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Abstract 

The single-pushout approach to graph transformation is extended to the algebraic transforma- 
tion of partial many-sorted unary algebras. Such a generalization has been motivated by the need 
to model the transformation of structures which are richer and more complex than graphs and 
hypergraphs. 

The main result presented in this article is an algebraic characterization of the single-pushout 
transformation in the categories of all conformisms, all closed quomorphisms, and all closed- 
domain closed quomorphisms of unary partial algebras over a given signature, together with a 
corresponding operational characterization that may serve as a basis for implementation. 

Moreover, all three categories are shown to satisfy all of the HLR (high-level replacement) 
conditions for parallelism, taking as occurrences the total morphisms in each category. Another 
important result presented in this article is the definition of HLR conditions for amalgamation, 
which are also satisfied by the categories of partial homomorphisms considered here, taking 
again the corresponding total morphisms as occurrences. @ 1999 -Elsevier Science B.V. All 
rights reserved 

Keywords; Graph grammars; Algebraic graph transformation; Partial algebras; 
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1. Introduction 

This paper is the second in a series initiated with [7]. The global goal of this series 

is to study in detail the algebraic transformation of partial unary algebras, both under 
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the double and single-pushout approach, and to apply this study to algebraic graph 

transformation. See also [I], which surveys some of the main results contained in this 

series of papers (although the approach to single-pushout transformation taken therein 

is different from the one taken here), [ 181, which translates some of these results to 

the setting of categories of spans, and [ 171, where such categories of spans are applied 

to develop a single-pushout approach to hypergraph rewriting based on conformisms. 

We devote this paper to single-pushout transformation systems of partial unary alge- 

bras, based on different types of partial homomorphisms. This paper should be viewed 

as forming a unity with [7], and we shall freely use the notations introduced therein, 

usually without any further notice. In particular, we assume the reader to be familiar 

with the basic language of partial algebras as introduced in Appendix A therein. 

The aim of this article is to extend systematically the single-pushout algebraic trans- 

formation to partial many-sorted unary algebras. The motivation is shared by the first 

paper in this series, namely that structures more complex than graphs and hypergraphs 

are better understood as partial algebras rather than total algebras, and that even in 

the case of graphs and hypergraphs, the theory of partial algebras offers new concepts 

that can be effectively used to develop new approaches to algebraic transformation. 

Additional motivation comes from the increasing use of partial algebras in the field of 

algebraic specification; see, for instance, [3] or the forthcoming [IO]. 

As a matter of fact, different representations of unary partial algebras as total algebras 

could be tried in order to simulate the transformation of partial algebras by means of 

that of total algebras, cf. Section 2.2, but none of them is best suited across the different 

notions of partial morphism used in this paper, and then the representation would have 

to be tailored to each specific application. 

Let us focus now on the contents of the present paper. We first of all recall that in 

the single-pushout approach to transformation in a category 9 (of partial morphisms, 

whatever it means), a (single-pushout) production rule is taken to be simply a mor- 

phism r : L -+ R in that category, and then the application of such a rule to an object 

G through an occurrence (a total morphism) m : L --f G consists in computing (when 

possible) the pushout of r and m in %? 

m 
1 1 

m’ 

G-H 
r’ 

In this case the object H is said to be derived from G by the application of rule 

r : L + R through morphism m, or that H is obtained by means of a direct derivation 

from G by r, and it is denoted in general by G & H. 

Therefore, if V is a category closed under pushouts then every production rule 

can be applied to every occurrence, obtaining always a derived object unique up to 

isomorphism. See [ 12,151 for more information on single-pushout transformation. 

Let now r = (S, Q, n) be a graph structure (a signature with all its operations unary). 

In this paper we lay the basis for a single-pushout approach to partial r-algebras 
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transformation, using three different types of partial homomorphisms: conformisms, 
closed quomorphisms (c-quomorphisms, for short) and closed-domain closed quomor- 
phisms (cdc-quomorphisms, for short). They are, respectively, closed homomorphisms 

from a weak, a relative and a closed subalgebra of the source partial algebra, and 

can be informally described as follows: conformisms are those partial homomorphisms 

that reflect the algebraic structure of the target algebra; c-quomorphisms are those con- 

formisms that, moreover, preserve the algebraic structure of their domain; and cdc-quo- 

morphisms are those c-quomorphisms whose domain is a closed subset of the source 

algebra. See Section 2.1 for details. These categories are known to be cocomplete [2,9]. 

There is another popular type of partial homomorphism of partial algebras, the (plain) 

quomorphisms (plain homomorphisms from a relative subalgebra of their source; in- 

formally, those partial homomorphisms that preserve the algebraic structure of their 

domain), but in general the pushout of two quomorphisms does not exist, even for 

partial unary algebras. The case of quomorphisms is studied in [27], where the authors 

give, among other results, a necessary and sufficient condition on a pair of quomor- 

phisms to have a pushout; we recall it in Section 2.4. 

In this paper we give, for conformisms, c-quomorphisms and cdc-quomorphisms, 

a detailed description of the pushout of two such partial morphisms as the pushout 

of two total closed homomorphisms, following the spirit of [ 141 or [ 1.51. In all three 

cases, and contrary to the description of these pushouts given (without any detail) 

in the introduction [l] to this series of papers, the descriptions given here allow a 

Remove-Add description of the construction of the pushout objects, and elucidate the 

relation between single- and double-pushout transformations. The study we make of this 

relation sheds some light on the Open Problem 4.5.1 in [12], which asks for formal 

comparisons of double-pushout and single-pushout transformation systems. 

Other, not so popular, categories of partial homomorphisms of partial algebras are 

considered in [2,8, 13, 193, which we do not consider here. In most cases, the reason 

for not considering them is the lack of pushouts, even in the unary case. Actually, 

and to our knowledge, there are only three other types of partial homomorphisms 

of partial algebras having all pushouts in some non-trivial cases: the (uninteresting) 

partial mappings, which have nothing to do with the structure of the partial algebras 

involved; the cdc-quomorphisms with domain an initial segment of the source algebra, 

which have all pushouts only in the unary case and these pushouts are given by a 

construction similar to the one for cdc-quomorphisms explained in Section 5 below; 

and the c-quomorphisms with domain an initial segment of the source algebra, which 

have always all pushouts but these are given in general by a very involved construction, 

and which are the object of a separate study elsewhere [20]. 

The contents of this paper are briefly described as follows. For the convenience 

of the reader, in Section 2 we collect some preliminaries. Namely, on the one hand 

we recall the main concepts and results on partial homomorphisms of partial algebras 

used in this paper, followed by a detailed analysis of possible representations of partial 

algebras as total algebras, and on the other hand we give a detailed description of 

the pushout of two partial mappings of S-sets as it shall be used in the remaining 
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sections. We also recall the construction of the pushout of quomorphisms given in 

[27], expressing it in a language similar to the one used in our constructions. 

Then, we devote a section to each type of partial homomorphism considered in 

this paper. The sections dealing with the different types of partial homomorphisms are 

ordered from the more general to the more particular case: first conformisms, then 

c-quomorphisms and finally cdc-quomorphisms. 

In the last section we show that the HLR conditions for parallelism introduced in 

[ 121 are satisfied for conformisms, c-quomorphisms and cdc-quomorphisms, taking as 

occurrences in any case the totally defined such morphisms. This gives three more 

examples of single-pushout transformation systems satisfying them, examples that are 

asked for in [ 121. 

Moreover, we define HLR conditions for amalgamation and show that they are 

satisfied for conformisms, c-quomorphisms and cdc-quomorphisms, again taking the 

corresponding total morphisms as occurrences. This allows to decompose non parallel- 

independent derivations by rules sharing a common subrule into a common derivation 

(by that subrule) followed by parallel-independent derivations, where such common 

derivations induce a global synchronization mechanism. 

2. Preliminaries 

2.1. Partial homomorphisms of partial algebras 

As we have already mentioned in the introduction, we assume the reader familiar 

with the basic language of partial algebras as presented in Appendix A in [7]. This 

section complements that Appendix, by introducing the most popular notions of partial 

homomorphisms of partial algebras, for which we use the names given in [9] and its 

“addendum” [2]. 

Nevertheless, for the convenience of the reader, we recall first of all the definitions 

of the different types of subalgebras and (total) homomorphisms of partial algebras 

underlying the different notions of partial homomorphisms. 

Let C = ($52, q) be a signature, where I = (w(q), a(p)) E S’ x S for every 

operation symbol cp E 52. A signature is called a graph structure, denoted by r, when 

all its operations are unary, that is, when w( cp) 5 S for all cp E Sz, and a graph structure 

r is called monounary when it has a single sort (which we shall omit as a subscript 

in practice) and a single unary operation cp. 

Given an S-set A = (As)sEs and a string w E S*, AW denotes a singleton if w = 2, 

the empty word, and A,, x . . . x Asn if w = si . . .s,. 

Let A = (LI,(~~*),~Q) and B = (B,(cpB),Ea) be two partial C-algebras, with B GA 

(that is, with B, CA, for every s E S). 
_ B is a weak subalgebra of A (supported on B) when it satisfies the following 

condition for every cp E !S2: if b E dom (Pi then b E domcp* and cp*(&) = 

cpB(b). 
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- B is a relative subalgebra of A (supported on B) when it is a weak subalgebra of 

A satisfying the following further condition for every cp E Q: if b E B”‘(Q) n dom (P* 

and q*(b) E B,(,) then b E dom qB. 
_ B is a closed subset of A when it satisfies the following condition for every cp E Q: 

if b E P(q) n dom (P* then q*(b) E B,(,). _ - 
- B is a closed subalgebra of A (supported on B) when it is a relative subalgebra 

of A and B is a closed subset of A. That is, when it is a weak subalgebra of A 

satisfying the following further condition for every cp E Sz: if b E B’+‘(p) n dom (P* 

then b E dom cpB. 

Given a subset B of the universe A of a partial algebra A, there are in principle many 

weak subalgebras of A supported on B, but only one relative subalgebra of A supported 

on B. And there is a (unique) closed subalgebra of A supported on B iff B is closed 

in A. 

Let now A = (A,(cpA),E~) and B = (B,(cpB),t~) be two arbitrary partial C-algebras 

and let f : A -+ B be a mapping of S-sets (that is, a family of mappings fs : A.7 + B,, 
s E S). 
- f is a (plain) homomorphism from A to B when it satisfies the following con- 

dition for every cp E 52: if a E dom cp * then f(a) E domcpB and cpB(f(a)) = 

.&&PA(a)). ’ 
- f is a closed homomorphism from A to B when it is a homomorphism from A to B 

and it satisfies the following further condition for every cp E 0: for every a E A’+‘(q), 

if f(a) E domcpB then a E domq*. 

We shall denote by Alg, and C-Alg, the categories whose objects are all partial 

C-algebras and whose morphisms are the plain homomorphisms and the closed homo- 

morphisms, respectively. 

Finally, let A = (A,(cpA)qE~) and B = (B,(v~)~~Q) be still two arbitrary partial 

C-algebras, and let now f : A -+ B be a partial mapping of S-sets (that is, a family of 

partial mappings fs : A, + B,, s E S). Let Domf, denote the domain of fs, for every 

s E S, and let Dom f = (Domfs)3Es be the domain of f. 

- .f is a quomorphism from A to B when it is a plain homomorphism from the relative 
subalgebra of A supported on Domf to B. 

- f is a conformism2 from A to B when it is a closed homomorphism from some 
weak subalgebra of A supported on Domf to B. 

- ,f is a closed quomorphism 3, c-quomorphism for short, from A to B when it is a 

quomorphism and a conformism simultaneously; that is, when it is a closed homo- 

morphism from the relative subalgebra of A supported on Domf to B. 

- f is a closed-domain closed quomorphism 4, cdc-quomorphism for short, from A to 

B when it is a closed quomorphism with Dom f a closed subset of A. 

’ If a = (a,, ( ) a.$.) E IP--‘~ then .f(g) stands for (.1;, (a,, ), ,~~(a,,)). 
2 p-Morphism, in [22] 

’ Quomorphic conformism, in [I] 

’ Closed-domain quomorphic conformism, in [l] 
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In other words, 

- f is a quomorphism from A to B when it satisfies the following condition: 5 for 

every q E Sz and a E (Domf)“(q) 

{ 

@E domqn* f(a) E dom (P* 

~*(a) E (DomfXccp) 1 { 

j 

cpB(f(a)) = f&&PA(a)) 1 

- f is a conformism from A to B when it satisfies the following condition: for every 

cp E 52 and a E (Dom ,f)“(@) 

1 

aEdorngo* 

f(a) E dom rPB ==+ ~*(a) E (Dom f)O((P) 

cpB(f(a)) = fl,c&PA(a)) 1 

- f is a c-quomorphism from A to B when it satisfies the following condition: for 

every cp E 52 and a E (Domf)“(q) 

GE domcp* 
a E domq* 

cp*(a) E (Domfkrp) 
* f(a) E domcpB * co*(a) E (Domf)o(cp) 

cpB(f(a)) = fOc&cPA(a)) 

- f is a cd~-quomorphism from A to B when it satisfies the following condition: for 

every q E Sz and a E (Domf)“(‘P) 

a E domcp* 

aEdomcpA=+f@)EdomcpB+ 4n*(a) E (DomfkVp) 

cpB(f(a)) = ffJc&PA(a)) 

Example 1. Let r be a signature with a unique sort (which we shall omit) and a 

unary operation cp. Let A be a partial r-algebra supported on A = {a~,a2,a3} with 

the operation qA given by cp*(al) = ~2, cp*(az) = 4, and let B be a partial r- 

algebra supported on B = {b,, 62,6x} with the operation 9’ given by qB(bl) = 62, 
pB(b2) = b3. Then (see Fig. 1) 

- the mapping f : A + B given by f (a2) = f (a3) = 63 is a conformism, but not a 

quomorphism, from A to B; 
_ the mapping f’ : A -+ B given by f ‘(al ) = bl , f ‘(a2 ) = b2 is a quomorphism, but 

not a conformism, from A to B; 

- the mapping f” : A + B given by f”(al) = b2, f”(a2) = b3 is a c-quomorphism, 

but not a cdc-quomorphism, from A to B; 
_ and the mapping f”’ : A + B given by f”‘(a2) = b2, f”‘(a3) = b3 is a cdc-quo- 

morphism from A to B. 

For a given signature Z, we shall denote by Q-Alg,, CF-Alg,, CQ-Alg, and 

CDCQ-Alg, the categories whose objects are all partial C-algebras and whose mor- 

phisms are, respectively, the quomorphisms, conformisms, c-quomorphisms and 

5 Where logical formulae of the shape A + B + C are intended to be parsed as (A =S B) A (B + C) 
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a,.““.kb, 

conformism 

a3 b3 

quomorphism 

a3 b3 

closed 
quomorphism 

a,......,b, 

closed-domain 
closed 

quomorphism 

Fig. I 

cdc-quomorphisms. Notice in particular that the following relations hold: 

C_Alg, c CDCQ-Alg, c: CQ-&, c CF-A1&, 

Alg, G Q-U,, 

Q-Alg, n CF-Alg, = CQ-Ak,. 

