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Abstract

We show that the Chern–Schwartz–MacPherson class of a hypersurface X in a nonsingular

variety M ‘interpolates’ between two other notions of characteristic classes for singular

varieties, provided that the singular locus of X is smooth and that certain numerical invariants

of X are constant along this locus. This allows us to define a lift of the Chern–Schwartz–

MacPherson class of such ‘nice’ hypersurfaces to intersection homology. As another

application, the interpolation result leads to an explicit formula for the Chern–Schwartz–

MacPherson class of X in terms of its polar classes.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction and statement of the result

There are several different notions of ‘characteristic classes’ of possibly singular
varieties, generalizing the notion of (homology) Chern classes of the tangent bundle
of nonsingular ones; the relationship between some of these classes has been the
object of recent work. In this note we prove a formula relating the Chern–Mather
class, the Chern–Schwartz–MacPherson class, and the class of the virtual tangent
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bundle of a hypersurface in a nonsingular variety, under the assumption that the
singular locus of X is smooth and that certain numerical invariants of X are constant
along this locus. As an application, we obtain an explicit formula for Chern–
Schwartz–MacPherson’s class of X in terms of its polar classes (generalizing a result
in [6]), under the same hypothesis on its singularity, and assuming that X is quasi-
projective.

A more immediate, but perhaps more striking, application is to the problem of
lifting Chern–Schwartz–MacPherson’s classes of a hypersurface to intersection
homology. While the class of the virtual tangent bundle of X trivially has a natural
lift to intersection homology, examples of Mark Goresky and Jean-Louis Verdier
show that the problem of lifting Chern–Schwartz–MacPherson’s classes is much
subtler (see [7] for a discussion of these examples). A lift exists to intersection
homology with rational coefficients in middle perversity as a consequence of [4]; but
there is no known way to construct a ‘canonical’ such lift in general. For quasi-
projective hypersurfaces X satisfying our hypothesis, the interpolation formula given
below defines a lift of the Chern–Schwartz–MacPherson class of X in IH�ðXÞ with
rational coefficients, in middle perversity. This could be used to define Chern

numbers ci cdim X�i for projective singular hypersurfaces satisfying the condition
considered here. Computing such numbers explicitly would be very interesting; also
it would be interesting to establish the exact dependence (if any) of these numbers or
of our lift on the embedding of X :

Let X be a reduced hypersurface of a nonsingular complex algebraic variety M:
We denote by

cSMðX Þ; cMaðX Þ; cFðX Þ

the three classes mentioned above; the first two are defined in [13], while the third is
the class of the virtual tangent bundle of X :

cFðXÞ ¼ c
TM

OðXÞ

� �
-½X � ¼ cðTMÞ-sðX ;MÞ:

Here, sðX ;MÞ is the Segre class of X in M; cf. [10], Chapter 4. The class cFðXÞ
equals William Fulton’s intrinsic class of X ; which can be defined for every scheme
embeddable in a nonsingular variety (cf. [10, Section 4.2.6]), and is independent of
the ambient variety M:

All these classes can be defined in a good homology theory on X ; in this paper we
work in the Chow group of X with rational coefficient, denoted ðA�XÞQ (except for

the application to lifting to IH�).
We denote by Y the singularity subscheme of X (locally defined by the partial

derivatives of a generator of its ideal in M) and by Y 0 its support, that is, the singular
locus of X : For pAY 0 we consider two numerical invariants of X at p:

* the local Euler obstruction of X at p; EuX ðpÞ; and
* the Euler characteristic wp of the Milnor fiber of X at p:
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Definition 1.1. A variety X is a nice hypersurface if it can be realized as a
hypersurface in a nonsingular variety M; and further its singular locus Y 0 is
nonsingular and irreducible, and the numbers EuX ðpÞ; wp are constant along Y 0:

In the results given below, we assume that X is a nice hypersurface, and we denote
the constant values of EuX ðpÞ; wp by Eu; w respectively. This condition is satisfied for

example if the stratification fY 0;X \Y 0;M\Xg of the ambient variety M is Whitney
regular, or satisfies the weaker condition of c-regularity of Karim Bekka [5].1 The
precise algebro-geometric requirement is that the normal cone of the singularity
subscheme Y in M be irreducible, cf. Lemma 2.3.

