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Russell’s viper venom factor V (FV) activator (RVV-V) is a thrombin-like proteinase that specifically
cleaves the Arg1545-Ser1546 bond of FV. Here we present the crystal structure of RVV-V in complex
with the FV14 peptide (residues 1533-1546 of human FV) determined at 1.8 A resolution. The struc-
ture reveals multiple interactions between RVV-V and the seven residues, lle1539 (P;)-Arg1545 (P,),
of the cleaved substrate. Comparison with substrate-free structures reveals conformational changes
of the RVV-V loops upon substrate binding, suggesting that the multiple interactions are mediated

by an induced-fit mechanism. The results provide an explanation for the narrow specificity of RVV-
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1. Introduction

FV is one of the key components of the blood coagulation cas-
cade [1,2]. Human FV is a single-chain glycoprotein of 2190 amino
acid residues and consists of six domains, A1, A2, B, A3, C1, and C2
[3]. FV circulates in the blood as a precursor molecule and is
converted into the active form, FVa, after consecutive cleavage of
the three peptide bonds, Arg709-Ser710, Arg1018-Thr1019, and
Arg1545-Ser1546, by thrombin or activated factor X (FXa) [3-8].
These cleavages remove the highly glycosylated B domain from
FV, resulting in the exposure of the binding site for FXa [9,10].
FVa acts as an essential cofactor in thrombin generation: the rate
of the prothrombin-to-thrombin conversion by FXa is enhanced
by several orders of magnitude in the presence of FVa and Ca®*
on phospholipid membranes [6,11].

Snake venoms are rich sources of serine proteinases (SVSP) that
exclusively belong to the MEROPS peptidase family S1, subfamily
S1A (chymotrypsin-A subfamily) [12]. SVSPs interfere mostly with
the hemostatic system upon envenomation [13]. Despite signifi-
cantly high sequence identity (50-70%), SVSPs display high speci-
ficity toward distinct macromolecular substrates. RVV-V is an
FV-activating SVSP isolated from Russell’'s viper venom [14].
RVV-V, which consists of 236 amino acids [15], cleaves only the
Arg1545-Ser1546 bond of FV and does not cleave the other two
thrombin-susceptible bonds [16]. Therefore, cleavage of FV by

* Corresponding author. Fax: +81 6 6835 5416.
E-mail address: stakeda@ri.ncvc.go.jp (S. Takeda).

RVV-V does not release its B domain. However, FV cleaved by
RVV-V acquires the ability to bind to FXa and shows the same level
of procoagulant activity as FV activated by thrombin [4,17]. While
thrombin acts on numerous proteins associated with hemostasis
other than FV, no protein substrate other than FV has been identi-
fied for RVV-V to date. Prolonged incubation of RVV-V with factor
VIII, fibrinogen, prothrombin and FX showed no apparent effects
on either the structures or activities of these proteins [14,18]. This
limited specificity of RVV-V toward FV among the components of
blood clotting has made it an extremely useful tool in the investi-
gation of FV both in the laboratory and for diagnostic purposes
[19,20].

The present study reports the structure of RVV-V in a complex
with the FV peptide and delineates the subsites on RVV-V. This is
the first report of the crystal structure of an SVSP in complex with
a fragment of its macromolecular substrate.

2. Materials and methods

Protein preparation and crystallization of the substrate-free and
D-Phe-Pro-Arg-chloromethylketone (PPACK)-bound RVV-V were
performed as described previously [21]. The synthetic N-acetylated
14-amino acid peptide (FV-14), Ac-S-R-D-P-D-N-I-A-A-W-Y-L-R-S,
was purchased from Sigma-Aldrich, Japan. A 20-fold molar excess
amount of FV14 was added to the concentrated RVV-V solution.
Crystals were obtained within several days at 277 K by the sitting
drop vapor diffusion method with the reservoir solution containing
20% w/v PEG3350 and 0.2 M zinc acetate at pH 6.0. Crystals were

0014-5793/$36.00 © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.febslet.2011.08.022


https://core.ac.uk/display/82374148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.febslet.2011.08.022
mailto:stakeda@ri.ncvc.go.jp
http://dx.doi.org/10.1016/j.febslet.2011.08.022
http://www.FEBSLetters.org

D. Nakayama et al./FEBS Letters 585 (2011) 3020-3025 3021

Table 1
Data collection and refinement statistics.