Furthermore, total (that is, totally defined) quomorphisms are homomorphisms and 

total c-quomorphisms and total cdc-quomorphisms are closed homomorphisms. But a 

total conformism f : A + B need not be even a homomorphism from A to B. Con- 

sider for instance a total mapping between a total algebra and a discrete algebra: it is 

always a conformism, but it is never a homomorphism, as long as the signature has 

operation symbols. Let TCF-Alg, denote the category of all partial Z-algebras with 

total conformisms as morphisms. 

The categories CF-Alg,, Q-Alg,, CQ-Alg,, CDCQ-Alg, and TCF-Alg, are thor- 

oughly studied in [2,6,8,9, 16, 191. In particular: 

- Q-Alg, is never complete or cocomplete if s2 # 0 [9]. 
_ For every one of the categories CF-Alg, [9], CQ-Alg, [9], CDCQ-Alg, [2] and 

TCF-Alg, [19], one has that it is complete iff it is cocomplete iff C is a graph 

structure. 

We shall denote by TAlg, the usual category of total C-algebras, and by P-TAlg, 

the category of total C-algebras with partial homomorphisms in the sense of [ 151: 6 

homomorphisms from subalgebras of the source algebra. Since the subalgebras of a total 

algebra are exactly its closed subalgebras, and since for total algebras the concepts of 

homomorphism (in the total algebras sense) and closed homomorphism are exactly the 

same, it turns out that P-TAlg, is a full subcategory of CDCQ-Alg,. It is proved in 

[ 151 that P-TAlg, is cocomplete iff C is a graph structure. 

‘It is denoted AlgP(C) in [15] 
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2.2. Partial algebras versus total algebras 

Given a graph structure r = (S, Q, q), with q(q) = (w(q), o(q)) E S x S for every 

operation symbol q E Q, one can encode partial r-algebras as total algebras in two 

ways. 

The first way roughly consists in splitting the universe of a partial r-algebra in 

layers in such a way that the operations in r become total operations between these 

layers; this is done for instance in [24] to model partial graphs as total algebras. 

Let T = T&f) be the total r-algebra of terms with variables in the set X = 

({x~})~~s (with a single variable x, for every sort s E S), and let T = (T,) be its 

universe, that is, the S-set of r-terms defined over the set of variables X. 

We shall say that a non-empty initial segment A of T over the set X of variables is 

homogeneous when all terms in it have the same variable. Let 9 denote the set of all 

(non-empty) homogeneous initial segments of T. 

Given a homogeneous initial segment I E 9 and a term t E T,,, we define I/t = 

((0)s )sES as follows: 

(0)s = {&,) E T, I t’T(t) E Is} . 

Notice that I/t is either empty (when t $! Is,) or a homogeneous initial segment 

(when t E ISO). 
Consider then the graph structure f = (9, fi, 6) with set of sorts 9J, set of operations 

b = {cpl I I E 39 cp E f-4 d&J(,)) E L(p)) 

and the arity mapping given by f(cpr) = (I,I/q(x,(,))) for every qq E d. 

Now, to every partial r-algebra A we can associate a total f-algebra 

‘& = (A (5&,&) 

in the following way. Its carrier A” = (&)I~s is given by 

AI= (I?,domt*) - (&doms*), IE~ 

and for every qq E h, the operation q$ : AI + &,,~xw~rp~~ is given by the restriction to 

AI c A,(,) of the corresponding operation qA : A,(,) + A,(,) on A. 

For instance, consider a monounary graph structure r. In this case 99 = {In 1 n E 

N U {co}}, where 1,~ = {x}, I, = {x, q(x), . . . , g?(x)} for any n E H+, and I, = T, 
and then 

{ 

0 if IZ = 0, 

I&(x) = L-1 if n E Z+, 

I, ifn=oo. 

We identify then 3 with N U {co}, and we have that, in this case, 

r = (N u ~~MPn)n~r+“{co}~~) 

with q(qm) = (cqco) and f(cpn) = (n,n - 1) for every n E Z+. 
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And then, given a partial r-algebra A = (A, (P*), we obtain the total f-algebra A = 

((An)nF~Uj3a),(~)~~~+“~~~) by splitting its universe into the layers & = {a ( a @ 

dom cp”}, d, = dom cp”* -dom (pn+‘* for every n E Z+, and d, = nnEN dom (pnA, and 

then breaking the partial operation (P* into total operations 4 : A, --+ A,_, (n E Z+) 

and cp”, : A, + A,. 

Returning to the case of an arbitrary graph structure, it turns out that the associ- 

ation A H _& yields an equivalence between the categories C-Algr and TAlgf. But 

plain homomorphisms of partial r-algebras would yield mappings between t-algebras 

which do not even preserve the sorts. So, plain homomorphisms do not find a good 

translation into the r-algebras setting, and since conformisms have a part depending on 

plain homomorphisms (they are closed homomorphisms from weak subalgebras, whose 

embeddings are, in general, only plain homomorphisms), we should not expect a good 

translation for them. The same assertion can be made, for similar reasons, regarding 

c-quomorphisms. 

But, on the other hand, since cdc-quomorphisms of partial r-algebras are closed 

homomorphisms from closed subalgebras, and the embeddings of the latter are then 

closed homomorphisms, one should expect that cdc-quomorphisms have a good trans- 

lation to the total f setting. And, indeed, it is not difficult to check that the association 

A I+ i yields an equivalence between the categories CDCQ-Algr and P-TAlgp. 

Before leaving this approach, we want to point out that passing from r to r blows 

up the size of the signature: for instance, in the one-sorted case, if r has finitely many 

operations then p has infinitely many sorts and operations, and if r has a countably 

infinite set of operations then r has non-countably many sorts and operations. 

A second way to encode partial r-algebras into total unary algebras consists in 

associating to a partial r-algebra its colored directed graph, replacing the operations 

by arcs with color the operation symbol. 

Specifically, given the graph structure r from the beginning, consider the new graph 

structure f = (S U !2,8, Vj) with set of sorts S U Q, set of operations 

and arity function f given by e(sV) = (cp, w(q)) and $(tV) = (cp, a(q)), for every 

cp E sz. 

Then, to every partial r-algebra A we can associate a total P-algebra A = (&(.s$, 

t$),Fo) as follows. Its carrier A is given by 2, = A, for every s E 5’ and A, = 

{(a, v*(a)) 1 a E dam cp”} for every cp E s2. And for every cp E Q and (a,!~) E A,, 

s$(u,b) = a and t$(u,b) = b. Notice that such A has all its operations So injective. 

We can understand then such a f-algebra A as a colored directed graph (with nodes 

in A and arcs the operations defined in A, with color the corresponding operation 

symbol) such that no two same-colored arcs have the same source node. 

For instance, if r is again a monounary graph structure, then the signature f has 

two sorts, say V and E (corresponding to the sort and the operation of r, respectively), 

and two operations, say s, t, with arity t(s) = G(t) = (E, V): that is, it is (equivalent to) 
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the graph structure that allows to understand directed graphs as total unary algebras; 

cf. [7, Example 41. And then to every partial r-algebra A we associate its directed 

graph A-, with carrieriv = A, 8, = {(a,cp*(a)) 1 a E domcp*) (the operation CJP* as 

a set of ordered pairs), and “source” and “target” operations S* and t* given by the 

first and second projection from the graph of (P* to A. 

For a general graph structure r, this association A --+ i yields an equivalence be- 

tween Alg, and the full subcategory of TAlgf supported on the class of all 

total f-algebras with all operations sP injective. However, closed homomorphisms of 

r-algebras do not find a simple translation to f-algebras: they correspond to the ho- 

momorphisms f : k + B such that if an arc e E k, has source (respectively, target) 

node b E f,(A,) cl?,, then for every pre-image a of b there exists a pre-image of e (in 

A,) with a as its source (respectively, target) node. This means that conformisms (or, 

for that matter, c-quomorphisms or cdc-quomorphisms) do not find a simple translation 

into this setting, either. 

2.3. Pushouts of partial mappings 

We recall here a description of the pushout of two partial mappings of S-sets that 

lies at the basis of all constructions of pushouts that appear in the next sections. We 

shall freely use in the rest of this paper the notations introduced in this subsection, 

usually without any further notice. 

Given a non-empty set S (of sorts), let S-Set and S-PSet denote the categories of 

S-sets with total and partial mappings, respectively, as morphisms. 

Let f : K --f A and g : K -+ B be two partial mappings of S-sets. Let Q(K)’ be the 

least equivalence relation on the disjoint union A U B such that it contains ’ 

({(fs(x),s&)) E A, x BS &(A, U&)* I x E D0m.h n Domgs})sEs. 

Definition 2. The gluing set of f and g is the greatest subset K’ = (K,‘)sE~ of K 
compatible with Q(K)‘; that is, 

Ki = {x E Domf, n Domy, I fs-‘Kt&)l~~); 1 u gF’([g&)l~(k-~; 1 
cDomJ;nDomg,). 

(Recall in this definition and in the sequel that f-l and g-’ are, in general, relations 

and not mappings.) 

Notice that this definition of K’ entails that if x E K,’ then S,-‘([fs(x)]e& = 

s,‘([ss(x>lecK,l)cK,. 
The gluing set of two partial mappings can also be characterized by means of the 

following property, whose easy proof we leave to the reader. 

7As in [7], for the sake of simplicity we shall always identify an element of a given set with its image 

in the disjoint union of this set with other sets. 
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Lemma 3. The gluing set K’ of f and g is the greatest subset of K such that 
f-‘(,f(K’)) = K’ and g-‘(g(K’)) = K’. 

Set now A’ = (A - f(K)) U ,f(K’) and B’ = (B - g(K)) U g(K’) and consider the 

restrictions 

f lK, : K’ + A’, glK’ : K’ 4 B’ 

of f and g to K’. Set H = (A’ U B’)/d(K,), where O(K’) stands for the least equiva- 

lence relation on A’ U B’ containing 

andletT:B’-+Handi:A’ -+ H denote the restrictions to B’ and A’, respectively, 

of the quotient map A’ U B’ + (A’ u B’)/‘o(Kt ). Then the set H, together with the 

mappings 7 : B’ -+ H and y” : A’ + H, is a pushout of ,f IKf : K’ + A’ and glK/ : 

K’ + B’ in S-Set; we shall refer to this construction as the usual pushout of f (Kf and 

gIKt in S-Set. 

Let i : A + H and f : B + H also denote the partial mappings corresponding to the 

homonymous total mappings in the corresponding square, with domains Domg” = A’ 
and Dom j = B’ respectively. 

Proposition 4. The square 

KfiA 

Y 1 1 J 

B-+H 
i 

is a pushout square in S-PSet. 

Proof. If r is a graph structure with set of sorts S and empty set of operations, then the 

pushout of two partial homomorphisms of total r-algebras (that is, two partial mappings 

of S-sets) described in [15, Construction 2.61 (cf. [23, Proposition 31) amounts to the 

construction summarized in this proposition. 0 

From this description of the pushout of two partial mappings of S-sets the following 

properties, which shall be used later, are easily deduced; cf. [ 15, Corollary 2.81. 

Corollary 5. Let H, together with 4 : A 4 H and 7 : B + H, be a pushout in 
S-PSetoff :K+Aandg:K+B. 

(i) The partial mappings g and 7 are jointly surjective (,@(A) U ,f(B) = H). 
(ii) The partial mapping ,4” is total iff g-‘(g(Dom f )) = Dom f. 

(iii) If ,f and g are total then 3 and j: are also total. 
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Finally, notice that if x E K,‘, then [fs(x)]s(~); = [fs(x)]e(~f)~. We shall use it later, 
usually without any further mention. 

2.4. Pushouts of quomorphisms 

It is well known [9,27] that for every signature C with non-empty set of operations 
(even a graph structure), there exist quomorphisms f : K -+ A and g : K --+ B of 
partial C-algebras whose pushout in Q-Alg, does not exist. Wagner and Gogolla give 
in [27] a characterization of those pairs of quomorphisms that have a pushout. Although 
we shall not use it in this paper, we recall this characterization here because of its 
close relation with our constructions. 

Proposition 6 (Wagner and Gogolla [27, Theorem 71). Let Z = (S, 52, q) be a signature 
with Q # 0, and let f : K + A and g : K + B be two quomorphisms of partial 
E-algebras. Let H, together with f : B + H and 6 : A -+ H, be the pushout of f 
and g in S-PSet described in Proposition 4, and let A’ and B’ denote respectively the 
relative subalgebras of A and B supported on the domains A’ and B’ of i and 7. 

Then, the quomorphisms f and g have a pushout in Q-Alg, iff for every operation 
cp E Q, the following description of (Pi yields a well dejined partial mapping (Pi : 

H”‘(q) + HO(,) : the domain of (Pi is 

dom (Pi = {f(b) 1 b E dom (pB’} U {s”(g) 1 a E dom (p*‘} 

and if b E dom cpB’ (respectively, a E dom cp*‘) then 

cpH(_F(b)) = f,c,,(cpB’(b)) (respectively, cpH(s”(a)) = &,,(cp*‘(a))). 

And when it exists, the pushout off and g in Q-Alg, is given by H = (H, (cpH)VpE~), 
together with the quomorphisms j : B --f H and 4 : A -+ H. 

This proposition can be rephrased as follows. 

Proposition 7. With the notations of the previous proposition, f : K -+ A and g : 

K + B have a pushout in Q-Alg, iff QK’) (see Section 2.3) is a congruence on the 
coproduct A’ + B’. And when f and g have a pushout, it is H = (A’ + B’)/e(K,) 

together with the quomorphisms p : B -+ H and g : A --t H given respectively by the 
compositions 

B’ L-) A’ + B’ “2” (A’ + B’)/qK,), A’ c-) A’ + B’ naV) (A’ + B’)/o(K/) 

3. Single-pushout transformation in CF-Alg, 

Let r denote, in this and the following sections, a graph structure: a signature 
(S,sZ,v]) with q(fi)cS x S. 
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Let f : K -+ A and g : K -+ B be two conformisms of partial r-algebras. In order 

to compute their pushout in CF-Alg,, we shall define suitable weak subalgebras KL, 

AL and BL of K, A and B supported, respectively, on the sets K’, A’ and B’ defined in 

Section 2.3, in such a way that f 1 KJ and glK< become closed homomorphisms between 

them and their pushout in C-Alg, turns out to yield the desired pushout of f and g in 

CF-Alg,. Such Kk, AI, and BI, will actually be the greatest weak subalgebras of K, 

A and B supported on K’, A’ and B’, respectively, such that f jp and glK/ are closed 

homomorphisms between them. 