Under this assumption, we will show that the Chern–Schwartz–MacPherson class
of X is an ‘interpolation’ of the classes cMaðX Þ and cFðXÞ; we will now state this
result precisely. As X is a hypersurface in M; it determines a line bundle OMðX Þ; we
adopt a common abuse of notation and denote by X the first Chern class c1ðOMðX ÞÞ
of this line bundle, and its restrictions to subschemes of M: Thus sðX ;MÞ ¼ ½X �

1þX
in

our notations, and 1
1þaX

is shorthand for 1� ac1ðOðXÞÞ þ a2c1ðOðXÞÞ2 þ?:

For all rational numbers a; we let

cðaÞðXÞ ¼ cFðX Þ þ ð1� aÞ
1þ aX

ðcMaðXÞ � cFðXÞÞ AðA�XÞQ:

Thus,

cð0ÞðXÞ ¼ cMaðXÞ and cð1ÞðXÞ ¼ cFðX Þ

trivially. Also, cðaÞðXÞ does not depend on the ambient manifold M in which X is

realized as a hypersurface: indeed, the class ðcMaðXÞ � cFðXÞÞ is supported on the
singular locus Y 0 of X ; and it can be shown that the action of X ¼ c1ðOMðXÞÞ on Y 0

is independent of M: In fact, the restriction of OMðXÞ to Y does not depend on M:

Theorem 1.1. If X is a nice hypersurface, then

cðrÞðX Þ ¼ cSMðXÞ in ðA�X ÞQ;

where cSMðX Þ denotes the Chern–Schwartz–MacPherson class of X, and r ¼ 1� Eu

w� Eu
:

We note that, under our assumption on the singularity of X ; and by the very
definition of cSMðXÞ in [13], the class cSMðXÞ is a simple linear combination of
cMaðX Þ and of the total homology Chern class of the singular locus Y 0 of X : Our
formula replaces this latter local ingredient with the global information of the class of
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the virtual tangent bundle of X : If the Chern classes of Y 0 are known, our formula
can be used ‘in reverse’ to obtain information about the invariants Eu, w; bypassing a
local study of X near its singular locus. See Section 4, for a precise statement
(Proposition 4.1) and an example of such a computation.

Also note that while the condition of being ‘nice’ is of course very strong in
general, it is automatically satisfied in codimension equal to the codimension of the
singular locus Y 0 of X ; provided that the top-dimensional part of Y 0 is irreducible:
indeed, the hypersurface obtained from X by removing the locus where the
invariants jump is then trivially nice. The formula of the theorem gives then a
relation between the classes up to that codimension, under the sole assumption that
the singular locus is irreducible in top dimension; see Example 4.2 for an illustration
of this fact.

As mentioned earlier, the interpolation formula can be used to lift Chern–
Schwartz–MacPherson’s classes of a quasi-projective nice hypersurface X to IH�ðXÞ
(with rational coefficients, in middle perversity). This relies precisely on our trading
the ‘local’ information of cðTY 0Þ-½Y 0� (which is hard to transfer into IH�ðXÞ) for
the ‘global’ information of cFðX Þ: In order to define the lift, we just note that a lift of
cMaðX Þ for quasi-projective X is defined in [9]; cFðXÞ lifts as it is the class of the
virtual tangent bundle of X ; and the other ingredients in the interpolation formula
also involve elements in cohomology, so they trivially lift to IH�ðXÞ: Hence the
formula defines an element of IH�ðXÞ for nice singular hypersurfaces, which lifts
cSMðXÞ by the main theorem. We note that as the lift of cMaðXÞ of [9] potentially
depends on the realization of X as a quasi-projective variety, our lift of cSMðX Þ may
also depend on this choice. It would be interesting to establish whether it is in fact
uniquely determined by X itself.