Substrate-free closed-form

Substrate-free open-form

PPACK-bound form

RVV-V/[FV14 complex

PDB ID

Data collection
Space group

Cell dimensions

a, b, c(A)

o, By (°)
Wavelength (A)
Resolution (A)
No. of unique reflections
Rmerge
Ifa(1)
Completeness (%)
Redundancy
No. of protein molecules in ASU

Refinement
Resolution (A)
No. reflections
Rwork

Rfree

No. atoms
Protein
Carbohydrate
Water
Acetate
Zinc ion
Inhibitor

B-factors
Protein
Carbohydrate
Water
Acetate
Zinc ion
Inhibitor

R.M.S. deviations

Bond lengths (A)
Bond angles (°)

Ramachandran®
Favored (%)
Outlier (%)

MolProbity score?
Clash score®

3S9A

P6522

78.9,78.9, 157.3
90, 90, 120

1.0
50.0-1.9 (1.97-1.90)
23 547 (2301)

0.063 (0.255)

22.8 (8.6)

99.8 (100.0)

7.0 (7.1)

1

30.0-1.9 (1.97-1.90)
23544 (2274)
0.219 (0.240)
0.254 (0.263)

1817
14
170

29.0
70.0
38.1

0.005
1.31

96.55
0

1.79 (83rd percentile)
11.25 (71st percentile)

3S9B

P6522

80.1, 80.1, 160.4
90, 90, 120

1.0
50.0-1.9 (1.97-1.90)
24182 (2389)

0.050 (0.282)

22.0 (7.1)

97.6 (99.5)

72(7.2)

1

30.0-1.9 (1.97-1.90)
24166 (2356)
0.198 (0.227)
0.219 (0.290)

1817
14
180

32.7
59.5
419

0.006
1.40

97.41
0.43

1.63 (91st percentile)
9.87 (77th percentile)

3SBK

P6522

77.2,77.2,168.4
90, 90, 120

1.0
50.0-2.55 (2.64-2.55)
10311 (993)

0.065 (0.267)

33.8 (15.8)

99.7 (100.0)

20.4 (21.4)

1

30.0-2.55 (2.62-2.55)
10255 (722)

0.248 (0.354)

0.330 (0.470)

52.8
78.8
36.3

48.2

0.010
1.88

93.99
0

2.19 (92nd percentile)
19.43 (77th percentile)

359C

PG,

101.2, 101.2, 44.2
90, 90, 120

1.0
30.0-1.8 (1.86-1.80)
24029 (2213)

0.047 (0.296)

463 (6.9)

99.0 (91.8)

10.9 (9.3)

1

30.0-1.8 (1.86-1.80)
23944 (2204)
0.183 (0.260)
0.219 (0.292)

1881
39
196
16
3

315
74.7
43.6
36.8
335

0.011
1.57

97.89
0

1.57 (91st percentile)
10.52 (70th percentile)

Single crystals were used for each data set. Values in parentheses are for the highest-resolution shell.

2 The accuracy of the models was judged by the MolProbity server [35].

cryoprotected by the reservoir solution supplemented with 20%
glucose and 1 mM FV14 and were flash frozen under a stream of
nitrogen gas at 100 K.

The diffraction data sets were collected at the SPring-8 beam-
line BL41XU by using the Rayonix MX225HE CCD detector at
100 K. Images were reduced using HKL2000 [22]. Structures were
solved by the molecular replacement method. The structure of
ACC-C (PDB ID: 2AIQ), a snake venom protein C activator that
shares 61% sequence identity with RVV-V, was used as a starting
model for solving the closed-form structure. The refined closed-
form structure was used as a starting model for solving other struc-
tures. Refinements were performed by using CNS [23] and REFMAC
[24]. The statistics of the data collection and refinement are
summarized in Table 1. Interactions between RVV-V and FV were
analyzed by the CCP4 programs and PDBe PISA [25]. Figures were
generated by PyMOL [26].

