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1. Introduction

Let G be a simple graph on n vertices. Let A(G) be the adjacency matrix of G. The spectral radius of

G is the largest eigenvalue of A(G), denoted by μ(G), see [3].

LetKn be the complete graphonnvertices.WriteKn−1 + v forKn−1 togetherwith an isolated vertex,

and Kn−1 + e for Kn−1 with a pendent edge. Recently, Fiedler and Nikiforov [5] gave tight conditions

on spectral radius of a graph for the existence of Hamiltonian paths and cycles:

Theorem 1. Let G be a graph on n vertices.

(i) If μ(G) � n − 2 and G /= Kn−1 + v, then G contains a Hamiltonian path.
(ii) If μ(G) > n − 2 and G /= Kn−1 + e, then G contains a Hamiltonian cycle.

�
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Theorem 2. Let G be a graph on n vertices with complement G.

(i) If μ(G) �
√

n − 1 and G /= Kn−1 + v, then G contains a Hamiltonian path.

(ii) If μ(G) �
√

n − 2 and G /= Kn−1 + e, then G contains a Hamiltonian cycle.

Let G be a graph on n vertices. Let D(G) be the diagonal matrix of order n whose (i, i)-entry is the

degree (number of neighbors) of the ith vertex of G. The matrix L+(G) = D(G) + A(G) is the signless

Laplacianmatrix, for details see [4]. The signless Laplacian spectral radius ofG is the largest eigenvalue

of L+(G), denoted by γ (G).
In this note we give tight conditions on the signless Laplacian spectral radius of a graph for the

existence of Hamiltonian paths and cycles.

2. Preliminaries

Let G be a graph with vertex set V(G) and edge set E(G). Let e(G) = |E(G)|. Let dG(u) be the degree
of vertex u in G.

For an integer k � 0, the k-closure of the graph G is a graph obtained from G by successively joining

pairs of nonadjacent vertices whose degree sum is at least k (in the resulting graph at each stage) until

no such pair remains [1]. Write Ck(G) for the k-closure of G. Note that dCk(G)(u) + dCk(G)(v) � k − 1

for any pair of nonadjacent vertices u and v in Ck(G). The following lemma is due essentially to Ore [8].

Lemma 1. (i) A graph G on n vertices has a Hamiltonian path if and only if Cn−1(G) has one.
(ii) A graph G on n vertices has a Hamiltonian cycle if and only if Cn(G) has one.

Lemma 2 [8]. Let G be a graph on n vertices.

(i) If dG(u) + dG(v) � n − 1 for any pair of nonadjacent vertices u and v in G, then G contains a

Hamiltonian path.
(ii) If dG(u) + dG(v) � n for any pair of nonadjacent vertices u and v in G, then G contains aHamiltonian

cycle.

For a graph G, let Z(G) be the sum of the squares of the degrees of G, i.e., Z(G) = ∑
u∈V(G) dG(u)

2.

Obviously, Z(G) = ∑
uv∈E(G)(dG(u) + dG(v)). This quantity has been studied in the literature, see [2,

7,9]. Let L(G) be the line graph of the graph G.

Lemma 3. Let G be a graph with at least one edge. Then

γ (G) �
Z(G)

e(G)
.

Proof. Letm = e(G). LetB(G)be the vertex–edge incidencematrix ofG. Then L+(G) = B(G)B(G)t and
B(G)tB(G) = 2Im + A(L(G)) (see [3]), where Im stands for the unitmatrix of orderm. SinceB(G)B(G)t

and B(G)tB(G) have the same non-zero eigenvalues, we have

γ (G) = μ(L(G)) + 2.

Note that for a graphH,μ(H) is bounded frombelowby the average degree a(H) ofH [3]. Obviously,

a(L(G)) = 2
e(G)

∑
u∈V(G)

(
dG(u)

2

)
= Z(G)

e(G)
− 2. Then the result follows. �

We mention that the bound in previous lemma is attained if and only if L(G) is regular, as for the
graph H, μ(H) = a(H) if and only if H is regular. A semi-regular graph is a bipartite graph for which

every vertex in the same partite set has the same degree. For a connected graph G, L(G) is regular if
and only if dG(u) + dG(v) is a constant for any edge uv ∈ E(G) if and only ifG is regular or semi-regular.
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Lemma 4 [6]. Every k-regular graph on 2k + 1 vertices contains a Hamiltonian cycle, where k � 2.