Theorem 1.1 is proved in Section 2; the main tools are formulas from [2],
manipulations of Segre classes, and a key result of Adam Parusiński and Piotr
Pragacz [14]. In Section 3, we consider a situation in which cMaðXÞ can be expressed
very concretely, that is, when X is given explicitly as a subvariety of a projective
space Pn: In this case, a result of Ragni Piene can be used to express the class in terms
of a suitable combination ½P� of the polar classes of X :

½P� ¼ �
X
kX0

½Pk�3#PnOð1Þ;

where ½Pk� denotes the class of the kth polar locus of X ; and we use the notations
introduced in [1]. We recall precise definitions and Piene’s result in Section 3. We
then have:

Corollary 1.2. If XCPn; and X is a nice hypersurface (in some variety M), let

r ¼ 1� Eu

w� Eu
; s ¼ 1� r ¼ w� 1

w� Eu
:
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Then the Chern–Schwartz–MacPherson class of X is given by

cSMðX Þ ¼ cðTMÞ- r½X �
1þ rX

þ cðTPnÞ- s½P�
1þ rX

AðA�XÞQ:

As in Theorem 1.1, X is used here to denote c1ðNX MÞ: Note that we are not
requiring X to be a hypersurface in Pn; all we need is that X can be abstractly
realized as a nice hypersurface in some variety M; and that X is itself quasi-
projective.

If Y ¼ Y 0 and the (nice) hypersurface X has multiplicity 2 along Y ; then ðw;EuÞ ¼
ð2; 0Þ if the codimension of Y in X is even, and ð0; 2Þ if it is odd (this follows from

Lemma 2.3 in Section 2). In both cases r ¼ s ¼ 1
2
; if further M ¼ Pn; then the

formula in the corollary specializes to the case considered in [6]; this was our starting
point in this work.

Other expressions for Chern–Schwartz–MacPherson’s class of a singular variety X

in the context of the study of polar varieties are known, notably those given in
Section 6 of [12] (without any restriction on X !). The works of Ragni Piene and Lê
Dũng Tráng and Bernard Teissier [12,16] have exposed the close relationship
between characteristic classes of singular varieties and their polar varieties. Our
motivation in Section 3 is however somewhat different than in these references—we
have aimed specifically at identifying the contribution of polar varieties to
‘correction terms’ between different notions of characteristic classes. The term

cðTMÞ- r½X �
1þrX

is the analog of Fulton’s intrinsic class for a ‘virtual’ hypersurface rX :

The other term, cðTPnÞ- s½P�
1þrX

; could then be interpreted as a Milnor class (in the

sense of [6]) for such a virtual hypersurface. Thus, Corollary 1.2 brings evidence to
the possibility that Milnor classes admit simple expressions in terms of polar classes.
Positive results in this direction could lead to a good treatment of Milnor classes for
more general varieties, which would be highly desirable.

This paper is dedicated to Prof. Tatsuo Suwa, with best wishes on his 60th
birthday. We also thank him for pointing out to us that alternative proofs of some of
the results presented here may be obtained by applying results of [8] (for example,
Corollary 5.13 in [8] can be used to provide a different proof of our Proposition 4.1).

2. Segre classes and characteristic classes

Let X be a reduced hypersurface of an arbitrary nonsingular variety M; we work
over C for convenience, but most of what we say can easily be extended to arbitrary
algebraically closed fields of characteristic 0.