Specifically, let Kh, Al, and BI, be the following weak subalgebras of K, A and B: 

- KI, = (K’, (q~~:),~a) is the weak subalgebra of K supported on K’, whose operations 

cpK”, for every cp E Q with q(q) = (s,s’), have their domain given by 

domcpKk = 
{ x E K,’ I LhWl,~,~~~ _ C dom v*+~ and cpKK’W&)I~~~~~, 1) C K,‘, } 

where A + B denotes the coproduct (disjoint union) of A and B, and O(K’) denotes 

the equivalence on its universe defined in Section 2.3. 

There are some comments we want to make on this definition: 

l If [fs(x)]o(Kf), Cdom(pA+B then fs-‘([fs(x)]ecKt,,) C dornp’ because f is a con- 

formism. 

l fs could be replaced by gs anywhere in this definition. Indeed, if x E Ki then 

[UX)lO(K~,, = kIs(x)le(Kf), and f,-‘(Mx>l~~~d = s?([sdx)l~(~~~,) GK,‘. 
- Al, = (A’, (~I*;),~Q) is the weak subalgebra of A supported on A’, whose operations 

cp *:, for every cp E 52 with I = (s,s’), have their domain given by 

domcp*: = {a E A, - fs(KS) ( a E domcp* and q*(a) E A:,} 

U{&(x) ( x E domcpKk} 

- In a similar way, Bk = (B’, (cpB:),E~) is the weak subalgebra of B supported on 

B’, whose operations cpBL, for every cp E Q with q( cp) = (s, s’), have their domain 

given by 

dom cpB: = {b E B, - g,(K,) 1 b E dom qB and cpB(b) E Bi, } 

U{gs(x) I x E domcpKk}. 

Lemma 8. Both f I p and glKt are closed homomorphisms from KL to AL and Bk, 

respectively. 
Furthermore, if K", A” and B” are any weak subalgebras of K,A and B supported 

on K’,A’ and B’, respectively, such that f Ip and glK( are closed homomorphisms 
between them , then they are also weak subalgebras of KL, Al, and Bk, respectively. 

Proof. As far as the first assertion goes, it is clear from the definitions that fl~f : 

Kh 4 Al, and g JKt : KI, -+ BI, are homomorphisms. To show that f Ip : Kh + AL 

is closed, let cp E Sz be an operation symbol with ~(9) = (s,s’) and let x E Ki be 

an element such that fs(x) E dom cp*k. Then there exists x0 E dom cp”; such that 
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A(x) = j&o). But then the equality [fs(x)]~(~t), = [fs(xo)]~(~f), implies x E dom qK:. 

Therefore, 11~’ : KI, --) AL is indeed closed. By symmetry, fly, : KI, + Ai is also 

closed. 

As far as the second assertion goes, let K”, A” and B” be any weak subalgebras of 

K, A and B supported on K’, A’ and B’, respectively, such that f(~t : K” -+ A” and 

glK( : K” ---f B” are closed homomorphisms. 

Let cp E Sz be an operation symbol with ~(9) = (s,s’). We have to show that 

dom (pK” C dom cpK:, dom (pA” & dom cpAL and dom qoB” C dom cpBk. 

If x E dom (pK” then A(x) E domq”‘, and since B(K’) is a closed congruence on 

A” + B” by [9, Lemma 11, we have that [fs(x)]~(~,~~ & dom qA”+B” C dom qA+B. And 

then, fly/ : K” -+ A” being a closed homomorphism, we have that f,-‘([fs(x)]~(~~), ) & 

dom cpK”, which implies that x E dom qKL. 

If (I f dom qA” then we must distinguish two cases. If a E A, - fs(iu,) then a E 

dom cp”” C dom (Pi and VA(a) = VA”(a) E Ai, imply a E domcpA:. And if a = 

fs(z) with z E K,’ then z E dom cp K” C dom qKw because fly/ : K” + A” is closed, 

and therefore a E dom q*:. This proves that dom (pA” C dom cpAl,; a similar argument 

proves that dom (pB” c dom cpB:,. 0 

Let 

be the pushout of & : KI, --) AL and glK/ : KI, + BI, in C-Alg, described in [7, 

Proposition 19 and Lemma 201. That is, H = (Ah + Bh)/e(K,) and the underlying 

commutative square of mappings of S-sets is the usual pushout of flit and glK/ in 

S-Set, described in Section 2.3. Recall moreover from [7] that the pushout of two 

closed homomorphisms in C-Alg, is also their pushout in Alg,. 

Let # : A -+ H and f : B --f H also denote the conformisms corresponding to the 

closed homomorphisms kj : Al, -+ H and f : Bh + H. 

Now we have the following result. 

Proposition 9. The commutative square 

s 
K-A 

9 1 1 B 

B-H 
7 

is a pushout square in CF-Alg,. 

Proof. Let C = (C,(V~)~~Q) be a partial r-algebra, and let p : A + C and q : B --+ 

C be two conformisms of partial r-algebras such that p o f = q o g. We know from 
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Proposition 4 that there exists a unique partial mapping h : H --f C such that ho@ = p 
and h o i = q. It is enough to check that h is a conformism. 

Let cp E Q be any operation symbol with I = (s,s’), and let x E Domh, such 

that h,(x) E domcpC. Since f and S are jointly surjective, we can assume without any 

loss of generality that x = @,(a) for some a E A:. Then, a E Dom h, o is = Dom ps 
and ps(a) = h,(x) E dom (pc and therefore, p being a conformism, a E domcp*, 

~*(a) E Dom PSI and psXcpA(a)) = d?pda)> = cpc(M-~)). 

There are two possibilities for such a E A,:: 
_ If a E A, - fy(Ks) then a E dom (P* and q*(a) E Dom psf C Domg”,, = Ai, imply 

that a E dom cp*l,. 

- If a E f,(K:), say a = L(z) with z E Ki, we shall prove that z E dom cpKI, which 

will imply, by the definition of A:,, that a t dom cp*: 
To do that, we have to check that [fs(z)]~c~,,, 2 dom v*+~ and 

cl?K~f,-‘U(41~(~~,, 1) C K:,. 

Let fF(z’) E [,fs(z)]~~~~ )Y. Then there exist x0,. . . ,xzn E Ki such that fs(z) = ,f;(xo), 

g&--2) = &Q-I) and .&Z-I) = fs(x2k) for every k = l,...,n, and finally 
h.(xzn) = fs(z’). A simple argument by induction on k shows then that psfs(x2k) = 

p&(z) = ~,~(a) for every k = l,..., n, and finally that psfs(z’) = ps(a). Since 

p.4~) E dome’, this implies that fs(z’) E dom q* (because p is a conformism) 

and 

qK(z’) E Dom p.+ 0 &.I = &‘(Dom ps!) C: &;-I’(A,$) = Ki, 

(because p o f is a conformism). 

A similar argument shows that if gs(z’) E [fS:(z)]s(~~,, then g$(z’) E dom (Pi and 

cpK(z’) E K,‘,. This finishes the proof of z E domrpK:,. 

Therefore u E dom cp*I,, and then x = is(u) E domqH, qH(x) = iS,(cpA(u)) E 

Domh,+ (because q*(a) E Dom psf = Domh,, o .y^,Y,) and 

h.?(cpH(x)) = J?&&*(a))) = P&PAW = cpcv?4x>>. 

The symbol cp standing for any operation symbol in the signature, this shows that h 

is a conformism. 0 

From this proposition we deduce that the derived partial r-algebra H of a partial 

r-algebra G by the application of a production rule r : L + R in CF-Alg, (that is, 

a conformism of partial r-algebras) through a total conformism m : L --f G can be 

obtained (up to isomorphism) as follows: 

(i) Compute the gluing set L’ of r : L 4 R and m : L --f G (Definition 2). 

(ii) Remove from R and G the elements of r(L)-v(L’) and m(L)-m(L’), respectively. 

Define on the resulting subsets of R and G the weak subalgebras RI, and Cl, of 

R and G, respectively, described above. 

(iii) Add RI, to Gh, by first forming their coproduct (disjoint union) Gk+RL and then 

identifying in this coproduct all images of elements of L’ by r and m (by means 
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of the least equivalence relation containing all pairs (~~(z),m,(z)), for every s E S 

and z E ~5:). 

In the sequel we give some examples of application of single-pushout transformation 

using conformisms, to show some features of this approach as well as its differences 

with the classical approach to single-pushout transformation using partial homomor- 

phisms of total algebras. 

Example 10. Let r be a graph structure, let L be any partial f-algebra, let R be a 

weak subalgebra of L, with universe R, and let r : L + R be the conformism given 

by the set-theoretical identity on R. This is, in general, a non-quomorphic conformism. 

Let now m : L + G be any total conformism. To compute the derived partial algebra 

of G by the application of r : L --+ R through m : L --f G, we must find first the sets 

L’, R’ and G’. To do that, notice first that 8(L), only identifies on the one hand x E R, 

with m,(x) E G,, and on the other hand x E Rz with x’ E R, such that m,(x) = m,(x’). 

Therefore, for every s E S: 

- L: = {x E L, I m;‘(m&)> CR,), 
- R; = L;, 

- Gi = {y E Gs I m;‘(y) C &) 
(since (G - m,(L)) U m.&) = {v E G I m;‘(y) = 0) U {v E G 1 m;‘(v) # 
0,m;‘(y)CR,)). 

Now the weak subalgebras Lk, RI, and GIy of L, R and G, respectively, have as 

universes these sets L’, RI and G’, and the domains of their operations are given as 

follows. For every cp E 0, say with I = (s,s’): 
_ x E dom cpLk iff m,(x) E dom cpG, m;‘(m,(x)) C dom (Pi and 

m,;‘(cpc(ms(x))) c &. 
_ x E dom cpRk iff x E dom ~‘6 (that is, RI, = Lk, and r becomes the identity between 

these two algebras). 
_ y E dom qG: iff either y # m,(Li), y E dom (Pi and q’(y) E G’, or y = m,(x) with 

x E domcpL&; that is, iffy E domcpG, m;‘(y)CdomcpR, and m;‘(qG(y))~Rs~. 

And then the pushout object of r and m is obtained as the pushout in C-Alg, of the 

identity Lh ---) RI, = Lk and the restriction rnlLf : LI, ---f Cl. It is Gh itself. 

So, the derived partial r-algebra of G by the application of r through m : L -+ G 

in CF-Alg, is obtained from G as follows: 
_ We first remove from G all points whose preimage is not contained in R; 
- Then we remove all operations (on the remaining points) which are not defined in 

R on all preimages of their argument. 

In particular, if R = L (that is, if R is a weak subalgebra of L with its same 

universe) then this derived partial r-algebra is obtained by removing from G those 

operations that are not defined in R on all preimages of their argument. 

Example 11. Let r be a graph structure with two operations, cp and 4. Suppose 

we want to perform on partial r-algebras such a simple operation as removing all 

end cp-loops (that is, all cp-loops on points where 4 is not defined) in them without 
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touching anything else, and in particular without deleting the point where the loop is 

defined. 

In CF-Alg, it can be done by simply applying the single-pushout rule r : L -+ R 

where L is a r-algebra with a single point, say L = {a}, and a loop cpL(a) = a, R is 

a discrete r-algebra supported on {u} and r is given by r(a) = a. 

Indeed, if there exists some total conformism rn : L + G to some r-algebra G, then 

either m(a) $ dom (P’ or m(a) E dom (Pi and cp’(m(a)) = m(a). In the first case, the 

application of r to G through m produces G again, without any change, 8 while in the 

second case the application of r to G through m produces the weak subalgebra H of 

G with its same universe and with domcpH = dom (Pi - {m(u)}. 

Then the rule r : L --+ R, applied to a r-algebra A, removes a cp-loop in a point 

where 4* is not defined, without touching anything else. So, successive applications 

of r remove from a r-algebra its end cp-loops, and only these ones, 

One could also try to do this by first encoding partial r-algebras by means of total 

algebras, in any of the ways recalled in Section 2.2, and then using single-pushout 

transformation of total algebras in the sense of [IS]. 

A first attempt could be to encode partial r-algebras A by means of the correspond- 

ing total F-algebras A, as explained in Section 2.2. That is, one could try to remove 

all end cp-loops in a partial r-algebra A by using single-pushout transformation of 

total unary algebras on A. However, it is quite evident that, since a single-pushout 

transformation rule must change the sort of an element, if one wants that the rest of 

the structure remains unchanged, then one needs one rule for every possible context: 

one needs an infinite set of rules that essentially replace a whole connected component 

of an algebra by the desired result. 

One can also encode partial r-algebras as total f-algebras, as also explained in 

Section 2.2. But then the application of the corresponding rule r : i -+ fi of total ?- 

algebras to the p-algebra A corresponding to a r-algebra A can remove any cp-loop, 

and not only an end one. And, indeed, it is impossible to remove only the end cp-loops 

without application conditions (in this case, that the image of the point be not a source 

node of a &arc). 

Let us consider now a more involved example. 

Example 12. In this example we show how to use single-pushout transformation based 

on conformisms to produce the hypergraph underlying a hierarchic higher-order hyper- 

graph VI. 
Let C, = (( V, E}, !ZH, ‘I) be a graph structure with 

QH = {Si 1 i E Z+} U {ti 1 i E Z’} U {Ui ( i E Z’) 

’ If one wants to get rid of this possibility, it is enough to impose derivations to be made through closed 

homomorphisms, instead of through general total conformisms. 
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and the arity function v defined by v(si) = q(ti) = (E, V) and n(ai) = (E,E), i E P. 

Recall from [7, Example 31 that a higher-order hypergruph can be understood then as 

a finite partial CH-algebra G satisfying the following conditions: 

- domsz, cdomsc, domtic,, cdornt? and domaic,, cdomac, for all i E P, 
_ there exists an n(G) E Zf such that dams:,, = domt$., = doma$o) = 0. 

The elements of Gv and GE are called, respectively, the nodes and the arcs of G, 

and the operations ~7, t? and a? are called, respectively, the ith source, target and 

abstraction operations on G. 

For every e E GE, we shall denote by n,(e) (respectively, nt(e), n,(e)) the greatest 

i > 1 such that e E dams? (respectively, e E dom t,“, e E dom UC) or 0 if e $ domsy 

(respectively, e # dom t?, e $ dom UF ). 
We shall say that such a higher-order hypergraph G is hierarchic when there is no 

sequence of abstraction operations a:, . . , a& n > 1, such that 

a:(. . . (at(e)). . .) = e 

for some arc e E GE (that is, such that a:(. . . (at(e)). . .) is defined and yields the same 

e). For instance, the higher-order hypergraphs involved in the methods of knowledge 

base verification using higher-order hypergraph transformation developed in [25,26] 

are always hierarchic. 

We show in the sequel how to compute the hypergraph underlying a hierarchic 

higher-order hypergraph (that is, its weak subalgebra with the same sets of nodes and 

arcs and the same source and target operations, but no abstraction operation defined in 

it) by means of the application of suitable production rules in CF-Alg,,,. 