3. Result

Let G and H be vertex-disjoint graphs. The join of G and H is the graph formed from the (vertex-

disjoint) union of G and H by adding all possible edges between them.

Let EPn be the set of graphs of the following three types of graphs on n vertices: (a) a regular graph

of degree n
2

− 1, (b) a graph consisting of two complete components, and (c) the join of a regular graph

of degree n
2

− 1 − r and a graph on r vertices, where 1� r � n
2

− 1.

Let ECn be the set of graphs of the following two types of graphs on n vertices: (a) the join of a

trivial graph and a graph consisting of two complete components, and (b) the join of a regular graph

of degree n−1
2

− r and a graph on r vertices, where 1� r � n−1
2

.

Our result is:

Theorem 3. Let G be a graph on n vertices with complement G.

(i) If γ (G) � n and G /∈ EPn, then G contains a Hamiltonian path.
(ii) If n� 3, γ (G) � n − 1 and G /∈ ECn, then G contains a Hamiltonian cycle.

Proof. We use the techniques from Fiedler and Nikiforov [5]. Let H = Cn−1(G). If H = Kn, then the

result follows from Lemma 1(i). Suppose that H /= Kn and G has no Hamiltonian path. By Lemma 1(i),

H has no Hamiltonian path either. By Lemma 2(i) and the property of (n − 1)-closure of G, dH(u) +
dH(v) � n − 2 for any pair of nonadjacent vertices u and v (always existing) in H. Thus

dH(u) + dH(v) = n − 1 − dH(u) + n − 1 − dH(v) � n

for any edge uv ∈ E(H). It follows that

Z(H) = ∑

uv∈E(H)

(
dH(u) + dH(v)

)
� ne(H).

By Lemma 3, we have

γ (H) �
Z(H)

e(H)
� n.

Since H is a subgraph of G, by the Perron–Frobenius theorem,

γ (G) � γ (H) � n.

Since γ (G) � n, we have γ (G) = γ (H) = Z(H)

e(H)
= n, and then dH(u) + dH(v) = n for any uv ∈ E(H),

implying that H contains exactly one nontrivial component F , which is either regular or semi-regular,

where n
2

+ 1� |V(F)| � n. Suppose that F is semi-regular. Then F = H is a complete bipartite graph.

Since γ (G) = γ (H), H is a subgraph of G, we have by applying the Perron–Frobenius theorem (to the

signless Laplacian matrices of G and H) that G = H, and then G consists of two complete components,

which contradicts the condition that G is not such a graph. Thus F is a regular graph of degree n
2
that

is not semi-regular.

If F = H, then since γ (G) = γ (H) andH is a subgraph of G, we have by the Perron–Frobenius theo-

rem that G = H, and thus G(= H) is a regular graph of degree n
2

− 1, which contradicts the condition

that G is not such a graph. Thus H consists of F and additional r = n − |V(F)| isolated vertices, where

1� r � n
2

− 1. Note that γ (G) = γ (H) and H is a subgraph of G. By the Perron–Frobenius theorem, G

consists of vertex-disjoint graph F and a graph F1 on r vertices. Thus G is the join of F (a regular graph

of degree n
2

− 1 − r) and F1 (a graph on r vertices), which contradicts the condition that G is not such

a graph. This proves (i).



B. Zhou / Linear Algebra and its Applications 432 (2010) 566–570 569

Now we prove (ii). Let H′ = Cn(G). If H′ = Kn, then the result follows from Lemma 1(ii). Suppose

that H′ /= Kn and G has no Hamiltonian cycle. By Lemma 1(ii), H has no Hamiltonian cycle either. By

Lemma 2(ii) and the property of n-closure of G, dH′(u) + dH′(v) � n − 1 for any pair of nonadjacent

vertices u and v (always existing) in H′. Thus
d
H′(u) + d

H′(v) = n − 1 − dH′(u) + n − 1 − dH′(v) � n − 1

for any edge uv ∈ E(H′). It follows that

Z(H′) = ∑

uv∈E(H′)

(
d
H′(u) + d

H′(v)
)

�(n − 1)e(H′).