RVV-V preparations have been shown to be a mixture of three
isoforms [15]. Careful observations of the simulated-annealing
omit electron-density maps around the six residues that differenti-
ate the isoforms led to the conclusion that the major component in
the crystal resolved was RVV-V-y. By similar assessments, Glu148

and Asp149 were excluded from the reported RVV-V-y sequence
[15] in our final models. The residue numbering in RVV-V is based
on the topological equivalence to chymotrypsinogen.

3. Results and discussion
3.1. Overall structure

The overall structure of the RVV-V/FV14 complex is shown in
Fig. 1A. RVV-V displays the typical fold of the chymotrypsin-A
subfamily of serine endopeptidases. The catalytic triad is formed
by the residues His57, Asp102 and Ser195 that are located at the
interface of two six-stranded B-barrels.

The electron densities associated with FV14 are clearly ob-
served for the seven residues from Ile1539 (P;) to Arg1545 (P;)
(Fig. 1B), whereas the first 6 residues (Ser1533-Asn1538) are
disordered in the crystal. The terminal carboxyl group is well de-
fined and no connections were revealed in the electron density
map. The terminal oxygens are adequately separated from the cat-
alytic oxygen of Ser195 (3.0 and 3.1 A) and form hydrogen bonds to
the amide nitrogens of Gly193 and Ser195 and to the Ng; atom of
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Fig. 1. Structure of the RVV-V/FV14 complex. (A) Ribbon representation of the RVV-V/FV14 complex. The FV residues Ile1539-Arg1545 and the side-chains of the active site
residues in RVV-V are shown in green and yellow, respectively. RVV-V has a unique C-terminal nine residue extension (residues 244, 245, and 245A-245G shown in red) that
contains an extra disulfide bond (Cys91-Cys245E) and an N-glycosylation site linked to Asn245, which is not found in thrombin or other mammalian serine proteinases. (B)
Close-up view of the FV residues layered on the electron density map (simulated-annealing omit 2Fo-Fc map countered at 1.0¢) around the FV segment and Ser195 in RVV-V
in stereo. The salt bridge and the hydrogen bonds between the atoms of FV14 (labeled in blue ink) and RVV-V (labeled in black ink) and the hydrogen bond within the FV14
are shown as dotted lines in red, black and cyan, respectively, with the atom-atom distances in red ink.

His57 (Fig. 1B). These observations confirm that RVV-V cleaves
FV14 at the Arg1545-Ser1546 bond and suggest that the present
structure represents an enzyme/product complex.

3.2. RVV-V subsites

The FV14 segment is bound to the S;-S; subsites of RVV-V with
a contact area of 687 A? that accounts for 63.1% of its total solvent-
accessible area of 1089 A2, This value is comparable with the
reported 892 A2 between thrombin and the 10 residues of the fibri-
nopeptide [27] or the 602 A2 between granzyme M and its 6-resi-
due catalytic product [28].

The side chain of Arg1545 (P;) is bound in the deep S; pocket
(Fig. 2A) via a salt bridge to the carboxyl group of Asp189 and also
forms hydrogen bonds with the carbonyl oxygen of Ser217 and
with the side-chain oxygen of Thr190 (Fig. 1B). Aside from the
carboxyl oxygen described above, the amide nitrogen of Arg1545
forms a hydrogen bond with the carbonyl oxygen of Ala214. The
Arg1545 residue is involved in 134 contacts that represent 41%
of the total contacts formed between RVV-V and FV14 (Fig. 2B),
suggesting that the S; specificity pocket functions as the primary
subsite for FV recognition.

The side-chain of Leu1544 (P,) makes contacts with the side-
chain atoms of His57, Leu99 and Asp102 of RVV-V (Fig. 2C and
D) that form the S, subsite, which is a part of the large cavity
connecting the S; and S; subsites (Fig. 2A).