For every rz > 1 let G(n) be the partial CH-algebra with G(n)E = {e, el,. . . , e,} and 

G(n)v = {Uj 1 1 <j<2n} U {wij 1 1 <i<n, 1 <j<2n} 

and with operations defined as follows: 

aFcn)(e) = ej, S:‘“‘(e) = Vj, t:‘“‘(e) = Un+j, j = l,...,n, 

sF’“‘(ei) = Wi,j, tC”)(ei) = Wi,n+j, i,j=l n ‘aA.3 

and let 6(n) be the weak subalgebra of G(n) with the same carrier and the same source 

and target operations, but all abstraction operations discrete. Let r,, : G(n) + c(n) be 

the conformism given by the identity mapping. 

Let now G be a higher-order hypergraph and let m : G(n) -+ G be a total con- 

formism. Let mE(e) = e’, mE(ei) = ei, mv(vi) = v: and mv(wi,j) = w:,~ (i = l,..., n, 

j=l , . . . ,2n). Since m is a conformism, the following conditions are satisfied: 

- If e’ E domay then i<n and @(e’) = ei. 
_ ei @doma?, i= l,..., n. 

- If e’ E domsjG then ,j<n and sF(e’) = v>. Let ~t,~ = n,(e’)<n. 

- If ej E dams? then j<n and sjc(e() = w:,~. Let n,; = n,(ei)<n. 
- If e’ E dom tj” then j<n and t,“(e’) = v:+~. Let nI = n,(e’)bn. 
_ If ei E domt? then j<n and tF(ei) = w;,~+~. Let n,i = q(ef)<n. 
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The pushout object of r, : G(n) + G(n) and m : G(n) + G in CF-Alg,,, is then given 

(by Example 10) by the weak subalgebra G, of G obtained by deleting from G all 

abstraction operations defined on mE(e) and not touching anything else. 

Let now G be a hierarchic higher-order hypergraph with Gv, GE # 8, and let no 

be an upper bound for {qY(e),nt(e),n,(e) / e E GE}. The argument developed above 

shows that successive applications of the production rule r,, : G(Q) + G(Q) through 

total conformisms end up by deleting all abstraction operations in G without modifying 

either its carrier or its source and target operations. In other words, they end up by 

computing the hypergraph underlying G. 

We need the condition Gv, GE # 0 to guarantee the existence of some total con- 

formism G(Q) + G. If GE = 8 then it is clear that nothing must be done: G itself is 

the hypergraph we are looking for. If GE # 8 but Gv = 8 then, we need a different 

set of rules. 

Let Go(n) be the relative subalgebra of G(n) with its same set of arcs, but no 

node (that is, with G’(n)v = 0 and Got = {e,et ,..., e,,}), let Go(n) its discrete 

weak subalgebra, and let r,” : Go(n) + Go(n) be the conformism given by the identity 

mapping. The pushout object of $ : Go(n) + Go(n) and a total conformism m : 

Go(n) + G in CF-Alg,,( is again given by the weak subalgebra G, of G obtained by 

deleting from G all abstraction operations defined on I?zE(e) and not touching anything 

else (notice in this case that the existence of the total conformism m implies that no 

source or target operation is defined on any image mE(e) or mE(ei), i = 1,. . . ,n). 

Therefore, if G is a non-empty hierarchic higher-order hypergraph with Gr, = 0, 

and if no is an upper bound for {n,(e) 1 e t GE}, then successive applications of the 

production rule Y:~ : G’(Q) + G’(Q) through total conformisms end up by deleting 

all abstraction operations in G without modifying its carrier. 

If G is not hierarchic then such a procedure does not delete all abstraction operations, 

neither when Gv = 8 nor when Gv # 0. Actually, it may happen that there does not 

exist any total conformism m : G(n) + G or m : Go(n) + G and therefore that we 

could never apply any rule r, or 7,” to G. 

It is worth mentioning that one could also try to delete all abstraction operations 

in higher-order hypergraphs by understanding them as (special) total unary algebras 

over the corresponding signature 2~ (see Section 2.2; notice that in this case the 

corresponding set of sorts turns out to be non-countable), and then using single-pushout 

transformation of total unary algebras. But an argument similar to the one used in 

Example 11 when discussing the encoding of partial r-algebras by means of total Is- 

algebras, shows that we would need here a non-countably infinite number of rules to 

take care of all possibilities, as well as application conditions. 

The description of the pushout of two conformisms as the pushout of two closed 

homomorphisms given in Proposition 9, similar in spirit to the description of the push- 

out of two partial homomorphisms in P-TAlg, given in [ 151, motivates to investi- 

gate whether there is some relation between single-pushout transformation in CF-Alg,. 

and double-pushout transformation in Alg,, as it is the case for single-pushout 
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transformation in P-TAlg, [ 15, Section 3.31 and double-pushout transformation of total 

unary algebras. This relation should come through the following notion of a (double- 

pushout) production rule in Alg, associated to a (single-pushout) production rule in 

CF-Alg, (cf. [15, Section 3.31). 

Definition 13. Given a conformism of partial r-algebras r : L + R, let L, be the weak 

subalgebra of L supported on Domr such that r is a closed homomorphism from it, 

let i : L, + L be the corresponding embedding and let r : L, --f R denote also the 

corresponding closed homomorphism. Then the production rule P(r) associated to r is 

the production rule in Alg, 

P(r) = (L c L, L R). 

The question we ask is, then, whether or not the derived partial algebra of G by 

the production rule r in CF-Alg, and by the production rule P(r) in Alg,, through 

a total conformism that is also a homomorphism, that is, a closed homomorphism, 

m : L -+ G satisfying the gluing condition [7, Definition 81 w.r.t. i, are the same (up 

to isomorphism). The answer is, in general, no, as the following example shows. 

Example 14. Let r be a monounary graph structure. Let L be a r-algebra with L = 

{a,b} and cpL(a) = cpL(b) = b, and let R be the discrete relative subalgebra of L 

supported on R = {a}. Let r : L -+ R be the conformism (actually, a c-quomorphism) 

given by the identity on R. 

Let now G be equal to L, and let m : L - G be the identity mapping, which is a 

closed homomorphism. A simple category-theoretical argument (or also Example 10) 

shows that the derived partial r-algebra of G by the application of r through m is 

isomorphic to R. 

On the other hand, in this case the production rule P(r) would be (L c L, A R), 

with L, the relative (discrete) subalgebra of L supported on {a}. It is clear that m 

satisfies the identification, dangling and relative closedness conditions in [7, Definition 

81 w.r.t. i (for instance, because L = C&(a))). And a simple computation shows that 

the derived partial r-algebra of G through g by the application of rule P(r) in Alg, 

[7, Defintion 151 is isomorphic to G, and therefore clearly non-isomorphic to R. 
Another example is given by the c-quomorphism r : L + R and the closed homo- 

morphism g : L + G’, with G’ a total r-algebra with carrier G’ = {a’} and @‘(a’) = 

a’, given by g(u) = g(b) = a’; again, g satisfies the gluing condition w.r.t. i. In this 

case, it is easy to check (using Example 10) that the derived partial r-algebra of G’ 

by the application of r through g is empty, while there is no double-pushout diagram 

G’-D -8 
i’ Y’ 
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yielding an empty algebra as an algebra derived from G’ by the application of p(r) 

through g. 

This example also shows that, in general, the derivation of a partial r-algebra G 

by the application of a rule Y : L -+ R in CF-Alg, through a closed homomorphism 

m : L + G fits better into our intuitive expectations than the corresponding derivation 

by the application of P(r) in Alg,. For instance, it is clear from the intuitive notion 

of transformation that the application of a rule through the identity on its left-hand 

side object should give its right-hand side object. And it happens in this way with 

the application of a single-pushout production rule r : L + R in CF-Alg,, because 

(by category theoretical reasons, but also by Proposition 9) the pushout algebra of 

a conformism r : L + R and the identity IdL : L + L is R. But it does not 

happen in general in this way with the application of the double-pushout production 

rule P(r) = (L t L, L R) in Alg,, because in this case the algebra derived from 

G by the application of P(r) through IdL : L -+ L (which always satisfies the gluing 

condition w.r.t. i : L, 4 L) is, according to [7, Definition 151, the pushout algebra 

of r : L, 4 R and i : L, + Q(L,.) (the inclusion of L, in the closed subalgebra 

generated by it), and it need not be isomorphic to R (as it shows the first case in the 

last example). 

To close this section, we show that the pushout of two total conformisms in CF-Alg, 

is also their pushout in TCF-Alg,. We shall use it in Section 6. 

Proposition 15. Let f : K + A and g : K + B be two total conformisms of partial 
r-ulgebrus , and let 

K&4 

be their pushout in CF-Alg, described in Proposition 9. Then it is also their pushout 
in TCF-Alg,. 

Proof. If f and g are total conformisms then f and g are also total conformisms by 

Corollary S(iii). And if p : A + C and q : B -+ C are two total conformisms such 

that p o f = q o g then the unique conformism h : H -+ C such that h o 7 = p and 

h o ij = q is total because f and 6 are jointly surjective by Corollary 5(i). 0 

4. Single-pushout transformation in CQ-Alg, 

Let r be a graph structure and let now f : K + A and g : K + B be two c-quomor- 

phisms of partial r-algebras. In this section we prove that their pushout in CF-Alg, 

is also their pushout in CQ-Alg,. We shall freely use the notations introduced in the 

previous sections. 
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Let K’, A’ and B’ be the relative subalgebras of K, A and B supported respectively 

on the sets K’, A’ and B’ defined in Section 2.3. 

Lemma 16. K’ = Kk,, A’ = Ah und B’ = BL. 

Proof. By Lemma 8, and since Kh, AL and BI, are weak subalgebras of K’, A’ and 

B’, respectively, it is enough to check that ,fl~j : K’ -+ A’ and gJK/ : K’ 4 B’ are 

closed homomorphisms. 

Let cp E a be an operation symbol with I = (s,s’). If x E dom cpK’ then x E 

(Domfs) f’ dom (Pi and (pK(x) E Ki, C Domf,f . f being a quomorphism, this implies 

that L(x) E domcp* n Ai and (p*(&x)) = j$(cpK(x)) E fsf(Ki,) C A$, that is, fs(x) E 

dom cp*’ and cp*‘(fs(x)) = j$(qK(x)). 

Now let x E Ki such that h(x) E domcp *‘. Then h(x) E domcp* and ~p*(fs(x)) E 

A,;,. Since f : K + A is a c-quomorphism, &x) E dom (P* implies that x E dom cpK, 

(pK(x) E Domf,! and fsl(cpK(.x)) = ~*(fs(x)). But since the latter belongs to A:, n 
f$(K,f ) = f,,(Ki,), we deduce from Lemma 3 that (pK(x) E K$ and therefore that 

x E domcpK’. 

Since 40 stands for any operation symbol in the signature, this shows that fl~r : 

K’ -+ A’ is a closed homomorphism. By symmetry, glK/ : K’ + B’ is also a closed 

homomorphism. 0 

Let now 

be the pushout of fly, : K’ + A’ and glKt : K’ + B’ in C-Alg,. As in the case 

of conformisms, let @ : A -+ H and 7 : B + H also denote the c-quomorphisms 

corresponding to (the closed homomorphisms) g and f, respectively. 

In this way, H together with g : A + H and f : B -+ H, is the pushout of f and 

g in CF-Alg, by Lemma 16 and Proposition 9. And it turns out that it is also their 

pushout in CQ-Alg,. 

Proposition 17. Let f : K + A and g : K --) B be two c-quomorphisms of partiul 

r-akgebras, and let 

K&4 

9 1 1 GT 

B-H 

be their pushout in CF-Alg,. Then it is also their pushout in CQ-Alg,. 
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Proof. Let p : A + C and q : B ---f C be two c-quomorphisms of partial r-algebras 

such that p o f = q o g. We know from Proposition 9 that there exists a unique 

conformism h : H + C such that h o 4 = p and h o j = q. We must check that h is 

also a quomorphism. 

So, let cp E Sz, say with I = (s,s’), and let x E Dom h, fl dom (Pi such that 

(pH(x) E Dom h,f Since f and i are jointly surjective, we can assume without any 

loss of generality that x = j(a) for some a E A:, and since g : A’ + H is a closed 

homomorphism, we have that a E dom q*’ and @,YJ(cpA’(a)) = (pH(x). Therefore a E 

dom (P* n Dom ps and q*(a) E Dom pSl, and then (p being a quomorphism) h,(x) = 

~.~(a) E domcpC and 

hY(VH(X)) = P&*(u)) = cpC(ps(u)) = cpC(hS(4). 

The symbol cp standing for any operation symbol in the signature, this shows that h is 

a quomorphism, and therefore also a c-quomorphism. 0 

So, single-pushout transformation using c-quomorphisms is a special case of single- 

pushout transformation using conformisms (in the sense that the rules - c-quomor- 

phisms - and the occurrences - closed homomorphisms - to be used in CQ-Alg, are 

special cases of those used in CF-Alg,), and therefore it actually does not yield a new 

approach to transformation of partial unary algebras. Moreover, Example 14 entails that, 

in general, there is no relation between single-pushout transformation in CQ-Alg, and 

double-pushout transformation in Alg,, in the sense explained therein (Definition 13). 

Example 18. Let r be a graph structure, let L be any partial r-algebra, let R be a 

relative subalgebra of L, with universe R, and let r : L + R be the c-quomorphism 

given by the set-theoretical identity on R; this is then a special case of Example 10. 

Let now m : L + G be any closed homomorphism. Since, as we have just seen, the 

derived partial algebra H of G by the application of Y : L --f R through m : L + G 

in CQ-Alg, is the same as in CF-Alg,, Example 10 applies, and we obtain that H 

is the relative subalgebra of G supported on H = (HF)sEs where H, = {y E G, 1 

rn, ’ (y) C R,}. That is, H is simply obtained by removing from G all points whose 

preimage is not contained in R. 

To close this section, we give two results connecting pushouts in CQ-Alg, with 

pushouts in other categories. First, notice that arguing as in Proposition 15 we obtain 

the following result, which we shall use later. 

Proposition 19. Let f : K 4 A and g : K + B be two closed homomorphisms of 
purtiul r-algebras, and let 

KLA 

H .1 1. i 
B-H 

f 

be their pushout in CQ-Alg,. Then it is also their pushout in C-Alg,. 
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And second, since the pushout of two c-quomorphisms f : K -+ A and g : K -+ B 

is given by the quotient of A’ + B’ by B(K’), which in this case is a congruence on 
this disjoint sum, Proposition 7 entails the following result. 

Proposition 20. Let f : K -+ A and g : K --f B be two c-quomorphisms of partial 
r-algebras. Then they have a pushout in Q-Alg,, and it is given by their pushout in 
CQ-Alg,. 

5. Single-pushout transformation in CDCQ-Alg, 

In the previous section we have seen that the pushout of two c-quomorphisms f : 

K + A and g : K -+ B in CQ-Alg, is the same as their pushout in CF-Alg,, that is, 
their pushout as conformisms. This is no longer true for pushouts of cdc-quomorphisms 
in CDCQ-Alg, and in CF-Alg,, as the following example shows. 