By Lemma 3, we have

γ (H′) �
Z(H′)
e(H′)

� n − 1.

Since H′ is a subgraph of G, by the Perron–Frobenius theorem, we have

γ (G) � γ (H′) � n − 1.

Since γ (G) � n − 1, we have γ (G) = γ (H′) = Z(H′)
e(H′) = n − 1, and then d

H′(u) + d
H′(v) = n − 1 for

any uv ∈ E(H′), implying thatH′ contains exactly one nontrivial component F ′, which is either regular

or semi-regular, where n+1
2

� |V(F ′)| � n. Suppose that F ′ is semi-regular. Then F ′ contains at least

n − 1 vertices. Suppose that H′ is connected. For u ∈ V(H′), let N(u) be the set of neighbors of u in H′.
For uv ∈ E(H′), there is a vertexw such that V(H′) = N(u) ∪ N(v) ∪ {w}. Then (N(u),N(v) ∪ {w}) or
(N(u) ∪ {w},N(v)), say the former is a bipartition of H′, and thus d

H′(u)dH′(v) = (d
H′(v) + 1)d

H′(u),
which is a contradiction. Then H′ is disconnected, and thus it consists of a complete bipartite graph

F ′ and an additional isolated vertex. Since γ (G) = γ (H′) and H′ is a subgraph of G, we have by the

Perron–Frobenius theorem that G = H′, and then G is the join of a trivial graph and a graph consisting

of two complete components, which contradicts the condition that G is not such a graph. Thus F ′ is a
regular graph of degree n−1

2
that is not semi-regular.

If F ′ = H′, then by the Perron–Frobenius theorem, G = H′, and thus G (= H′) is a regular graph

of degree n−1
2

, which contradicts the conclusion of Lemma 4. Thus H′ consists of F ′ and additional

r = n − |V(F ′)| isolated vertices, where 1� r � n−1
2

. Note that γ (G) = γ (H′) and H′ is a subgraph

of G. By the Perron–Frobenius theorem, G consists of vertex-disjoint graph F ′ and a graph F ′
1 on r

vertices. Thus G is the join of F ′ (a regular graph of degree n−1
2

− r) and F ′
1 (a graph on r vertices),

which contradicts the condition that G is not such a graph. This proves (ii). �

Let Kr,s be the complete bipartite graph with r and s vertices in the two partite sets. Thenμ(Kr,s) =√
rs.

For a bipartite graph G with n vertices, if G is not connected, then γ (G) = n.

Example. There are graphs to which Theorem 3 may apply but Theorems 1 and 2 may not.

(a) For odd n� 5, consider G = K(n−1)/2,(n+1)/2. Thenμ(G) =
√

n2−1
2

. Since G consists of two com-

ponents K(n−1)/2 and K(n+1)/2, and noting that μ(Kr) = r − 1, we have μ(G) = μ(K(n+1)/2) = n−1
2

.

Thus G does not satisfy the condition μ(G) � n − 2 of Theorem 1 (i) and (for n� 7) the condition

μ(G) �
√

n − 1 of Theorem 2(i). However, γ (G) = γ (K(n+1)/2) = n−1
2

+ μ(K(n+1)/2) = n − 1, and

thus G satisfies the conditions of Theorem 3(i), implying that G contains a Hamiltonian path.

(b) For evenn� 4, considerG′ = Kn/2,n/2. As above,wehaveμ(G′) = n
2
,μ(G′) = μ(Kn/2) = n

2
− 1

and γ (G′) = γ (Kn/2) = n − 2. Thus G′ does not satisfy the conditionμ(G′) > n − 2 of Theorem 1(ii)

and (for n� 8) the conditionμ(G′) �
√

n − 2 of Theorem 2(ii), but satisfies the conditions of Theorem

3(ii), implying that G′ contains a Hamiltonian cycle.
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