The side-chain of Tyr1543 (P3;) protrudes into the tunnel
(Fig. 2A), the entrance of which is formed by the hydrophobic
side-chains of Tyr172, Trp173, Val174, Ala214 and Val227 and
the main-chain atoms of the residues Ala214-Gly216 of RVV-V
(Fig. 2C and D). Of note, the indole ring of Trp173 is placed nearly
perpendicular to the flat face of the phenyl ring of Tyr1543, form-
ing contacts in a T-stacking configuration. The phenyl ring of
Tyr1543 is sandwiched between the Ne atom of Trp173 and the
Cot atom of Gly215, which are located 3.4 and 3.6 A, respectively,
from the Tyr1543 ring (Fig. 2C). In addition, the edge of the phenyl

ring of Tyr1543 forms contacts with the flat face of the phenyl ring
of Tyr172. The carbonyl oxygen of Tyr1543 forms a hydrogen bond
with the amide nitrogen of Gly216 (Fig. 1B), which is the only
hydrogen bond formed other than in the P;-S; site. The hydroxyl
group of Tyr1543 does not interact directly with the RVV-V atoms
but it participates in the water-mediated hydrogen bond network
formed inside the tunnel.

The flat face of the indole ring of Trp1542 (P,4) interacts with the
edge of the indole ring of Trp173 in a T-stacking configuration on
one hand, and its edge makes contact with the edge of the
Tyr172 ring in RVV-V on the other (Fig. 2C). In addition to those
aromatic interactions, the side-chain of Glu218 and the main-chain
atoms of Leu171, Gly216 and Ser217 form multiple contacts with
Trp1542 (Fig. 2C and D).

Ala1541 (Ps) interacts only with solvent molecules (Fig. 2A and
B); therefore, RVV-V does not have an Ss subsite.

Ala1540 (Pg) makes 11 contacts with the side-chain atoms of
Trp173 (Fig. 2B and D).

[le1539 (P;) interacts with the side-chains of Phe95A, Asn97,
Leu99 and Trp173 in RVV-V (Fig. 2C and D).

In summary, the P;-S; recognition involves multiple interac-
tions, including a salt bridge, hydrogen bonds and van der Waals
interactions, whereas van der Waals contacts predominate in the
P,-S, to P;-S; interactions. The RVV-V residues that interact with
FV14 are perfectly conserved in the sequence of another FV-acti-
vating enzyme, LVV-V, isolated from Daboia lebetina venom [29]
(Fig. 2D), with the exception of three residues. By careful observa-
tion, we confirmed that these substitutions do not interfere with
FV-binding.

3.3. Flexibility of the RVV-V loops

The substrate-free RVV-V structures were determined in two
distinct crystal forms at 1.9 A resolution and the PPACK-bound
RVV-V structure at 2.6 A resolution. These structures are essen-
tially identical to that of RVV-V in the RVV-V/FV14 complex with
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Fig. 2. Interactions between FV14 and RVV-V. (A) Subsites (S;-S;) are labeled on the molecular surface of RVV-V with the cognate FV residues shown in stick representation
(left). Sphere representation with the van der Waal radius of each atom of the FV segment (P;-P,) viewed from the opposite side (right). (B) The number of contacts (pairs of
atoms separated by less than 4.6 A) between FV and RVV-V are plotted against the FV residues and the sequences of other thrombin-susceptible human proteins, as well as
those of human plasminogen and protein-C, which are susceptible to TSV-PA and ACC-C, respectively. (C) Interactions between FV (shown in yellow and labeled in red ink)
and RVV-V (shown in light gray and labeled in black ink) are shown in stereo. (D) The number of contacts between RVV-V and FV14 are plotted against the residues of RVV-V,

LVV-V, human thrombin, FXa and SVSPs.

the exception of the loop configurations. The structure of the
closed form of RVV-V shows significant differences in both the
99- and 174-loops in comparison to the structure of the FV14/
RVV-V complex (Fig. 3A). As mentioned, Phe95a and Trp173 are

directly involved in FV recognition by RVV-V and, of note,
Trp173 provides the highest number of contacts among the
RVV-V residues (Fig. 3D). In the absence of substrate-binding,
these two aromatic rings are in proximity to each other and
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Fig. 3. Flexibility of the RVV-V loops. (A) Superimposition of the substrate-free closed-form (shown in yellow and labeled in red ink) and the RVV-V/FV14 complex structures
(in light gray and labeled in black ink). (B) Superimposition of the open-form (shown in pink and labeled in red ink) and the RVV-V/FV14 complex structures. (C)
Superimposition of the PPACK-bound form (shown in cyan and labeled in red ink) and the RVV-V/FV14 complex structures. PPACK is shown in magenta.

