of a complete bipartite graph F' and an additional isolated vertex. Since $\gamma(\overline{G}) = \gamma(\overline{H'})$ and $\overline{H'}$ is a subgraph of \overline{G} , we have by the Perron–Frobenius theorem that $\overline{G} = \overline{H'}$, and then G is the join of a trivial graph and a graph consisting of two complete components, which contradicts the condition that G is not such a graph. Thus F' is a regular graph of degree $\frac{n-1}{2}$ that is not semi-regular.

If $F' = \overline{H'}$, then by the Perron–Frobenius theorem, $\overline{G} = \overline{H'}$, and thus G (= H') is a regular graph of degree $\frac{n-1}{2}$, which contradicts the conclusion of Lemma 4. Thus $\overline{H'}$ consists of F' and additional r = n - |V(F')| isolated vertices, where $1 \le r \le \frac{n-1}{2}$. Note that $\gamma(\overline{G}) = \gamma(\overline{H'})$ and $\overline{H'}$ is a subgraph of \overline{G} . By the Perron–Frobenius theorem, \overline{G} consists of vertex-disjoint graph F' and a graph F'_1 on rvertices. Thus G is the join of $\overline{F'}$ (a regular graph of degree $\frac{n-1}{2} - r$) and $\overline{F'_1}$ (a graph on r vertices), which contradicts the condition that G is not such a graph. This proves (ii). \Box

Let $K_{r,s}$ be the complete bipartite graph with r and s vertices in the two partite sets. Then $\mu(K_{r,s}) = \sqrt{rs}$.

For a bipartite graph *G* with *n* vertices, if \overline{G} is not connected, then $\gamma(G) = n$.

Example. There are graphs to which Theorem 3 may apply but Theorems 1 and 2 may not.

(a) For odd $n \ge 5$, consider $G = K_{(n-1)/2,(n+1)/2}$. Then $\mu(G) = \frac{\sqrt{n^2-1}}{2}$. Since \overline{G} consists of two components $K_{(n-1)/2}$ and $K_{(n+1)/2}$, and noting that $\mu(K_r) = r - 1$, we have $\mu(\overline{G}) = \mu(K_{(n+1)/2}) = \frac{n-1}{2}$. Thus G does not satisfy the condition $\mu(G) \ge n - 2$ of Theorem 1 (i) and (for $n \ge 7$) the condition $\mu(\overline{G}) \le \sqrt{n-1}$ of Theorem 2(i). However, $\gamma(\overline{G}) = \gamma(K_{(n+1)/2}) = \frac{n-1}{2} + \mu(K_{(n+1)/2}) = n - 1$, and thus G satisfies the conditions of Theorem 3(i), implying that G contains a Hamiltonian path. (b) For even $n \ge 4$, consider $G' = K_{n/2,n/2}$. As above, we have $\mu(G') = \frac{n}{2}, \mu(\overline{G'}) = \mu(K_{n/2}) = \frac{n}{2} - 1$

(b) For even $n \ge 4$, consider $G' = K_{n/2,n/2}$. As above, we have $\mu(G') = \frac{n}{2}$, $\mu(\overline{G'}) = \mu(K_{n/2}) = \frac{n}{2} - 1$ and $\gamma(\overline{G'}) = \gamma(K_{n/2}) = n - 2$. Thus G' does not satisfy the condition $\mu(G') > n - 2$ of Theorem 1(ii) and (for $n \ge 8$) the condition $\mu(\overline{G'}) \le \sqrt{n-2}$ of Theorem 2(ii), but satisfies the conditions of Theorem 3(ii), implying that G' contains a Hamiltonian cycle.

References

- [1] A. Bondy, V. Chvatal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
- [2] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discrete Math. 185 (1998) 245–248.
- [3] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Application, Johann Ambrosius Barth, Heidelberg, 1995.
- [4] D. Cvetković, P. Rowlinson, S. Simić, Signless Laplacians of finite graphs, Linear Algebra Appl. 423 (2007) 155–171.
- [5] M. Fiedler, V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl., in press, doi:10.1016/j.laa. 2009.01.005.
- [6] C.St.J.A. Nash-Williams, Valency sequences which force graphs to have Hamiltonian Circuits, University of Waterloo Research Report, Waterloo, Ontario, 1969.
- [7] V. Nikiforov, The sum of the squares of degrees: sharp asymptotics, Discrete Math. 307 (2007) 3187-3193.
- [8] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
- U.N. Peled, R. Pedreschi, Q. Sterbini, (n, e)-Graphs with maximum sum of squares of degrees, J. Graph Theory 31 (1999) 283-295.