We denote by Y the singularity subscheme of X ; and for the moment we make no
further assumptions on X or Y : The following formulas for the Mather and
Schwartz–MacPherson classes (denoted respectively cMaðXÞ; cSMðXÞ) are given in [2]
(Lemma I.2, Theorem I.3):
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Lemma 2.1. Let p : M̃-M be the blow-up of M along Y; let Y be the exceptional

divisor in this blow-up, and let X; X̃; respectively, be the total and strict transforms of X

in M̃: Then

cMaðXÞ ¼ cðTMÞ-p�
½X̃�

1þX�Y

� �
;

cSMðX Þ ¼ cðTMÞ-p�
½X�Y�

1þX�Y

� �
:

These formulas can be conveniently rewritten without reference to classes in M̃;
by adopting the notations introduced in [1]: for A ¼

P
ap; ap a class of dimension p

in a subscheme of M; and L a line bundle, we let A#L be the classP
p cðLÞp�dim M-ap and A3 be

P
ð�1Þp�dim M

ap: Note that these notations

depend on the ambient variety M; this will be understood in the following. With
these notations:

Proposition 2.2. Denote by L the restriction of the line bundle OðX Þ to Y. Then

cMaðXÞ ¼ cðTMÞ- ½X �
1þ X

þ sðY ;XÞ3#L

� �
;

cSMðX Þ ¼ cðTMÞ- ½X �
1þ X

þ ðcðLÞ-sðY ;MÞÞ3#L

� �
:

Proof. The statement follows at once from the formulas given in Lemma 2.1, with
standard manipulations involving the notations recalled above. For the first formula,
write

½X̃�
1þX�Y

¼ ½X̃�
1�Y

#L ¼ ½X̃� þY � ½X̃�
1�Y

� �
#L ¼ ½X̃�

1þX
þ Y � ½X̃�

1þY

� �3

#L

pushing this expression forward by p gives

½X �
1þ X

þ sðY ;XÞ3#L

yielding the first formula in the statement. The second formula is proven similarly; it
is in fact Theorem I.4 in [2]. &

Proposition 2.2 highlights the difference between the two notions of Chern–
Mather and Chern–Schwartz–MacPherson classes of a hypersurface X in a
nonsingular variety M: the distinction lies in the difference between

sðY ;X Þ and cðOðXÞÞ-sðY ;MÞ
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and in this sense it is precisely captured by the singularity subscheme Y of the
hypersurface. Relating the two characteristic classes directly amounts then to
comparing sðY ;XÞ and sðY ;MÞ directly. Unfortunately, very few such comparison
results are known in general (cf. [10], Example 4.2.8 for a counterexample to the
naive guess for such a comparison). At present, the strong assumption posed in
Section 1 to state the main theorem of this paper is necessary precisely because it
allows us to perform this comparison.

First, we gather more information from the blow-up M̃; here we make crucial use
of a result from [14].

Lemma 2.3. Under the hypotheses of the theorem, Y is irreducible. Denoting by Y0 its

support, and writing

Y ¼ mY0; X ¼ X̃ þ nY0

as cycles, then we have

m ¼ ð�1Þdim X�dim Y ðw� 1Þ; n ¼ ð�1Þdim X�dim Y ðw� EuÞ

with w and Eu defined as in Section 1.

Proof. Let Y ¼
P

miYi be the irreducible decomposition of Y; by [11], each Yi can
be identified with the conormal variety of its support. In particular, there is exactly

one component Y0 over the support Y 0 of Y : As in [14] we let m ¼ ð�1Þdim X ðw� 1Þ;
and remark that under our assumption this is a multiple of the characteristic
function 1Y of Y 0; hence of the local Euler obstruction EuY 0 since Y 0 is nonsingular
by hypothesis. By Theorem 2.3(iii) of [14], the cycle

P
miYi must equal a constant

times Y0; it follows that Y0 is the only irreducible component of Y; and further that

m ¼ mð�1Þdim Y1Y :

The first assertion in the statement follows, as well as the formula for m: The formula
for n can be obtained similarly from Theorem 2.3 in [14], or from the fact that

