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In this paper we present a new primal-dual path-following interior-point algorithm for
semidefinite optimization. The algorithm is based on a new technique for finding the
search direction and the strategy of the central path. At each iteration, we use only full
Nesterov–Todd step. Moreover, we obtain the currently best known iteration bound for the
algorithm with small-update method, namely, O (

√
n log n

ε ), which is as good as the linear
analogue.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Semidefinite optimization (SDO) problems are convex optimization problems over the intersection of an affine set and
the cone of positive semidefinite matrices. SDO has wide applications in continuous and combinatorial optimization [2,21].
In the past decade, SDO has become a popular research area in mathematical programming when it became clear that the
algorithm for linear optimization (LO) can often be extended to the more general SDO case. Several interior-point methods
(IPMs) designed for LO have been successfully extended to SDO [12,16,20,22] and second-order cone optimization (SOCO) [7].
An important contribution to this field was made by Nesterov and Todd [13,14] who showed that the primal-dual algorithm
maintains its theoretical efficiency when the nonnegativity constrains in LO are replaced by a convex cone, as long as the
cone is homogeneous and self-dual. An interesting fact is that almost all known polynomial-time variants of IPMs use the
so-called central path as a guideline to the optimal set, and some variants of Newton’s method follow the central path
approximately. For an overview of these related results we refer to [10,17,19,21] and their references. In particular, primal-
dual interior-point algorithms are of high efficiency both in theory and in practice. The convergence rates, the stability
and the numerical results of primal-dual interior-point methods for SDO have been presented by Alizadeh in [3]. Recently,
Darvay [8] proposed a new technique for finding a class of search directions. Based on this technique, the author designed
a new primal-dual path-following interior-point algorithm for LO with iteration bound O (

√
n log n

ε ). Later on Achache [1]
extended it to convex quadratic optimization (CQO).

Motivated by their work, we propose a new primal-dual path-following interior-point algorithm for SDO. We adopt the
basic analysis used in [8] to the SDO case. The favorable iteration bound for the algorithm with small-update method,
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namely, O (
√

n log n
ε ) is obtained. The iteration bound is as good as the bound for the LO case. Moreover, our analysis is

relatively simple and straightforward to the LO analogue.
The outline of the paper is as follows. In Section 2, we recall some well-known results on matrices and matrix functions.

In Section 3, we briefly introduce the central path for SDO and its properties. In Section 4, we extend Darvay’s new technique
for LO to SDO and obtain the new search direction for SDO. In Section 5, we present the generic primal-dual path-following
algorithm for SDO. In Section 6, we analyze the algorithm and derive the iteration bound with small-update method. Finally,
some conclusions and remarks follow in Section 7.

Some notations used throughout the paper are as follows. Rn , Rn+ and Rn++ denote the set of vectors with n components,
the set of nonnegative vectors and the set of positive vectors, respectively. Rn×n denotes the set of n ×n real matrices. ‖ · ‖F

and ‖ · ‖2 denote the Frobenius norm and the spectral norm for matrices, respectively. Sn , Sn+ and Sn++ denote the cone of
symmetric, symmetric positive semidefinite and symmetric positive definite n × n matrices, respectively. The Löwner partial
order “�” (or “�”) on positive semidefinite (or positive) matrices means A � B (or A � B) if A − B is positive semidefinite
(or positive). We use the matrix inner product A • B = Tr(AT B) (i.e., the trace of the matrix AT B). For any A ∈ Rn×n , det(A)

denotes the determinant of A. For any Q ∈ Sn++ , the expression Q
1
2 (or

√
Q ) denotes its symmetric square root. When λ

is a vector we denote the diagonal matrix Λ with entries λi by diag(λ). For any V ∈ Sn , λmax(V ) and λmin(V ) denote the
largest eigenvalue and the smallest eigenvalue of V . Furthermore, we assume that the eigenvalues of V are listed according
to the order of their absolute values such that |λ1(V )| � |λ2(V )| � · · · � |λn(V )|. If V is positive semidefinite, then we
have λmin(V ) = λn(V ) � 0, λmax(V ) = λ1(V ). Finally, if g(x) � 0 is a real valued function of a real nonnegative variable,
the notation g(x) = O (x) means that g(x) � c̄x for some positive constant c̄ and g(x) = Θ(x) that c1x � g(x) � c2x for two
positive constants c1 and c2.