Example 21. Let r be a monounary graph structure, and let K be a r-algebra with 
carrier K = {a, b} and with (Pi total and given by cpK(a) = cpK(b) = b. Let A and B 

be both equal to K. 

Let f : K + A be the cdc-quomorphism with domain Dom f = {b} and f(b) = b. 
Let g : K + B be the closed homomorphism with g(a) = g(b) = b. 

It turns out that K’ = 0 and then A’ = B’ = {a}, so that the pushout H of f and g 
in CF-Alg, is a discrete r-algebra with two elements. But then the c-quomorphisms 
p : B + H and 4 : A ---) H are not cdc-quomorphisms, because A’ and B’ are not closed 
subsets of A and B. Therefore, the pushout off and g in CQ-Alg, is not their pushout 
in CDCQ-Alg,. And, in fact, a simple argument shows that the pushout algebra of f 
and g in CDCQ-Alg, is the empty algebra (see also Proposition 25 below). 

The drawback found in this example is general. Given two cdc-quomorphisms f : 

K -+ A and g : K + B of partial r-algebras, the sets A’ and B’ defined in Section 2.3 
need not be closed subsets of their respective home algebras. In this section we shall 
show that the naive modification to the construction given in Section 3, consisting in 
replacing A’ and B’ by the greatest closed subsets of A and B contained in them (which 
exist, because all operations in the signature are unary), works, so that one gets in this 
way a pushout for f and g in CDCQ-Alg,. 

So, let f : K + A and g : K + B be two cdc-quomorphisms of partial r-algebras, 
and let 

f K-A 

9 1 1 d 

B-H 
.i 

be their pushout in CF-Alg, as described in Section 3. Let AC and BC be the greatest 
closed subsets of A and B contained in A’ and B’, respectively. To compute the subsets 
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AC and BC, we can use the following well known description of the greatest closed 

subset of a partial r-algebra contained in a given subset. 

Lemma 22. Let A be a partial r-algebra, and let X 2 A. The greatest closed subset 

Xc = (At)sEs of A contained in X is given by 

7: ={xM/ f or every r-term t of sort s’ E S, if x E dom t* 

then t*(x) E I&} . 

Alternatively, it is also given by 

X’ = U {cA({x}) 1 x E USE& and cA({x))cx} 

where CA({X}) denotes the closed subset of A generated by the S-set with all its 

carriers of all sorts empty, except the one of the sort corresponding to x, which is 

1x1. 

Let now H” be the relative subalgebra of H supported on HC = i(AC) U j(BC). 
Since AC and BC are closed subsets of A’ and B’, respectively, and 6 : A’ 4 H and 

J‘ : B’ + H are closed homomorphisms, we have that H” is a closed subalgebra of H. 

Lemma 23. Let f : B + HC and i : A --f HC be the restrictions off and y” to BC and 

AC (considered with target set HC), respectively. Then 6 and f are cdc-quomorphisms 
i : A 4 HC and f : B + H”. 

Proof. AC is a closed subset of A and & : AC 4 H is the restriction of the closed 

homomorphism 6 : A’ -t H to a closed subalgebra of its domain, and therefore a closed 

homomorphism [5, Proposition 3.1.1 l(ii)]. H” is a relative subalgebra of H containing 

the closed subset i(AC) of H. Then rj = & : AC + HC is still a closed homomorphism. 

By a similar reason, f = 71~~ : BC 4 HC is also a closed homomorphism. 0 

It turns out that H’, together with these cdc-quomorphisms g : A + HC and f : 

B 4 HC, is indeed the pushout of f and g in CDCQ-Alg,. The following lemma will 

be used to prove it. 

Lemma 24. Let KC be the greatest closed subset of K contained in K’. Then Dom(io 
* 

f) = f -‘(AC) and Dom(f o g) = g-‘(BC) are equal to KC. 

Proof. On the one hand, Dom(i o f) is closed, because it is the domain of a cdc- 

quomorphism, and it is contained in K’, because AC &A’ and therefore Dom(J o f) = 

f -‘(AC) C f -‘(A’) = K’. Thus, Dom (!j o f) C KC. By symmetry, Dom (y o g) C KC. 
On the other hand, since f : Dom f --+ A is a closed homomorphism and KC C K’ C 

Dom f, we have that f (KC) is a closed subset of A (by [5, Proposition 3.1.91) con- 

tained in f (K’) CA’ and therefore f (KC) C AC, which implies KC c f -‘(A”); a similar 

argument shows that KC C g-‘(BC). 0 
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Proposition 25. The square 

KLA 

is a pushout square in CDCQ-Alg,. 

Proof. This square commutes because Dom (g o f) = Dom (1 o g) by the previous 

lemma, and @of=yog. 

Let now p : A --+ C and q : B -+ C be two cdc-quomorphisms of partial r-algebras 

such that p o f = q o g. We must prove that there exists a unique cdc-quomorphism 

h : H’ --f C such that h o 4 = p and h o p = q. 

We know from Proposition 17 that there exists a unique c-quomorphism h : H + C 

such that h o i = p and h o f = q. By construction, this c-quomorphism is a closed 

homomorphism from the relative subalgebra fi of H supported on fi = _j‘(Domq) U 

g”(Dom p). If I-?: is a closed subalgebra of HC then this c-quomorphism h : H + C 

will yield a cdc-quomorphism h : HC 4 C such that h o 8 = p and h o f = q. And 

it will be unique with this property, because of the uniqueness of the c-quomorphism 

h:H+C. 

So, we must prove that k is a closed subset of H”, and, to do that, it is enough to 

prove that it is a subset of HC that is closed in H. 

Since Dom p and Domq are closed subsets of A and B contained in A’ and B’, 

respectively, we have that Dom p C AC and Dom q c Bc and then 

fi = f(Domq) U g’(Dom p) C y(BC) U i(AC) = HC. 

As to the closedness of fl in H, let cp E 62 be an operation symbol with ~(9) = (s, s’) 

and let x E g$ n dom cpH. Since fi = F(Dom q) U kj(Dom p), we can assume without 

any loss of generality that x = @Ja) for some a E Dom pS. Then, i being a c-quo- 

morphism, x E dom qH implies that a E dom cp*, q*(a) E Dom is, and gS,(cpA(a)) = 

(pH(x). And Domp being a closed subset of A, we have that q*(a) E Damp.+, so 

that (pH(x) E gs,(Dorn p,~ ) 2 f?,, . Since cp stands for any operation symbol in Sz, this 

proves that A is a closed subset of H. 0 

So, the pushout algebra H” in CDCQ-Alg, of two cdc-quomorphisms of partial 

r-algebras is a (proper, in general) closed subalgebra of their pushout algebra H in 

CF-Alg,. As a matter of fact, H” is the greatest closed subalgebra of H such that its 

preimages by g and 7 are closed subsets of A and B, respectively. 

The pushout of two cdc-quomorphisms f : K + A and g : K -+ B of partial 

r-algebras is also described by the following proposition. 

Proposition 26. Let f : K 4 A and g : K + B be two cdc-quomorphisms of partial 

r-algebras. As before, let KC be the greatest closed subset of K contained in the 
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gluing set K’ off and g, let Kc be the closed subalgebra of K supported on KC, let 
AC and BC be the greatest closed subsets of A and B contained respectively in A’ and 
B’, and let A” and B” be the corresponding closed subalgebras of A and B supported 
on A’ and BC, respectively. 

(a) f IKE : KC + AC and glp : Kc + B” are closed homomorphisms. 
Let now 

be the pushout of f IKC and glKE in C-Alg,, and let also g : A + Ho and f : 

B + Ho denote the cdc-quomorphisms corresponding to the homonymous closed 
homomorphisms. 

(b) The square 

is a pushout square in CDCQ-Alg,. 

Proof. (a) To prove that J’IK~ : Kc + AC is closed, notice that flK< : Kc + A is the 

restriction of the closed homomorphism f : Dom f --t A to the closed subalgebra Kc 

and therefore it is a closed homomorphism, and that f (KC) C AC, as we have seen in 

the proof of Lemma 24. A similar proof applies to g/K‘ : Kc + B”. 
(b) Let HC, together with cdc-quomorphisms i : A 4 H” and f : B + H”, be the 

pushout of f and g described in Proposition 25. In particular, J and 1 are the cdc-quo- 

morphisms obtained by restricting the c-quomorphisms @ : A’ + H’ and 7 : B’ + H’ 

(appearing in the pushout of f and g in CQ-Alg, described in Proposition 17) to A” 

and BC, respectively. From the first part of the proof of Proposition 25 (and Lemmas 23 

and 24) we know that i : A” + H” and f : BC 4 HC are closed homomorphisms such 

that s^O f lK’ = &gIKC. Therefore, by the universal property of pushouts, there exists a 

unique closed homomorphism h : Ho -+HCsuchthathof=fandhog=&Suchh 

is clearly surjective, because .f and i are jointly surjective by the construction of HC. 

It is enough to prove that h is also injective and total (and therefore an isomorphism). 

That h is total follows from the facts that Domf = Dom j = B” and Dom d = 

Domi = AC, and that f and 3 are jointly surjective. 

Notice now that this closed homomorphism is nothing but the mapping 

h : Ho = (AC U B’)/d(Kc) - H = (A’ U B’)/g(K,) 

induced by the inclusion AC U B” ~-f A’ U B’, and considered as a mapping with target 

NC = Im h. To show that this mapping is injective, we shall prove that 

O(K’) n ((AC U B’) x (A: u B’,)) = @(KC) 
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(this equality implies that h is not only injective, but actually the inclusion of a 

subset). 

So, let s E S and let (2,~‘) E 0(K’), with z E A,” LIB: and z’ E Ai UB;. Since the four 

cases to be considered (z E A,C and z’ E A:, z E A,C and z’ E Bl, z E B,” and z’ E A:, 

z E B,” and z’ E Bi) are similar, we shall only prove it in a sample case, namely the 

first one, leaving the others to the reader. So, let (z,z’) E &K’), n (A,C x A:). Then 

there exist xc,. . . , x2,, E K,’ such that 

&(x0) = z, .MXZn) = z’, 

g&2&2) = &2k-I), .&2k-I) = .GZk)r k = l,...,n. 

Using that K,” = f,-‘(A:) = g;‘(B,C) ( see Lemma 24) and starting with &(x0) = z E 

A,C, a simple argument by induction on k shows that X&XZk+l E K,” for every k. In this 

way we finally obtain on the one hand that xzn E K,C, and therefore z’ = fs(x2,,) E A:, 

and on the other hand that (z,z’) E @(Kc), as desired. 0 

Corollary 27. Given two partial homomorphisms f : K + A and g : K --+ B of total 

r-algebras, their pushout in CDCQ-Alg, is also their pushout in P-TAlg,. 

Proof. Comparing the construction of the pushout of two cdc-quomorphisms in 

CDCQ-Alg, given in Proposition 26 with the construction of the pushout of two partial 

homomorphisms in P-TAlg, given in [15, Construction 2.61, one easily sees that both 

constructions, when applied to two partial homomorphisms of total algebras, are exactly 

the same, provided that the following two assertions hold. 

- KC is the greatest closed subset of K such that f-‘(f(K”)) = Kc and g-‘(g(KC)) = 

KC. 

- The greatest closed subset AC of A contained in A’ is also the greatest closed subset 

of A contained in (A - f(K)) U f(KC). 

The first assertion turns out to be true. Indeed, on the one hand by Lemma 3 we 

have that f-‘(f(KC)) & f-‘(f(K’)) = K’, and on the other hand, f being a closed 

homomorphism from its domain Dom f, which is closed in K, and KC being a closed 

subset of this domain, by [5, Proposition 3.1.91 we have that f -‘( f (KC)) is a closed 

subset of K. Then, KC being the greatest closed subset of K contained in K’, we deduce 

that f -'( f (KC)) s Kc, and this inclusion becomes an equality because KC C Dom f. A 

similar argument shows that g-‘(g(KC)) = KC. And if K* is some closed subset of K 

such that f -'(f (K’)) = K* and g-‘(g(K*)) = K’ then, by Lemma 3 again, K’ c K’ 

and therefore K’ C KC. 

And the second assertion is also true, because by Lemma 24 we have that f -‘(AC) = 

Kc and therefore AC &(A - f(K)) U f(KC). 0 

This entails that the current approach to single-pushout transformation of total unary 

algebras [ 151 is a special case of the single-pushout transformation in CDCQ-Alg, 

(but not of the single-pushout transformation in CQ-Alg, or CF-Alg,). On the other 

hand, the equivalence between CDCQ-Alg, and P-TAlgf mentioned in Section 2.2 
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entails on its turn that single-pushout transformation in CDCQ-Alg, (but not the other 

approaches introduced in this paper) can be considered as a special case of single- 

pushout transformation of total unary algebras: namely, of single-pushout transformation 

in P-TAlgf . 

Notice that Proposition 26 and the proof of Corollary 2’7 yield a simple way of 

obtaining the derived partial r-algebra of G by the application of a production rule 

r : L + R in CDCQ-Alg, through a closed homomorphism m : L + G. This method 

is formally similar to the aforementioned Construction 2.6 in [ 151. 

(i) Compute the gluing set L’ of r and m. 

(ii) Remove from I,’ those elements for which there exists some term that applied to 

them gives an element not in L’. Let Lc be the subset of L’ obtained in this way. 

(iii) Also, remove from R and G those elements for which there exists some term that 

applied to them gives an element in r(L) - r(LC) and m(L) - m(LC), respectively. 

Let RC and G” be the corresponding closed subalgebras of R and G supported 

on the sets obtained in this way. 

(iv) Add RC to GC, by first forming the coproduct G’ + R” and then identifying in 

this coproduct all images of elements of Lc by r and m. 

Another nice feature of single-pushout transformation of cdc-quomorphisms is that 

there is a relation between single-pushout transformation in CDCQ-Alg, and double- 

pushout transformation in C-Alg,, similar to the relation between single-pushout and 

double-pushout transformation of total unary algebras shown in [15, Section 3.31. 

Definition 28. Given a cdc-quomorphism of partial r-algebras r : L + R, let L, be 

the closed subalgebra of L supported on Domr. Let i : L, + L be the correspond- 

ing (closed) embedding and let Y : L, + R denote also the corresponding closed 

homomorphism. We shall say that the production rule in C-Alg, 

P(r) = (L A L, r, R) 

is the production rule associated to r. 

Let us recall from [7, Definition 211 that, given two closed homomorphisms of partial 

f-algebras r : K + L and m : L --f G, we say that m satisfies the gluing condition 

w.r.t. r when m(r(K)) n m(L - r(K)) = 0 and the restriction of m to L - r(K) 

is injective (identification condition), and m(L - r(K)) is an initial segment of G 

(dangling condition). 

Proposition 29. Let r : L ---f R be a cdc-quomorphism of partial P-algebras, and 

let m : L + G be a closed homomorphism satisfying the gluing condition w.r. t. 
i : L, 4 L. 