make a T-stacking contact, resulting in a closure of the S; subsite.
On the other hand, RVV-V in the open-form adopts a similar
structure to that of the RVV-V/FV14 complex (R.M.S.D.=0.258)
even in the absence of a bound substrate (Fig. 3B). The differ-
ences between these two substrate-free structures are solely
caused by the crystal-packing effects, suggesting that the 99-
and 174-loops are flexible in solution without substrate binding.
In addition, in the PPACK-bound structure, the phenyl ring of the
inhibitor interacts with the Cot atom of Gly215 with a similar
geometry to that of Tyr1543 (P3) in the RVV-V/FV14 complex
but is not sandwiched by Trp173 because the 174-loop still rep-
resents a closed form-like structure (Fig. 3C). The binding of
PPACK to RVV-V is similar to that of FV14 but is markedly differ-
ent from the binding of thrombin [30].

3.4. Mechanism of FV recognition by RVV-V

In the RVV-V/FV14 complex, the main-chain of the FV segment
adopts a partially extended conformation and has only one internal
hydrogen bond that is formed between the carbonyl oxygen of
Ala1540 and the amide nitrogen of Tyr1543 (Fig. 1B). However,
the side-chain atoms of Leu1544, Tyr1543 and Ile1539 are tightly
packed and collaboratively plug the large hydrophobic cavity
formed by the continuous S,, S; and S; subsites (Fig. 2A). The flex-
ibility of the 174-loop and the fact that movement of Trp173
results in 28 additional contacts caused by the opening of the S;
subsite (Fig. 2D) indicates that this plug is most likely formed by
an induced-fit mechanism. Combination of the three hydrophobic
residues at the P,, P3 and P; positions, which provides 148 contacts
(45% of the total contacts between FV and RVV-V), is uniquely
found in the Ile1539-Arg1545 segment of FV and not found in
other thrombin-susceptible sequences (Fig. 2B). Therefore, the
formation of this hydrophobic plug assembly could form part of
the mechanism by which RVV-V specifically recognizes FV for
cleavage at the Arg1545-Ser1546 bond.

Trp1542 (P4) is also unique in the 1539-1545 segment of FV
(Fig. 2B). As described, Trp1542 (P4), together with Tyr1543 (P3),
forms multiple aromatic interactions with Tyr172 and Trp173 in
RVV-V (Fig. 2C and D). This aromatic clustering may be an
additional mechanism for FV recognition by RVV-V. Tyr172 and
Trp173 are not conserved in thrombin and FXa but are found in
TSV-PA, a plasminogen activating SVSP [31] (Fig. 2D). However,
the TSV-PA-susceptible sequence is quite different from that of
the 1539-1545 segment of FV (Fig. 2B), and the involvement of
Tyr172 and Trp173 of TSV-PA in plasminogen recognition remains
unclear.

Gly215 plays a critical role in FV recognition by RVV-V. The
presence of non-Glycine residues at 215 severely hinders the
binding of Tyr1543 (P3) to the cognate subsite. Gly215 is uniquely
found in RVV-V and LVV-V and is substituted by Trp in thrombin
(Fig. 2D). The entrance of the S; tunnel identified in RVV-V is com-
pletely occupied by the Trp215 side-chain in thrombin [30]. There-
fore, the above observations collectively suggest that the
mechanism by which thrombin recognizes the Argl1545-Ser1546
bond of FV involves different interactions from those playing a role
in RVV-V.

Trypsin-like proteinases and their zymogens undergo the rear-
rangement of the active site, which involves the transition from a
disordered and flexible zymogen state to an ordered and rigid
active enzyme state, following induced-fit substrate/inhibitor
binding [32-34]. The present study clearly indicates that RVV-V
undergoes substantial changes in the substrate-specificity pockets
but only minimal changes both in catalytic triad and in the oxyan-
ion hole upon substrate/inhibitor binding. The results suggest that
a disorder-order transition of the catalytic site of RVV-V is mostly
completed by the removal of an activation peptide during its mat-
uration in the venom gland, however its activity and catalytic spec-
ificity are further regulated by induced-fit substrate binding.
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