2. Preliminaries on matrices and matrix functions

Firstly, we briefly recall some known facts from linear algebra. For the details we refer to the book [9].

Definition 2.1. Let A, B ∈ Rn×n , c ∈ R, we call a function ‖ · ‖ : Rn×n → R a matrix norm if it satisfies the following axioms

(1) ‖A‖ � 0;
(2) ‖c A‖ = |c|‖A‖;
(3) ‖A + B‖ � ‖A‖ + ‖B‖;
(4) ‖AB‖ � ‖A‖‖B‖.

It is well known that for any matrix A ∈ Rn×n , the Frobenius norm

‖A‖F =
√

Tr
(

AT A
) =

√√√√ n∑
i=1

n∑
j=1

a2
i j

(
=

√√√√ n∑
i=1

λ2
i (A) if A ∈ Sn

)
,

and the spectral norm

‖A‖2 =
√

λmax
(

AT A
) (= λmax(A) if A � 0

)
,

for matrices are norms in this sense.
The trace of the matrix A is the sum of the diagonal elements of the matrix A and often denoted by Tr(A). It has the

following property.

Property 2.2. Let A, B ∈ Rn×n, then

(1) Tr(A) = ∑n
i=1 λi(A), where λi(A) is the ith eigenvalue of matrix A;

(2) Tr(A) = Tr(AT );
(3) Tr(AB) = Tr(B A);
(4) Tr(A + B) = Tr(A) + Tr(B).

Theorem 2.3 (Spectral theorem for symmetric matrices). (See [21].) The real n × n matrix A is symmetric if and only if there exists a
matrix Q ∈ Rn×n such that Q T Q = E and Q T A Q = Λ where Λ is a diagonal matrix.

It readily follows from Theorem 2.3 that λi(A2) = λ2
i (A), i = 1,2, . . . ,n, whence A2 ∈ Sn+ .

Throughout the paper, we assume that ψ(t) is a real valued function on [0,+∞) and differentiable on (0,+∞) such
that ψ ′(t) > 0 for all t > 0. Now we are ready to show how a matrix function can be obtained from ψ(t).



G.Q. Wang, Y.Q. Bai / J. Math. Anal. Appl. 353 (2009) 339–349 341
Definition 2.4. Let V ∈ Sn+ and

V = Q T diag
(
λ1(V ), λ2(V ), . . . , λn(V )

)
Q ,

where Q is any orthonormal matrix (Q T = Q −1) that diagonalizes V . The matrix valued function ψ(V ) is defined by

ψ(V ) = Q T diag
(
ψ

(
λ1(V )

)
,ψ

(
λ2(V )

)
, . . . ,ψ

(
λn(V )

))
Q . (1)

It should be noted that the matrix Q is not unique, but ψ(V ) is well defined whenever ψ(t) is well defined on the
eigenvalues of V [16].

Furthermore, replacing ψ(λi(V )) in (1) by ψ ′(λi(V )), we can conclude that the matrix functions ψ ′(V )

ψ ′(V ) = Q T diag
(
ψ ′(λ1(V )

)
,ψ ′(λ2(V )

)
, . . . ,ψ ′(λn(V )

))
Q (2)

is defined as well.
It is well known that two matrixes A and B are called similar (abbreviated A ∼ B) if A = P B P−1 for some invertible

matrix P and, moreover, if A and B are symmetric then this happens if and only if A and B have the same eigenvalues [9].

Lemma 2.5. Let A, B ∈ Sn, and AB = B A, then

λi(A + B) = λi(A) + λi(B), i = 1,2, . . . ,n.

Furthermore, if |λi(B)| is small enough, we have

ψ(A + B) ≈̇ ψ(A) + ψ ′(A)B.