Then the derived partial r-algebras of G through m by the production rule P(r) in 
C-Alg, [7, Definition 201 and by the production rule r in CDCQ-Alg, are the same 

(that is, isomorphic). 
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Proof. Let us follow the construction given in Proposition 26 of the derived partial 

r-algebra of G through m by means of the production rule r. 

We must compute first the greatest closed subset Lc of L contained in the gluing 

set L’ of r and m. To do this, notice that r-‘(r(L,)) = L, (because L, = Domr) and 

m-‘(m(Lr)) = L, (because m is total and it satisfies the gluing condition w.r.t. i). 

Therefore, by Lemma 3, L’ = L,. And since L,. is a closed subset of L, because Y is 

a cdc-quomorphism, we also have that Lc = L,.. 
Now, RC is the greatest closed subset of (R - r(L)) U r(L,) = R, that is, R itself, 

and then RC = R. And G” is the greatest closed subset of G contained in G’ = 

(G - m(L)) u m(L,), but by the gluing condition this set G’ is closed (cf. the proof 

of Proposition 10 of [7]), and therefore G’ = G’. This implies that G” = G’, which is 

the context algebra of the application of rule P(r) to G through m [7, Definition 151. 

Then, the pushout algebra of Y : L + R and m : L --f G in CDCQ-Alg, is obtained 

by Proposition 26 as the pushout of the closed homomorphisms r : L, + R and 

rnlL, : L, + GC, and the derived partial r-algebra of G through m by the application 

of rule P(r) in C-Alg, is obtained by [7, Def. 151 exactly in the same way. 0 

The converse assertion also holds. 

Proposition 30. Let P = (L A K L R) be a production rule in C-Alg, with 1 

injective, and let m : L + G be a closed homomorphism satisfying the gluing condition 

W.Y. t. 1. Let r” : L + R be the cdc-quomorphism corresponding to r considered as a 

closed homomorphism from the closed subalgebra of L supported on l(K). 

Then the derived partial P-algebras of G through m by the production rule P in 
C-Alg, and by the production rule r” in CDCQ-Alg, are the same. 

Proof. Notice that P and P(F) are the same rule, up to an isomorphism K 2 L,- 
compatible with the left- and right-hand-side morphisms of both rules, so that the 

previous proposition can be applied. We leave the details to the reader. 0 

Therefore, and in a similar way to what happens with double-pushout transformation 

of total unary algebras, double-pushout transformation of unary partial algebras using 

rules in C-Alg, with left-hand side homomorphism injective can be seen as a particular 

case of single-pushout transformation in CDCQ-Algr. 

Remark. Actually, these two last propositions could have also been proved using the 

corresponding result for total unary algebras given in [15, Section 3.31, through the 

equivalences between C-Alg, and TAlgf, on the one hand, and between CDCQ-Alg, 

and P-TAlgf, on the other hand, stated in Section 2.2. 

Example 31. Let F be a graph structure, let L be any partial F-algebra, let R be a 

closed subalgebra of L, with universe R, and let r : L + R be the cdc-quomorphism 
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given by the set-theoretical identity on R. This is a special case of the rules considered 

in Examples 10 and 18. 

Let now m : L + G be any closed homomorphism; we want to compute the derived 

partial algebra Ho of G by the application of Y : L 4 R through m : L + G in 

CDCQ-Alg,. Since we have already computed the corresponding derived algebra H in 

CQ-Alg, in Example 18, we can use Proposition 25 to compute this derived algebra 

in CDCQ-Alg,., and it turns out to be the greatest closed subalgebra of G contained 

in H. 
So, Ho is obtained from G by simply removing all points y for which there exists 

some term t such that when applied to them yields a point t’(y) whose preimage 

under m is not fully contained in R. In general, such Ho is properly contained in H. 

Example 32. The cdc-quomorphisms between (higher-order) hypergraphs (considered 

as special partial CH-algebras) correspond to the usual partial morphisms between them; 

see [ 11. And, as it was already mentioned in [7, Example 31, (higher-order) hypergraphs 

considered as partial algebras are closed under pushouts w.r.t. closed homomorphisms, 

which are the usual morphisms of (higher-order) hypergraphs. Therefore, usual single- 

pushout transformations of (higher-order) hypergraphs are examples of transformations 

in CDCQ-Alg,,, . 

As an example, we shall show how to delete from (finite) hierarchic higher-order 

hypergraphs all arcs where some abstraction operation is defined, such an operation 

being of special interest for the structural verification of knowledge bases through 

transformations of partial algebras; see [26]. The argument will be similar to the one 

in Example 12, but it is worth pointing out that using closed homomorphisms as redices 

instead of total conformisms (as we could do therein) makes us to need a specific rule 

to delete each arc (a rule that will depend on “how many operations” are defined on 

it and its images), instead of a single rule for all arcs. 

For every n = (no, ni, m, (mi.j &I,..., no,j=1,2), no31, n1,n2>0 and mi,,j>O,l <i,j<no, 

let G(n) be the partial CH-algebra with G(E)E = {e, ei,. . . , en0 } and 

G(~z)v = {rj 1 1 GjGnt + n2) U {Wi,.j / 1 GiGno, 1 dj<m,,l + ml,*} 

and with operations defined as follows: 

a:(‘)(e) = ej, j = l,...,no, 

,sT’“‘(e) = Uj, j = l,...,ni, 

tC”‘(e) = V,,+j, j=l ,...,n2, 

sF@)(e;) = Wi,j, i=l ,...,no, j = l,..., WZi,i, 

l,‘(‘)(G) = Wi,m,l+j, i = l,..., no, j = l,..., mi.2 
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and let G(n) be the relative subalgebra of G(g) obtained by removing e from Go. 

Let Ye : G(n) + G(n) be the cdc-quomorphism given by the identity on the carrier of 

G(n). 
Let now G be a higher-order hypergraph and let m : G(n) + G be a closed homo- 

morphism. Let mE(e) = e’, m&ei) = ei, rnv(ui) = uJ and mv(wi,i) = w:,~. Since m is 

a closed homomorphism, the following conditions hold: 
- n,(e’) = no, and @(e’) = ei for every i<no. 
_ n,(e,l) = 0. 
_ n,(e’) = nl, and $(e’) = ZI; for every j<nt. 
_ n,(e’) = n2, and tF(e’) = z$ for every nl < j<nl + n2. 
_ n,(ei) = mi,l, and $(ei) = w;,~, for every i<no and j<mi,t. 
- n,(e!) = rn.2 and to(e!) = w! for every i <no and mi,r < j <mi,r + mi,2. 

Arguing ai ;n Eximp;e 12, “indJusing Proposition 25, it is easy to see that the 

pushout algebra of rE : G(g) -+ G(n) and m : G(n) + G in CDCQ-AlgzH is given 

by the greatest closed subalgebra of G contained in (GE - {e’}, Gv). Since closed 

subalgebras of higher-order hypergraphs are again higher-order hypergraphs [l], this 

pushout algebra is again a higher-order hypergraph. 

Finally, let G be a hierarchic (see Example 12) higher-order hypergraph. Let e’ E GE 

be an arc such that n,(e’)> 1, but n,(@(e’)) = 0 for every i = 1,. . .,n,(e’). Then 

there is one and only one higher-order hypergraph G(g) with a closed homomorphism 

m : G(n) + G such that mE(e) = e’. And the application of rule rz to G through 

such m removes e’ (and all operations defined on it, of course) and, in cascade, all 

other arcs from which some sequence of abstraction operations yields e’. This shows 

that applying rules r, in a recurrent way, one finally removes all arcs where some 

abstraction operation is defined. 

As in Example 12, if G is not hierarchic then it may happen that there does not 

exist any closed homomorphism m : G(n) --+ G for any n. 

To close this section, notice that Propositions 19 and 25 imply the following result, 

which shall be used in the next section. 

Proposition 33. Let f : K --) A and g : K --f B be two closed homomorphisms of 

partial r-algebras, and let 

/ K-A 

be their pushout in CDCQ-Alg,. Then it is also their pushout in C-Alg,. 
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6. HLR conditions 

Contrary to the case of double-pushout algebraic transformation, where many HLR 

conditions for many results have been introduced (see [21] for a survey), the field of 

HLR conditions in single-pushout algebraic transformation is at its beginnings. In par- 

ticular, and to our knowledge, only four HLR conditions, that entail the Local Church- 

Rosser Theorem, the Parallelism Closure and the Parallelism Theorem, respectively 

(cf. [12]), have been introduced so far in the literature; see Section 6.1 below. 

In this section, and in order to motivate our claim that single-pushout transfor- 

mation in CF-Alg,, CQ-Alg, and in CDCQ-Alg, has the same good properties as 

single-pushout transformation in P-TAlg, [ 151, on the one hand we prove that the 

aforementioned HLR conditions introduced in [ 121 are satisfied in all three cases tak- 

ing total morphisms as occurrences. And, on the other hand, we also introduce several 

HLR conditions that are proved to entail some basic amalgamation properties, and we 

show that they are also satisfied in CF-Alg,, CQ-Alg, and CDCQ-Alg,, again tak- 

ing total morphisms as occurrences. We plan to study elsewhere other features of the 

single-pushout transformation approaches introduced in this paper. 

This section is organized as follows. In Section 6.1, we recall (and somehow sim- 

plify) the HLR conditions for parallelism introduced in [12]; in Section 6.2, we study 

the amalgamation properties of single-pushout HLR systems, and in particular we give 

HLR conditions entailing them; and, finally, in Section 6.3 we show that single-pushout 

transformation in CF-Alg,, CQ-Alg, and CDCQ-Alg, satisfies all these HLR condi- 

tions. 

Throughout this section we deal with a general category V, whose morphisms shall 

be called rules, and a subcategory 0 of 9?, whose morphisms shall be called OCCUY- 

rences, such that ‘% and 0 have the same class of objects. In Section 6.3, %? will be 

CF-Alg,, CQ-Alg, or CDCQ-Alg, (and in some remarks P-TAlg,), and the occur- 

rences will be the corresponding total morphisms. 

Before proceeding with the different subsections, let us recall the important concept 

of clean occurrences. 

Definition 34. An occurrence m : L + G is said to be clean for a rule r : L + R if 

whenever r is factorized into two rules, r = q o p with L 2 S -% R, and if the square 

(1) in 

G-H 
P’ 

is a pushout square in %? then the morphism m’ is an occurrence. 
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6.1. HLR conditions for parallelism 

Let us recall the HLR conditions introduced in [12] (where they are called “SPO- 

conditions for parallelism of HLR-systems of type SPO”). 

Definition 35 (Ehrig and Lowe [12, Dejkition 3.131). We say that the pair (V,(V) 

satisfies the HLR conditions for parallelism when it satisfies the following four con- 

ditions: 

(HLRPI) There exists a pushout in %? of every rule r : L t R and every occurrence 

m:L--+G. 

(HLRP2) 0 has all coproducts, and they are preserved by the inclusion functor 

0 c--) %‘. (We shall denote the coproduct of two objects A and B by A + B.) 
(HLRP3)Iff,gf%?andfog~Otheng~Co. 

(HLRP4) Let f : Al + AZ and g : B1 + BZ be two rules in %‘, let f+g : Al +BI -+ 
A2 + B2 be their coproduct morphism (their parallel rule), let i : Al + AI + BI be 

the corresponding coproduct embedding, and let p : A1 + B1 + C be any rule in $9. 

If there exists some q : C + A2 + B2 such that q o p = f + g then there exists some 

q’ : C -+ AZ such that q’ o (p o i) = f. 

In [12] it is proved that single-pushout algebraic transformation in a category 9? 

through occurrences in 0 satisfies the local Church-Rosser theorem, the parallelism 
closure and the parallelism theorem (respectively, point (a), point (c) and points 

(b)-(d) in Theorem 37 below) whenever (9?, 0) satisfies these HLR conditions for 

parallelism. 

Definition 36. Two direct derivations G & H and G & H’, given by the pushout 

squares 

LLR L’ --% R’ 

are said to be parallel independent when the occurrences of both productions are not 

destroyed by the other derivation: that is, when q’ o m, p’ o n E 0. 

Theorem 37 (Ehrig and Lowe [12, Theorems 3.5 and 3.12, Corollary 3.111). Let V 
and 0 be as in Dejinition 35, and assume that (%‘,6) satisjes the HLR conditions 
for parallelism. 

(a) For every pair of parallel independent direct derivations G 4 H and G & H’ 
there exists an object X and direct derivations H & X and H’ & X. 

(b) If G 4 H and G & H’ are two parallel independent direct derivations, such 
that we have H & X and H’ & X by (a), then there exists a parallel derivation 

G 3 X. 
(c) Assume that all derivations are made through clean occurrences. For every pair 

of rules p,q and for every parallel direct derivation G % X there exist derivation 
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sequences G & H & X and G & H’ & X such that G & H and G & H’ 

are parallel independent. 

(d) Assume again that all derivations are made through clean occurrences. Then 

the constructions given by points (b) and (c) are in bijectice correspondence, up to 
isomorphism. 

More specijically, condition (HLRPl ) entails (a); conditions (HLRPl ) and (HLRP2) 

entail (b) and (c); and (HLRPl) to (HLRP4) entail (d). 

To close this subsection, we want to point out that (HLRP4) is equivalent to a much 

simpler property. 

Proposition 38. Let (%Y, ~5) be a pair satisfying condition (HLRP2). Then it satisfies 

condition (HLRP4) $7 it satisfies the following additional property: 

(HLRP4’) For every pair of objects A, B in %, there exists a rule r : A --f B. 

Proof. As far as the “only if” implication goes, apply (HLRP4) taking Al = A2 = B, 

B1 = B2 = A, f = Idu, g = IdA and p = q = Idn+A : B + A + B + A. This yields 

a rule q’ : B + A --f B such that q’ o i = Ida (where i : B -+ B + A stands for the 

corresponding coproduct embedding). Composing q’ with the other pushout embedding 

A -+ B + A, we obtain a rule A + B. 

As to the “if” implication, let f : Al ---f AZ, g : BI + Bz, i : Al + Al + BI, 

p : Al + B1 + C and q : C + A2 + BZ be as in the statement of condition (HLRP4), 

and let i’ : AZ + A2 + B2 be the corresponding coproduct embedding. The existence 

of a rule r : BZ + AZ entails the existence of a rule rr : AZ + BZ + A2 such that 

rt o i’ = Id*,. Take q’ = n o q : C + AZ. Then we have 

q’opoi=noqopoi=~o(~f+y)oi=~0i’o,f=,f 

as we wanted to prove. 0 

Notice that condition (HLRP4’) is automatically satisfied by any category having a 

zero object 0, that is, an object that is both initial and terminal, since then there exists 

a rule A ---f 0 + B for every pair of objects A, B in %?. 