1 ¼ EuX ðpÞ þ ðn � mÞð�1Þdim X�dim YEuY ðpÞ

for all pAY (as proved in [3, Section 2]). &

Note that, for nice hypersurfaces, necessarily wa1 and waEu (this follows from
Lemma 2.3). The next lemma relates sðY ;XÞ and sðY ;MÞ in the special case of nice
hypersurfaces.
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Lemma 2.4. With assumptions and notations as above

sðY ;X Þ ¼ w� Eu

w� 1
þ X

� �
� sðY ;MÞ

in ðA�YÞQ:

Proof. Since Y has codimension at least 2 in M; note that

p�
Y � ½Y�
1þY

¼ p�
½Y�

1þY
¼ sðY ;MÞ:

Therefore with notations as in Lemma 2.3

sðY ;XÞ ¼ p�
Y � ½X̃�
1þY

¼ p�
Y � ð½X� � n½Y0�Þ

1þY
¼ X � p�

½Y�
1þY

� n

m
p�
Y � ½Y�
1þY

¼X � sðY ;MÞ þ n

m
sðY ;MÞ ¼ n

m
þ X

� �
� sðY ;MÞ: &

After these preliminary considerations, we are ready to prove the main theorem.
Mimicking the relation between sðX ;MÞ and cFðX Þ; we write sMaðX ;MÞ for

cðTMÞ�1-cMaðXÞ; and, as above, s ¼ w�1
w�Eu

and r ¼ 1� s:

Proof of Theorem 1.1. In view of the first formula in Proposition 2.2,

sMaðX ;MÞ ¼ ½X �
1þ X

þ sðY ;XÞ3#L:

By Lemma 2.4, sðY ;XÞ ¼ 1
sð1þ sX Þ-sðY ;MÞ; hence

sðY ;MÞ ¼ s
1

1þ sX
-sðY ;XÞ:

Therefore,

ðcðLÞ-sðY ;MÞÞ3#L ¼ s
1� X

1� sX
-sðY ;XÞ3

� �
#L

¼ð1� rÞ 1

1þ rX
-ðsðY ;XÞ3#LÞ

(using Proposition 1 in [1]). That is,

ðcðLÞ-sðY ;MÞÞ3#L ¼ ð1� rÞ
1þ rX

sMaðX ;MÞ � ½X �
ð1þ XÞ

� �
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and the formula given in the theorem now follows from the second formula of

Proposition 2.2 and from cFðXÞ ¼ cðTMÞ- ½X �
1þ X

: &

3. Relation with polar classes

We now turn to the situation in which X is embedded in a projective space Pn; and
to polar classes; all we need to do is rewrite a result of Ragni Piene into our
language. If X is a (closed) subvariety of dimension r in Pn; the kth polar locus Pk of

X with respect to a general linear subspace Lk ¼ Pk�2þn�rCPn is the closure of
the locus

fxAXsmooth j dim ðTxX-LkÞXk � 1g:

The class ½Pk�AAdim X�k is independent of the (general) choice of the subspace Lk (cf.
[15], Proposition 1.2). Note that ½P0� ¼ ½X �; since the condition defining P0 is
vacuous. We define the ‘total polar class’ of X by

½P� ¼ ð�1Þn�r
X
kX0

½Pk�3#PnOð1Þ

again we are using the notations of [1], for convenience.
The main observation here is that the class ½P� is closely related to the class

cMaðX Þ: The precise relation is given in part (a) in the following theorem, due to
Ragni Piene; we include part (b) for completeness, and stress that (b) holds for
arbitrary hypersurfaces.