Proof. Theorem 2.3 implies that the first part of the lemma. On the other hand, since ψ(V ) depends only on the eigenvalues
of the matrix V , from Taylor’s theorem, the second part of the lemma is trivial. �
Lemma 2.6. Let t > 0 and V ∈ Sn+ , then

∥∥(
t E − V 2)(t E + V )−1

∥∥
F � 1

t + λmin(V )

∥∥t E − V 2
∥∥

F .

Proof. Since V ∈ Sn+ , from Theorem 2.3 we have

V = Q T diag
(
λ1(V ), λ2(V ), . . . , λn(V )

)
Q ,

and

V 2 = Q T diag
(
λ2

1(V ), λ2
2(V ), . . . , λ2

n(V )
)

Q .

Then

t E − V 2 = Q T diag
(
t − λ2

1(V ), t − λ2
2(V ), . . . , t − λ2

n(V )
)

Q ,

and

(t E + V )−1 = Q T diag

(
1

t + λ1(V )
,

1

t + λ2(V )
, . . . ,

1

t + λn(V )

)
Q .

Thus

∥∥(
t E − V 2)(t E + V )−1

∥∥
F =

√√√√ n∑
i=1

(
t − λ2

i (V )

t + λi(V )

)2

� 1

t + λmin(V )

√√√√ n∑
i=1

(
t − λ2

i (V )
)2 � 1

t + λmin(V )

∥∥t E − V 2
∥∥

F .

This completes the proof of the lemma. �
Remark 2.7. In the rest of the section, when we use the function ψ(·) and its derivatives ψ ′(·), they denote matrix function
if the argument is a matrix and a univariate function if the argument is in R.
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3. The central path

We consider the SDO problem in standard form

(P ) minimize C • X subject to Ai • X = bi, i = 1,2, . . . ,m, X � 0 (3)

and its dual problem

(D) maximize bT y subject to
m∑

i=1

yi Ai + S = C, S � 0, (4)

where each Ai ∈ Sn , b ∈ Rm , and C ∈ Sn . Moreover, the matrices Ai are linearly independent.
Throughout the paper, we assume that (P ) and (D) satisfy the interior-point condition (IPC), i.e., there exists

(X0 � 0, y0, S0 � 0) such that

Ai • X0 = bi, X0 � 0, i = 1,2, . . . ,m,

m∑
i=1

y0
i Ai + S0 = C, S0 � 0.

It is well known that the IPC can be assumed without loss of generality. In fact we may choose X0 = S0 = E as the initial
start point, where E is the n × n unit matrix. The detailed analysis can be found in [10,21]. The optimality conditions for
(P ) and (D) are given by the following system

Ai • X = bi, i = 1,2, . . . ,m, X � 0,

m∑
i=1

yi Ai + S = C, S � 0, (5)

X S = 0.

If the IPC holds, the μ-central of (P ) and (D) is defined by the solution (X(μ), y(μ), S(μ)) of the following system

Ai • X = bi, i = 1,2, . . . ,m, X � 0,

n∑
i=1

yi Ai + S = C, S � 0, (6)

X S = μE,

with μ > 0. The set of μ-centers (with μ running through all positive real numbers) gives a homotopy path, which is called
the central path of (P ) and (D). If μ → 0 then the limit of the central path exists and since the limit points satisfy the
complementarity condition, the limit yields an ε-approximate solution for (P ) and (D) [10,21].

4. The new search directions

In [8], Darvay presented a new technique for finding a class of search directions for LO. He replaces the standard cen-
tering equation xs = μe by ψ( xs

μ ) = ψ(e), where ψ(·) is the vector function induced by function ψ(t), and then applies
Newton’s method to obtain the new search directions. Similar to the LO case, we replace the standard centering equation
X S = μE by ψ( X S

μ ) = ψ(E), then the system (6) can be written as

Ai • X = bi, i = 1,2, . . . ,m, X � 0,

n∑
i=1

yi Ai + S = C, S � 0, (7)

ψ

(
X S

μ

)
= ψ(E).