6.2. HLR conditions ,for amalgamation 

Non-parallel-independent derivations can still be “merged” or amalgamated, by means 

of a construction known as amalgamated sum. 
Amalgamation is a generalization of parallelism, motivated by the idea of rule gluing 

[1 11, and it has been widely studied for double-pushout derivations [4] and for single- 

pushout derivations [ 151. However, no HLR conditions for amalgamation are known 

yet, neither for double-pushout nor for single-pushout derivations. In this section we 

give HLR conditions that entail the amalgamation properties of single-pushout HLR 

systems. 

Recall that $7 is a category (whose morphisms are called rules) and 15 is a subcat- 

egory of ‘Z? (whose morphisms are called occurrences) such that %? and 6 have the 
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same class of objects. Let us assume for the moment that the pair (‘Z, 0) satisfies the 

following two conditions (that we shall later impose as HLR conditions). 

(HLRAl) There exists a pushout in ?Z of every rule r : L -+ R and occurrence 

m:L--+G.9 

(HLRA2) 0 has all pushouts, and they are preserved by the inclusion functor 0 c-) 59. 

Then clean occurrences satisfy, under these assumptions, the following properties 

that shall be used in the sequel. 

Lemma 39. Let (%‘,(!I) satisfy condition (HLRAI). Then the following properties 
hold. 

(i) For every pair of composable rules t-1 : L -+ R and r-2 : R --+ S, every cleun 
occurrence for r-2 0 i-1 is also a clean occurrence for r-1. 

(ii) For every pair of composable rules t-1 : L -+ R and rz : R + S, if m : L 4 G 

is a clean occurrence for r;! o r-1 and tf (1) in the diagram 

LARaS 

M 
1 1 

(1) m’ 

G-H 
r: 

is a pushout of t-1 and m in %7, then m’ is a clean occurrence for r2. 
(iii) Let r : L -+ R and r1 : L1 --f R1 be two rules for which there exist a clean 

occurrence i : L --+ L1 for r and an occurrence j : R + R1 such that r1 o i = j o r. Zf 
m is a clean occurrence for t-1 then m o i is a clean occurrence for r. 

Proof. As far as points (i) and (ii) go, let m : L + G be a clean occurrence for t-2 o r-1, 

let r-1 = q1 o p1 be any factorization of r-1, with L 4 T1 3 R, and let r2 = q2 o p2 be 

any factorization of r2, with R 3 Tz 3 S. Consider the diagram 

m I (1) fl (2) t (3) 
I 

ml 

G-H, -H-H, , 
Pl 4: p: 

where squares (l)-(3) are pushout squares in %?. 

Since m is clean for r2 o r-1 = (q2 o p2 o 41) o pl, we have that ml is an occurrence. 

This proves that m is also clean for rl, as it is stated in point (i). 

On the other hand, since r-2 or1 = q2 o (pz 041 o ~1) and (l)+(2)+(3) is a pushout 

square, we have that m2 is an occurrence. This proves that m’ is clean for r2, as it is 

stated in point (ii). 

9 Notice that condition (HLRAl) coincides with condition (HLRPI). 



P. Burmeister et al. I Theoretical Computer Science 216 (1999) 311-362 341 

As far as point (iii) goes, let r = q o p be any factorization of r, with L 3 S 3 R, 

and consider the commutative diagram 

,qL 
S-R 

i I i 
(1) p (3) j 

b- P’+~,F R, 
h 

m 

G-H 
P” 

where ( 1) and (2) are pushout squares, so that (l)+(2) yields a pushout square for p 

and moi, and h is the unique morphism h : S1 + RI (induced by the fact that (1) is a 

pushout square) such that h o i’ = j o q and h o p’ = rl. Since m is a clean occurrence 

for rl, we have that m’ E 0, and since i is a clean occurrence for r, we have that 

i’ E 0. Therefore m’ o i’ E 0, which shows that m o i is a clean occurrence for r. 0 

Under the hypothesis of point (iii) in this lemma, it is said that r is a subrule of r1 . 

Subrules and remainders, together with amalgamated sums to be defined later, are the 

key concepts in amalgamation. 

Definition 40. A rule r : L -+ R is a subrule of a rule rl : L, --f RI when there exist a 

clean occurrence i : L --f LI for r and an occurrence j : R ---f RI such that jor = rl oi 

We shall denote it by r d(i,,jyl, or simply by r drl, when the pair (i, j) is irrelevant 

or understood. 

If r <(ij)rl then let S together with i’ : R -+ S and r’ : LI ---f S be a pushout of r and 

i in V. The (i, j)-remainder of r-1 w.r.t. r, which shall be denoted by r-1 -(i,jjr : S + RI 

or simply by t-1 - r : S 4 RI when the pair (i,j) is irrelevant or understood, is the 

unique rule S -+ RI such that (rl - r) o i’ = j and (rl - r) o r’ = rl. 

L’R 
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Subrules allow to decompose derivations. 

Proposition 41. Assume that all derivations are made through clean occurrences and 

that (59, CT) satisfies condition (HLRAl) above, and let Y : L -+ R and r-1 : LI -+ RI 
be two rules in % such that r < rl. If G & H then there exists an object H’ such 

that G 6 H’ 2 H. 

Proof. Let i : L ---) L1 and j : R ----f RI be occurrences (the first one, clean for Y) 

making Y to be a subrule of ~1. Assume that G 3 H and let m : L1 + G be a clean 

occurrence for rI used to derive H from G by the application of rule ~1. 

Consider the following commutative diagram: 

i 
I I 

(1) i’ 

r,-r 

L,y S-R, 

m (i) 1 
G r”H’pH” 

where all three squares ( l)-(3) are pushout squares in V. 

Then on the one hand (l)+(2) is a pushout square for r and m o i, and since m o i is 

a clean occurrence for Y by Lemma 39(iii), we have that G & H’. And on the other 

hand, since (2)+(3) is a pushout square for YI = (rt - r) o r’ and m, and since m is a 

clean occurrence for rl, we have that H” is the derived object of G by the application 

of rule ~1 through occurrence m. Therefore H” = H (up to isomorphism). And since 

m’ is a clean occurrence for ~1 - r by Lemma 39(ii), we have that H’ z H. 0 

Definition 42. Let Y : L + R, q : LI + RI and r2 : L2 --) R2 be three rules in %? 

such that r<(i,,i,)rl and r<(i2,j,)r2. Let 

LL L, R/’ RI 

L2 + L’ 
i ’ 

R2 - R’ 
ii 

be the pushout squares in 8 (and also in %‘) of il and i2, and of jt and jz respectively. 

Then the amalgamated sum rule r1 +,. r-2 : L’ + R’ is defined as the unique morphism 

in C (which exists by the universal property of pushouts) making the cube given in 

Fig. 2 commutative. 

This is time now to introduce the HLR conditions for amalgamation, which, as 

we have said, will include the conditions introduced at the beginning of this sub- 

section. 
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.; ;’ ;. 
I J L 

Fig. 2. 

Definition 43. We say that the pair (%‘,C) satisfies 

mation when it satisfies the following properties: lo 

(HLRAl ) There exists a pushout in %? of every 

m:L+G. 

. .._. ,R’ 

the HLR conditions for amalga- 

rule r : L + R and occurrence 

(HLRA2) 0 has all pushouts, and they are preserved by the inclusion fimctor c’ L) K. 

(HLRA3)Iff,g~~aandfog~Otheng~G. 

(HLRA4) If m is a clean occurrence for Y : L 4 R and f : R + S is any occurrence, 

then m is also clean for f o Y. 

Lemma 44. Assume that (%T, C) satisfies the HLR conditions for amalgamation. If r 

is a subrule of r1 and r2 then rl and r2 are subrules of r-1 +,. r2. 

Proof. Assume r < (i,,i, ) 1 r and r <(i2,j2)r2, and consider the following commutative 

diagram given in Fig. 3 where r1 = q o p, r-1 +,. r2 = q’ o p’, the left-hand side rectangle 

in the front face (the one involving L,, K,, L’ and K’) is a pushout square in Ce, and 

both the left-hand side and the right-hand side faces of the cube are pushout squares 

in 6 (and therefore also in V). Since i2 is a clean occurrence for r, it is also clean 

for ji o r by condition (HLRA4). Therefore, from ji o r = r1 o il = q o (p o il) and the 

composition of pushout squares 

L-5 L, -% K, 

L2 + L’ - K’ 
i’ P’ 

“Notice that conditions (HLRAI) and (HLRA3) coincide with conditions (HLRPl) and (HLRP3). 

respectively. 
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r 
)R 

5 +, 5 

Fig. 3. 

we obtain that Kz is an occurrence. This shows that ii : LI -+ L’ is a clean occur- 

rence for rl, and therefore, since j; : RI -+ R’ is an occurrence by construction, that 

rl <(i;,j;)rl +r n. BY symmetry, r2 6(i;,j;)rl fr r2. 0 

Common subrules also induce a synchronization mechanism for derivations. When 

two rules share a common subrule, the effect of the shared subrule is produced only 

once and the whole derivation is obtained by derivations through rule remainders. 

Proposition 45. Assume that all derivations are made through clean occurrences and 
that (%T,O) satisJies the HLR conditions for amalgamation, and let r : L -+ R, 
rl : L1 -+ RI and r2 : L2 + R2 be three rules in % such that r <r-l and r <r2. If 

G ‘* H then there exist H’ and H” such that 

G -r, H, r_l=: H,, g H. 

Proof. Since by the previous lemma we have that rl <rl +r r2, by Proposition 41 

there exists an object H” such that G % H” (r’+,rz)--r’ H. And since r <t-l, again by 

Proposition 41 we have that there exists an object H’ such that G * H’ g H”. 

It is enough to show that H” % H, and to do that it is enough to find a pushout 

square in 59 

rz--r 
K2- R2 

.f 
1 1 

i 

N’- R’ 
@I +a MI 

with f a clean occurrence for r-2 - r. 
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., 
12 

L,---K 
,: 

L 
r3 n2 (r, +, rz)-r, 

Fig. 4. 

.r 
12 1 

4 

k, 

Fig. 5. 

Consider Fig. 4 (referred to henceforth as the main diagram) which is obtained as 

follows: 

- The squares L,Lt , Lz, L’ and R, Rt,R2, R’ are pushout squares in 0, and therefore 

also in W:. 

- The squares L,R,Lt,Kt, L,R,Lz,Kl and Lz,Kz,L’,K’ are pushout squares in $9. 

Let rt - r : Kt -+ RI and r2 - r : K2 + R2 be respectively the (il,jl )-remainder of 

rl w.r.t. Y and the (il,j~)-remainder of 1-2 w.r.t. r (Definition 40). 

- ki : Kt + K’ is the only rule such that k; o kl = kl o k2 and k{ o ri = ri o ii. Then, 

we have the commutative cube of Fig. 5 (extracted from the left-hand side of the 

main diagram) whose top, bottom, back and left-hand side faces are pushout squares. 

Standard properties of pushouts entail that the remaining two faces, corresponding 

to squares R, Kt , Kz, K’ and Lt , Kt , L’, K’, are also pushout squares. 
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- The square Ki,Ri,K’,N’ is a pushout square. Then, the composition of pushout 

squares 

7; Li - Kt = R1 

r: n2 

yields a pushout 

L, 2 R, 

i;j, j,*~ 

L’- N’ 
n,or; 

Since ii is a clean occurrence for rI by the proof of Lemma 44, we have that ki 

and 1t1 are occurrences. 

- Let (rl+frr2)-r1 : N’ + R’ be the (ii,];)-remainder of t-1 +,.rZ w.r.t. rl; in particular 

it satisfies that ((rl +r r2) - t-1) o nl = ji and ((~1 +,. rz) - rl) o (n2 o ri) = rl +,. r2. 

We shall show that the square 

is a pushout square in V and that n2 ok{ is a clean occurrence for r2 - r. As we have 

mentioned at the beginning of this proof, this will finish the proof. 

To do that, consider the commutative prism, given in Fig. 6 which is extracted from 

the right-hand side of the main diagram. 

In this commutative diagram, the right-hand side face R, RI, R2,R’ is a pushout 

square by construction. And the left-hand side face R,Ri,Kz,N’ is a pushout square, 

because it is the composition of pushout squares 

R- k’ K, ‘= RI RL RI 

This has two consequences. On the one hand, standard properties of pushouts entail 

that the bottom square, which is the one we are interested in, is also a pushout square. 

And on the other hand, since ji and k2 are occurrences (the latter, because i2 is a clean 

occurrence for r), it turns out that f : K2 + N’ and nl : Ri -+ N’ are occurrences. 

Finally, in order to show that f is clean for r2 - r, let r2 - r = q o p be any 

decomposition of r2 - r, with K2 2 S2 4 R2, and let 

K2 % S2 

Yl lf! 

N’- S3 
P, 

be a pushout square in 97. We have to prove that f' is an occurrence. 
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Fig. 6. 

Notice now that we have the composition of pushouts 

R, - N’ --t S3 
nl P’ 

RI - S3 
p’ oni 

where ji is an occurrence by definition and p o k2 is an occurrence because q o (p o 

k2) = j2 is an occurrence (and then condition (HLRA3) applies). Therefore f’ is an 

occurrence, because of (HLRA2). 0 

Proposition 46. Assume that all derivations are made through clean occurrences and 

that (%, 6) satisfies the HLR conditions ,for amalgamation, as well as condition 
(HLRP2) in De$nition 35. Let r : L + R, YI : LI + RI and r2 : L2 + R2 he 

three rules in ‘$7 such that r < ~1 and r d r2. If G ‘% H then there exists H’ and 

two parallel independent derivations H’ s H” and H’ % H”’ such that G & 

H’ 
(?I -r)+,(TZ-r) 

===+ H. 

The situation dealt with in Proposition 46 is illustrated by the derivation diagram 

H”’ 

where the upper path corresponds to Proposition 45. 

Proof. If (%, 19’) satisfies the HLR conditions for amalgamation and (HLRP2) then 
points (a) and (b) in Theorem 37 hold. Therefore, this proposition will be implied by 
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G :I-I’ ,H”- H 
r’ 

I 

“2 

Fig. 7. 

the previous one if, with the notations therein, 

derivations H’ s H” and H’ % H”‘. 

we can find the two parallel independent 

Now consider the main diagram in the proof of the previous proposition, enlarged 

with the pushout square corresponding to the direct derivation G ‘3 H through a 

clean occurrence m : L’ -+ G, decomposed into several pushout squares that correspond 

to the direct derivations G & H’, H’ 3 H” and H” % H (Fig. 7). In this diagram, 

we have that ni o (m’ o ki ) is an occurrence, because ni o (m’ o ki ) = m” o n2 o ki where 

n2 o k,’ is an occurrence, as it has been seen in the proof of the previous proposition, 

and m” is an occurrence, because m is a clean occurrence for t-1 +,. r2 by assumption. 