Theorem 3.1. (a) (Piene [16]) For any subvariety X of Pn as above:

cMaðXÞ ¼ cðTPnÞ-½P�:

(b) If, further, X is a hypersurface in a nonsingular variety M, with singularity

subscheme Y, and L denotes OMðX ÞjX ; then

sðY ;X Þ ¼ ½X � þ cðN�
XP

n#LÞ
cðLÞn�r�1

-ð½P�3#MLÞ AA�X :

Proof. (a) This is the translation in our notations of the second formula in Ragni
Piene’s Théorème 3 in [16]

cMaðX Þ ¼
X
kX0

Xk

i¼0

ð�1Þk�i r þ 1� k þ i

i

 !
Hi � ½Pk�i�;

where H is the hyperplane class.
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(b) From part (a) and Proposition 2, we have

cðTPnÞ-½P� ¼ cðTMÞ- ½X �
1þ X

þ sðY ;XÞ3#L

� �
;

therefore, using Propositions 1 and 2 from [1]:

½X �
1þ X

þ sðY ;X Þ3#L ¼ cðTPnÞ
cðTMÞ-½P� ¼ cðNXP

nÞ
cðLÞ -½P�;

sðY ;X Þ3#L ¼ 1

cðLÞðcðNXP
nÞ-½P� � ½X �Þ;

sðY ;X Þ#L3 ¼ 1

cðL3ÞðcðN
�
XP

nÞ-½P�3 þ ½X �Þ;

sðY ;X Þ ¼ cðLÞcðN
�
XP

n#LÞ
cðLÞn�r -ð½P�3#LÞ þ ½X �

with the stated result. &

In the particular case in which X is a hypersurface of Pn; the formula in part (b)
reduces to

sðY ;X Þ ¼ ½P�3#Lþ ½X �

as the reader may check, this is equivalent to Piene’s Plücker formulae (cf. Theorem
2.3 in [15]).

Corollary 1.2 follows from part (a), Theorem 1.1, and straightforward
manipulations.

4. Remarks and examples

Regarding the computability of the key coefficient r needed in order to apply
Theorem 1.1, the following observation may be useful.

Proposition 4.1. With notations and assumptions as in Section 2

ð1þ X ÞðcMaðXÞ � cFðXÞÞ ¼ ððEu� wÞ þ ðEu� 1ÞXÞ � ðcðTY 0Þ-½Y 0�Þ:

The point is that if cMaðX Þ; cFðX Þ; and cðTY 0Þ are known, and X � dim Y 0a0
(for example, dim Y 040 if M ¼ Pn), then this formula determines ðEu� 1Þ and
ðEu� wÞ; r is the quotient of these two numbers.

Proof. Since Y 0 is assumed to be nonsingular, the weighted Chern–Mather class of
Y (cf. Lemma 2.3 and [3]) is given by

cwMaðYÞ ¼ mcðTY 0Þ-½Y 0� ¼ ð�1Þdim X�dim Y ðw� 1ÞcðTMÞ-sðY 0;MÞ;
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on the other hand, by Proposition 1.3 in [3]

cwMaðY Þ ¼ ð�1Þdim Y ðcðT�M#LÞ-sðY ;MÞÞ3L

¼ð�1Þdim M�dim Y
cðTMÞ-ðsðY ;MÞ3#LÞ:

Therefore,

sðY ;MÞ3#L ¼ ð1� wÞcðNY 0MÞ�1-½Y 0�:

Now arguing as in the proof of Lemma 2.4

sðY ;XÞ3#L ¼Eu� w
1� w

1þ Eu�1
Eu�wX

1þ X
ðsðY ;MÞ3#LÞ

¼ ðEu� wÞ þ ðEu� 1ÞX
1þ X

cðNY 0MÞ�1-½Y 0�

and the statement follows from the expression for sMaðX ;MÞ obtained in the proof
of Theorem 1.1. &

Example 4.1. The tangent developable surface of the twisted cubic in P3: For a
concrete example, let X be the surface obtained as the union of all tangent lines to a

fixed twisted cubic curve in P3: It is a standard but pleasant exercise to check that

* X is a surface of degree 4;
* its singular locus Y 0 is the twisted cubic;
* the polar classes of X are: ½P0� ¼ X ; ½P1� ¼ 3½P1�; ½P2� ¼ 0:

The numerical invariants of X are clearly constant along the twisted cubic: indeed,
X is invariant under an action of PGLð2Þ that is transitive along the singular locus.