Applying Newton’s method to system (7) produces the following equations for the search direction �X , �y and �S

Ai • (X + �X) = bi, i = 1,2, . . . ,m,

n∑
i=1

(yi + �yi)Ai + (S + �S) = C, (8)

ψ

(
(X + �X)(S + �S)

)
= ψ(E).
μ
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The third equation of the system (8) is equivalent to

ψ

(
X S

μ
+ X�S + �X S + �X�S

μ

)
= ψ(E). (9)

Applying Lemma 2.5 and neglecting the term �X�S , Eq. (9) can be written as

ψ

(
X S

μ

)
+ ψ ′

(
X S

μ

)(
X�S + �X S

μ

)
= ψ(E). (10)

Then we consider the following system

Ai • �X = 0, i = 1,2, . . . ,m,
n∑

i=1

�yi Ai + �S = 0, (11)

�X + X�S S−1 = μ

(
ψ ′

(
X S

μ

))−1(
ψ(E) − ψ

(
X S

μ

))
S−1.

It is obvious that �S is symmetric due to the second equation in (11). However, a crucial observation is that �X is not
necessarily symmetric because X�S S−1 may not be symmetric [20]. Several ways exist for symmetrizing the third equation
in the Newton system such that the resulting new system has a unique symmetric solution [10,13,14,16–18,21].

In this paper we consider the Nesterov–Todd (NT)-symmetrization scheme in [13,14]. Let us define

P := X
1
2
(

X
1
2 S X

1
2
)− 1

2 X
1
2 = S− 1

2
(

S
1
2 X S

1
2
) 1

2 S− 1
2 . (12)

We replace the term X�S S−1 in the third equation of (11) by P�S P T . The system (11) becomes

Ai • �X = 0, i = 1,2, . . . ,m,
n∑

i=1

�yi Ai + �S = 0, (13)

�X + P�S P T = μ

(
ψ ′

(
X S

μ

))−1(
ψ(E) − ψ

(
X S

μ

))
S−1.

Furthermore, we define D = P
1
2 . The matrix D can be used to scale X and S to the same matrix V because

V := 1√
μ

D−1 X D−1 = 1√
μ

D S D. (14)

Note that the matrices D and V are symmetric and positive definite. Furthermore, we have

V 2 =
(

1√
μ

D−1 X D−1
)(

1√
μ

D S D

)
= D−1 X S

μ
D.

From Definition 2.4, we obtain

ψ

(
X S

μ

)
= Dψ

(
V 2)D−1 and ψ ′

(
X S

μ

)
= Dψ ′(V 2)D−1. (15)

Let us further define

Āi := 1√
μ

D Ai D, i = 1,2, . . . ,m; D X := 1√
μ

D−1�X D−1; D S := 1√
μ

D�S D. (16)

Then it follows from (13) that the scaled NT search directions (D X ,�y, D S ) are defined by the following system

Āi • D X = 0, i = 1,2, . . . ,m,
n∑

i=1

�yi Āi + D S = 0, (17)

D X + D S = P V ,

where

P V = √
μD−1(Dψ ′(V 2)D−1)−1(

ψ(E) − Dψ
(

V 2)D−1)S−1 D−1.
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Recently, Peng et al. [16] introduced a class of search directions based on self-regular kernel functions and Bai et al. [4–6]
also defined a class of new search directions by using the so-called eligible kernel functions. The general approach in this
paper can be particularized in such a way as to obtain, the directions defined in [5,6,16] only by a constant multiplier. Such
as

• ψ(t) = t yields P V = V −1 − V which gives the classical search direction. The classical search direction has been studied
by many researchers (e.g., [5,6,10,16]);

• ψ(t) = t2 yields P V = 1
2 (V −3 − V ), see [5,6,16];

• ψ(t) = t
q+1

2 ,q � 0 yields P V = 2
q+1 (V −q − V ), see [5,6,16].

For a detailed discussion we refer to [1,8]. Related discussions can be found in [11,15] for LO and linear complementarity
problems (LCP).