By symmetry, if 

K2 ‘% R2 

‘41 1mI 

K’- M’ 

m’l “Q 1 ‘?I”’ 

H’ - H”’ 
‘4 

are two pushout squares in W then rni o (m’ o ki) is an occurrence. Then the pushout 

squares 

correspond to parallel independent derivations H’ g H” and H’ z H”‘. As we 

mentioned earlier, this finishes the proof. 0 
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6.3. The case of conformisms, c-quomorphisms and cdc-quomorphisms 

It turns out that the HLR conditions for parallelism and amalgamation listed in 

Definitions 35 and 43, respectively, are satisfied by every pair of the form (%‘, c) 

when %? is any one of the categories CF-Alg,, CQ-Alg, or CDCQ-Alg, and 0 is 

the corresponding subcategory given by the total morphisms. Therefore, single-pushout 

algebraic transformation of partial unary algebras using conformisms, c-quomorphisms 

or cdc-quomorphisms (taking in all three cases totally defined morphisms as occur- 

rences) satisfy points (a)-(d) in Theorem 37. We start by proving this for the case 

of parallelism. 

Proposition 47. The three pairs (CF-Alg,, TCF-Alg, ), (CQ-A&, C-Alg,- > and 
(CDCQ-Alg,,C-Alg,) satisfy the HLR conditions for parallelism, for every graph 

structure r. 

Proof. The categories CF-Alg,, CQ-Alg, and CDCQ-Alg, have all pushouts. More- 

over, the coproduct of two partial r-algebras A and B is given by the usual disjoint 

union A + B in C-Alg,, CQ-Alg,, CF-Alg,, CDCQ-Alg, and TCF-Alg, (it can be 

seen, for instance, noticing that the coproduct of A and B in any one of these cat- 

egories is the pushout of the empty morphisms 0 --) A and 0 --f B, and using also 

Corollaries 15, 19 and 33; see also [2,9,19]). 

Condition (HLRP3) for all three pairs is trivial for set-theoretical reasons. 

Finally, as far as condition (HLRP4) goes, by Proposition 38 it is enough to check 

condition (HLRP4’), which is easily seen to be satisfied in this case: given any two 

partial r-algebras A and B, the empty mapping is always a cdc-quomorphism from A 
toB. 0 

In order to give full content to the Parallelism Closure and the Parallelism Theorem 

for single-pushout transformation in CF-Alg,, C-Alg, and CDCQ-Alg,, we have to 

identify in each category which occurrences are clean for a given rule. 

Definition 48. Let L, G and R be partial r-algebras, with carriers L, G and R, respec- 

tively, and let m : L -+ G and r : L --) R be respectively a total and a partial mapping 

of S-sets. 

(i) m is d-injective w.r.t. r (see for instance [15, Definition 3.10(2)]) when for every 

s E S and x, y E L,, if m,(x) = m,(y) then x, y E Dom r, or x = y. 

(ii) m is closed-injective w.r.t. r when for every s E S and x, y E L,, if m,(x) = mS(y) 

then x, y E Domr, or CL<(X)) = C’L({Y}).” 

D-injectivity and d-closed-injectivity are different notions: see, for instance, the 

Remark after Proposition 52. 

” As in Lemma 22, by CL({Z}) we denote the closed subset of L generated by the S-set with all carriers 

of all sorts empty, except the carrier of sort S, which is {z}, 
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Proposition 49. Given a rule r : L ---f R and an occurrence m : L -+ G in CF-Alg,, 

m is clean for r iff it is d-injective w. r. t. r. 

Proof. Assume that m is a clean occurrence for r and let x, y E L, such that m,(x) = 

m,(y) and x # y. Consider the subset D of L with D, = Domr,U {y} and D1 = Domrl 

for every t # s. Let D be the relative subalgebra of L supported on D and consider 

the factorization r JD o IdD of Y with IdD : L + D the c-quomorphism given by the 

identity on D and rJD : D + R the conformism r : L + R taken with source algebra 

D. Consider the diagram 

m (1) 
I I 

m’ 

G-+I 

where (1) is a pushout square in CF-Alg,. Since m is clean, m’ has to be total 

and therefore m-‘(m(D)) = D by Corollary 5(ii). And since x # y and y E D,, 
m;‘(m,(x)) C D, and then x E Domr,. Therefore, m is d-injective w.r.t. r. 

Conversely, let Y : L + R be a conformism of partial f-algebras and let m : L + G 
be a total conformism, d-injective w.r.t. r. Let r = q o p be any factorization of r, with 

L 3 S 4 R, and consider the diagram 

m (1) I I m’ 

where (1) is a pushout square in CF-Alg,. Let x E m;‘(m,(Dom ps)), say m,(x) = 
ms(y) with y E Dom ps. Then d-injectivity implies that either x = y E Dom ps 
or x, y E Dom r, C Dom ps. Since m is total and s E S any sort, this implies that 

m-i(m(Dom p)) = Dom p and therefore that m’ is total, by Corollary 5(ii). Therefore, 

m is clean for r. 0 

The proof of this proposition applies mutatis mutandi to c-quomorphisms, yielding: 

Proposition 50. Given a rule r : L + R and an occurrence m : L + G in CQ-Alg,, 

m is clean $or r iff it is d-injective W.Y. t. Y. 

As far as cdc-quomorphisms, we need the following lemma. 
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Lemma 51. Let 

f 
K-A 

be u pushout square in CDCQ-Alg,. Then S is total iff g-‘(g(Dom f)) = Domf 

Proof. Since Domi is the greatest closed subset of A contained in A’, we have that 4 

is total iff A = A’. And by Corollary 5(ii) the latter is equivalent to g-‘(g(Dom f)) = 

Domf. Cl 

Proposition 52. Given a rule r : L -+ R and an occurrence m : L + G in CDCQ-Alg,, 

m is clean for r iff it is d-closed-injective ~1.r. t. r. 

Proof. Assume that m is clean for r, and let x,y E & such that m,(x) = ms(y). If 

y t Domr,7 but x $! Domr, then the cdc-quomorphism m’ in the pushout square in 

CDCQ-Alg, 

L&R 

is not total, because m-‘(m(Domr)) # Domr. Therefore, if m is clean and x E Domr,? 

or y E Domr, then x, y E Domr,. 

Assume now that x, y +z’ Domr,, and set D = Dom r U Ct,({y}), which is a closed 

subset of L. Let D be the closed subalgebra of L supported on D and consider the 

factorization r/o o IdD of r with Ido : L + D the cdc-quomorphism given by the 

identity on D and rlo : D + R the cdc-quomorphism r : L + R taken with source 

algebra D. Consider the diagram 

m (1) 
I I 

m’ 

G----iH 
Pt 

where (1) is a pushout square in CDCQ-Alg,. Since m is clean, m’ is total. Therefore 

m-‘(m(D)) = D, and since x E m;‘(m,(D,)) but x $ Domr,, we conclude that 

x E C~,({_Y}).~ and therefore CL({X}) G C,({y}). By symmetry, we also have that 

CL(b)) c CL(G)). 

Therefore, if m is clean for r and if m,(x) = ms(y) then x, y E Domr, or CL((X}) = 

CL({Y)). 
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Conversely, let r : L + R be a cdc-quomorphism of partial r-algebras and let 

m : L --+ G a closed homomorphism d-closed-injective w.r.t. Y. Let r = q o p be any 

factorization of r, with L 3 S -f+ R, and consider the diagram 

G-H 
P’ 

where (1) is a pushout square in CDCQ-Alg,. Let x E m;‘(m,(Domp,)), say m,(x) = 

m,(v) with y E Dom ps. Then d-closed-injectivity implies that either x,y E Domr, C 

Dom ps or CL({X})$ = CL({JJ})~ C Dom ps (because Dom p is closed), so that in 

both cases x E Dom ps. Since m is total and s E S any sort, this implies that 

m-‘(m(Dom p)) = Dom p and thus, by the previous lemma, that m’ is total. Therefore, 

m is clean for r. 0 

Remark. It is stated in [ 12, p. 441 that the clean occurrences in P-TAlg, are exactly the 

d-injective (total) homomorphisms. It is not true in general, as the following example 

shows. Let r be a monounary graph structure, let L be a r-algebra with carrier L = 

{a,b,b’} and with operation (pL given by ~~(a) = a, cpL(b) = b’ and cpL(b’) = b, let 

R be its (closed) subalgebra supported on R = {a}, let G be a r-algebra with carrier 

G = {c,d} and with operation (Pi given by cpG(c) = c and @(d) = d. Let r : L ---f R 

be the partial homomorphism given by the identity on R, and let m : L + G be the 

(closed) homomorphism given by m(u) = c and m(b) = m(b’) = d (see Fig. 8). 

It is clear that m is not d-injective w.r.t. r, and yet it is clean for it. Indeed, if 

r = q o p then either Dom p = {u} or Dom p = L (because Dom p has to be a closed 

subset of L containing Dom r = {u}), and in both cases m-‘(m(Dom p)) = Dom p. 

This entails that, if 

LP’S 

m 1 1 m’ 

G-H 
P’ 

is a pushout in P-TAlg, (which is also a pushout in CDCQ-Alg,) then m’ is total by 

Lemma 51. 

Actually, the proof of Proposition 52 also applies to partial homomorphisms of total 

r-algebras, showing that the clean occurrences in P-TAlg, are exactly the d-closed- 

injective homomorphisms. Notice that in the case of an acyclic graph structure (that 

is, where there does not exist any sequence of operations cpi, . . . , (P,,, n 3 1, such that 

q(Cpi) = (Si,Si+i) for every i = l,..., 12 and s,+i = si), as for instance the signature 

corresponding to hypergraphs [7, Example 41, “d-closed-injective” is equivalent to “d- 

injective.” But this equivalence does not hold for instance for higher-order hypergraphs. 

0 
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L a_.. 

Fig. 8. 

Now, we show that the pairs (CF-Algr,TCF-Alg,), (CQ-Alg,,C-Alg,) and 

(CDCQ-Alg,, C-Alg,) satisfy the HLR conditions for amalgamation introduced in Def- 

inition 43, when r is a graph structure. 

Proposition 53. If r is a graph structure then the pairs (CF-Alg,,TCF-Alg,), 

(CQ-Alg,, C-Alg,) and (CDCQ-Alg,, C-Alg,) satisfy the HLR conditions for amal- 
gamation. 

Proof. Conditions (HLRAl) and (HLRA3) have already been considered in Proposi- 

tion 47. Condition (HLRA2) is given by Propositions 15, 19 and 33. And condition 

(HLRA4) is straightforward from the fact that if r : L -+ R is a partial mapping and 

f : R -+ S is a total mapping then Dom (f o Y) = Domr. IJ 

Therefore, single-pushout transformation in CF-Alg,, CQ-Alg, and CDCQ-Alg, 

through d-injective total conformisms, d-injective closed homomorphisms and d-closed- 

injective closed homomorphisms, respectively, satisfies the basic properties of amalga- 

mation given in Propositions 41, 45 and 46. 

Remark. The pair (P-TAlg,,TAlg,) also satisfies the HLR conditions for amalgama- 

tion (the proof is similar to the one for (CDCQ-Alg,,C-Alg,)). Therefore, Proposi- 

tions 41, 45 and 46 are satisfied by single-pushout transformation in P-TAlg, through 

d-closed-injective homomorphisms. This generalizes Theorem 6.3 and the “only if” im- 

plication in Theorem 6.7 of [15], where these properties are proved for single-pushout 

transformation through d-injective homomorphisms. This contributes to the solution of 

the problem proposed in Footnote 35, p. 210, of the aforementioned paper [ 151, where 

it is asked to investigate conditions more general than d-injectivity under which the 
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results on amalgamation stated therein still hold. Since d-closed-injective homomor- 

phisms (and not d-injective homomorphisms) are the clean occurrences in P-TAlg,, 

we believe that this is the right setting where to prove those results. And, indeed, it 

is not difficult to prove directly that the remaining “if” implication in Theorem 6.7 of 

[ 151 also holds if we replace in it d-injectivity by d-closed-injectivity. 

7. Conclusion 

The single-pushout approach to graph transformation is extended in this paper to 

the algebraic transformation of partial many-sorted unary algebras; that is, of partial 

r-algebras for r any graph structure. The algebraic characterization is developed in the 

category CF-Alg, of all conformisms of partial r-algebras, in the category CQ-Algr 

of all closed quomorphisms of partial r-algebras, and in the category CDCQ-Alg, 

of all closed-domain closed quomorphisms of partial r-algebras. Such an algebraic 

characterization is accompanied by an operational characterization, which may serve as 

a basis for implementation. 

These new single-pushout approaches to algebraic transformation relate to each other 

in a meaningful way. Single-pushout transformation in CQ-Alg, turns out to be a partic- 

ular case of transformation in CF-Alg,, and single-pushout transformation in CQ-Alg, 

(or in CF-Alg,) and in CDCQ-Alg, are independent, yielding two completely different 

approaches to transformation of unary partial algebras: in general, applying a rule in 

CDCQ-Alg, to an algebra through a closed homomorphism yields a “smaller” result 

than applying it in CQ-Alg, (actually, a closed subalgebra of it). 

The new single-pushout approaches to algebraic transformation also relate to previ- 

ous approaches in a meaningful way. On the one hand, the single-pushout transfor- 

mation of unary total algebras introduced by Lowe in [ 151 turns out to be a special 

case of single-pushout transformation in CDCQ-Alg,, and in some sense the latter 

can also be understood as a particular case of the first. On the other hand, single- 

pushout transformation in CF-Alg, or CQ-Alg, has no relation to any double-pushout 

approach to transformation introduced in [7], while single-pushout transformation in 

CDCQ-Alg, generalizes double-pushout transformation in C-Alg,, exactly in the same 

way as single-pushout transformation of unary total algebras (or hypergraphs) gener- 

alizes double-pushout transformation. 

The categories of partial many-sorted unary algebras considered in this paper are 

also shown to satisfy all of the HLR conditions for parallelism introduced in [12]. 

Similar to the case of the double-pushout approach [7], the HLR conditions satisfied 

by a pair (%‘, 0) entail the satisfaction of different rewriting theorems by single-pushout 

transformation systems in (%?, 0) formed by production rules in ‘8 and occurrences in 

0. In particular, the HLR conditions for parallelism entail the Local Church-Rosser 

Theorem, the Parallelism Closure and the Parallelism Theorem, which are therefore 

satisfied by the three single-pushout transformation systems of unary partial algebras 

introduced here. 
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Table I 

HLRP HLRA 

% e 1 2 3 4 1 2 3 4 

CF-Alg, TCF-Alg, + + -t + + + + + 

CQ-At& C-Alg,- + + + + + + + + 

CDCQ-Algr C-A& + + + + + + + + 

HLR conditions for amalgamation are also defined which allow to decompose non- 

parallel-independent derivations sharing a common subrule into a common derivation 

followed by parallel-independent derivations. The categories CF-Alg,, CQ-Alg, and 

CDCQ-Alg, are also shown to satisfy all of the HLR conditions for amalgamation, tak- 

ing the corresponding total morphisms as occurrences. This is summarized in Table 1, 

in parallel with the table given in the Conclusion of [7]. 
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