Hence X is a nice hypersurface of M ¼ P3:
Note that in this example Eu equals the multiplicity of X along Y 0 (for example by

the fundamental formula in [12, Section 5]); however, this multiplicity is not
available without a local study of X : Also, we do not know of any direct way to
compute w that does not involve a deeper local study of X :

The global information listed above suffices however to determine both Eu and w
in this example, by means of Proposition 4.1. Indeed, we have

½P� ¼ ½X �
1þ H

� 3½P1�
ð1þ HÞ2

¼ ½X � � 7½P1� þ 10½P2�

(where H denotes the hyperplane class), and cðTP3Þ-½P� ¼ cMaðX ;MÞ by Theorem
3.1(a). Hence

ð1þ XÞðcMaðX Þ � cFðX ÞÞ ¼ cðTP3Þ-ðð1þ XÞ½P� � ½X �Þ ¼ 9½P1� þ 18½P0�:
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Applying Proposition 4.1 gives then

9½P1� þ 18½P0� ¼ ððEu� wÞ þ ðEu� 1ÞXÞ � ð3½P1� þ 2½P0�Þ;

from which Eu� w ¼ 3 and 7 Eu� w ¼ 15: Therefore

Eu ¼ 2; w ¼ �1:

Hence r ¼ 1
3
here, and by Corollary 1.2

cSMðXÞ ¼ cðTP3Þ-
1
3
½X � þ 2

3
½P�

1þ 1
3
X

¼ ½X � þ 6½P1� þ 4½P0�:

We end with perhaps the simplest example in which our formula does not apply.

Example 4.2. Consider a reduced plane curve of degree dX3 with exactly one node,

and let X be the cone in P3 over this curve. The singular locus Y 0 of X is then a line
L; but the singularity scheme Y is ‘fatter’ at the vertex of the cone. The invariants
considered here detect this feature of Y : it is not hard to check that ðw;EuÞ ¼ ð0; 2Þ
at all points of L but the vertex, while ðw;EuÞ ¼ ðdðd � 1Þðd � 2Þ; 2þ 2d � d2Þ
at the vertex; in particular, these numbers are not constant along Y 0; so X is not
‘nice’.

For this example we have ½P0� ¼ ½X �; ½P1� ¼ d2 � d � 2 lines through the vertex,

and ½P2� ¼ 0: The push-forward to ½P3� of the class caðXÞ defined in Section 1 is

d½P2� þ ð2þ 4d � d2 � 2aÞ½P1� þ ð4þ 5d � 2d2 þ ð�4� d � 2d2 þ d3Þaþ 2da2Þ½P0�:

It is immediate to check that this expression does not equal the push forward of
cSMðXÞ:

d½P2� þ ð1þ 4d � d2Þ½P1� þ ð2þ 3d � d2Þ½P0�

for any value of a: Note however that the value a ¼ 1
2
corresponding to ðw;EuÞ ¼

ð0; 2Þ at the general point on L does yield the correct term in codimension 1: indeed,
the invariants jump on a locus of codimension 2 in X ; so (as observed in the
introduction) the formula in Theorem 1.1 is correct for all terms of lower
codimension in X :
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[5] K. Bekka, C-régularité et trivialité topologique, in: D. Mond, J. Montaldi (Eds.), Singularity theory

and its applications, Part I (Coventry, 1988/1989), Springer, Berlin, 1991, pp. 42–62.

[6] J.-P. Brasselet, Milnor classes via polar varieties, in: Singularities in algebraic and analytic geometry

(San Antonio, TX, 1999), Contemporary Mathematics, Vol. 266, American Mathematical Society,

Providence, RI, 2000, pp. 181–187.

[7] J.-P. Brasselet, G. Gonzalez-Sprinberg, Sur l’homologie d’intersection et les classes de Chern des

variétés singulières (espaces de Thom, exemples de J.-L. Verdier et M. Goresky), in: Géométrie
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