Following [1,8], in this paper we restrict the analysis to the case where ψ(t) = √
t , this yields

P V = 2(E − V ). (18)

As an anonymous referee pointed out, one interesting question is that whether the new search direction fits into the
framework considered in [6]. The answer is positive! Similarly to the strategy in [20], we can consider the kernel function

φ(t) = (t − 1)2. (19)

For this one has φ′(t) = 2(t − 1), whence the induced barrier function Φ(V ) = ∑n
i=1 φ(λi(V )) satisfies ∇Φ(V ) = 2(V − E),

and hence, due to (18), P V = −∇Φ(V ). It should be noted that except for the kernel function considered in [4], all kernel
functions considered so far are coercive, i.e., have the properties

lim
t→0

φ(t) = ∞ and lim
t→∞φ(t) = ∞. (20)

The present kernel function φ(t) as defined in (19) has the second property, but it fails to have the first property, because
limt→0 φ(t) = 1. This situation has also appeared in [4].

Furthermore, we have

V 2 + V P V = V 2 + 2V (E − V ) = E − (E − V )2 = E − P 2
V

4
. (21)

For the analysis of the algorithm, we define a norm-based proximity measure δ(X, S;μ) as follows

δ(V ) := δ(X, S;μ) := ‖P V ‖F

2
= ‖E − V ‖F . (22)

Due to the first two equations of the system (13), D X and D S are orthogonal. Thus

D X • D S = D S • D X = 0. (23)

One can easily verify that

δ(V ) = 0 ⇔ V = E ⇔ D X = D S = 0 ⇔ X S = μE. (24)

Hence, the value of δ(V ) can be considered as a measure for the distance between the given pair (X, y, S) and the μ-center
(X(μ), y(μ), S(μ)).

The new search directions D X and D S are obtained by solving (17) with P V = 2(E − V ) so that �X and �S are com-
puted via (16). If (X, y, S) �= (X(μ), y(μ), S(μ)) then (�X,�y,�S) is nonzero. One can construct a new full-Newton triple
according to

X+ = X + �X, y+ = y + �y, S+ = S + �S. (25)

5. The generic interior-point algorithm

The generic form of the algorithm is shown in Fig. 1. We will prove that the algorithm is well defined in Section 6.

6. Analysis of the algorithm

In this section we will show that the algorithm can solve the SDO problem in polynomial time and prove the local
quadratic convergence of the algorithm.
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Primal-Dual Path-Following Interior-Point Algorithm for SDO

Input:
A threshold parameter 0 < τ < 1 (default τ = 1

2 );
an accuracy parameter ε > 0;
a fixed barrier update parameter 0 < θ < 1 (default θ = 1

2
√

n
);

a strictly feasible (X0, y0, S0) and μ0 = 1 such that δ(X0, S0;μ0) < τ .

begin
X := X0; y := y0; S := S0; μ := μ0;
while nμ � ε do
begin

solve system (17) and via (16) to obtain (�X,�y,�S);
update (X, y, S) := (X, y, S) + (�X,�y,�S);
μ := (1 − θ)μ;

end
end

Fig. 1. Algorithm.

For the analysis of the algorithm we introduce the notation

Q V = D X − D S . (26)

Thus we have

D X = P V + Q V

2
, D S = P V − Q V

2
, D X D S + D S D X = P 2

V − Q 2
V

2
. (27)

Note that D X and D S are orthogonal, therefore ‖P V ‖F = ‖Q V ‖F = 2δ(V ).
Let 0 � α � 1, we define

X(α) = X + α�X, S(α) = S + α�S. (28)

We cite two useful lemmas in [10], which will be used in the proof of Lemma 6.3.

Lemma 6.1. (See [10, Lemma 6.1].) Suppose that X � 0 and S � 0. If one has

det
(

X(α)S(α)
)
> 0, ∀0 � α � ᾱ,

then X(ᾱ) � 0 and S(ᾱ) � 0.

Lemma 6.2. (See [10, Lemma 6.3].) Suppose that Q ∈ Sn++ , and M ∈ Rn×n be skew-symmetric, i.e. M = −MT . One has
det(Q + M) > 0. Moreover, if λi(Q + M) ∈ R (i = 1,2, . . . ,n), then

0 < λmin(Q ) � λmin(Q + M) � λmax(Q + M) � λmax(Q ),

which implies (Q + M) � 0.

The following lemma shows the strict feasibility of the full NT-step under the condition δ(X, S;μ) < 1.

Lemma 6.3. Let δ := δ(X, S;μ) < 1, then the full NT-step is strictly feasible.

Proof. By applying (28) and (16), we have

X(α)S(α) = X S + α(X�S + �X S) + α2�X�S

= μD
(

V 2 + α(D X V + V D S ) + α2 D X D S
)

D−1

∼ μ
(

V 2 + α(D X V + V D S) + α2 D X D S
)

= Q (α) + M(α), (29)

where

Q (α) = μ

(
V 2 + 1

2
α(D X V + V D S + V D X + D S V ) + 1

2
α2(D X D S + D S D X )

)
,

and
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M(α) = μ

(
1

2
α(D X V + V D S − V D X − D S V ) + 1

2
α2(D X D S − D S D X )

)
.

One can easily verify that the matrix M(α) is skew-symmetric. Lemma 6.2 implies that det(X(α)S(α)) > 0 if the matrix
Q (α) � 0. To this end, using (18), (21) and (27), we have

Q (α) = μ

(
V 2 + 1

2
α(V P V + P V V ) + α2 P 2

V − Q 2
V

4

)
= μ

(
V 2 + αV P V + α2 P 2

V − Q 2
V

4

)

= μ

(
(1 − α)V 2 + α

(
V 2 + V P V

) + α2 P 2
V − Q 2

V

4

)
= μ

(
(1 − α)V 2 + α

(
E − P 2

V

4

)
+ α2 P 2

V − Q 2
V

4

)

= μ

(
(1 − α)V 2 + α

(
E − (1 − α)

P 2
V

4
− α

Q 2
V

4

))
.

Furthermore, since 0 � α � 1, we have∥∥∥∥(1 − α)
P 2

V

4
− α

Q 2
V

4

∥∥∥∥
F

� (1 − α)

∥∥∥∥ P 2
V

4

∥∥∥∥
F

+ α

∥∥∥∥ Q 2
V

4

∥∥∥∥
F

� (1 − α)
‖P V ‖2

F

4
+ α

‖Q V ‖2
F

4
= δ2 < 1.

Since the set of the positive matrices is cone, we can conclude that(
(1 − α)V 2 + α

(
E − (1 − α)

P 2
V

4
− α

Q 2
V

4

))
� 0,

i.e., Q (α) � 0. Thus det(X(α)S(α)) > 0. In addition, since X(0) = X � 0 and S(0) = S � 0, Lemma 6.1 implies that X(1) =
X � 0 and S(1) = S � 0 for ᾱ = 1. This complete the proof of the lemma. �

In the next lemma, we proceed to prove the local quadratic convergence of full NT-step to the target point
(X(μ), y(μ), S(μ)).

Lemma 6.4. Let δ = δ(X, S;μ) < 1, then

δ(X+, S+;μ) � δ2

1 + √
1 − δ2

.

Thus δ(X+, S+;μ) � δ2 , which shows the quadratical convergence of the algorithm.

Proof. From (29) in the proof of Lemma 6.3, letting α = 1, we derive that

X+ S+
μ

∼ E − Q 2
V

4
+ M,

where

M = 1

2
(D X V + V D S − V D X − D S V + D X D S − D S D X )

is a skew-symmetric matrix. Furthermore, E − Q 2
V

4 � 0. Therefore

V 2+ ∼ X+ S+
μ

∼
(

E − Q 2
V

4
+ M

)
. (30)

Since M a skew-symmetric matrix, using Lemma 6.2, we have

λmin
(

V 2+
) = λmin

(
E − Q 2

V

4
+ M

)
� λmin

(
E − Q 2

V

4

)
.

Thus

λmin
(

V 2+
)
� λmin

(
E − Q 2

V

4

)
� 1 − λmax

(
Q 2

V

4

)
� 1 −

∥∥∥∥ Q 2
V

4

∥∥∥∥
F

� 1 − ‖Q V ‖2
F

4
= 1 − δ2.

This implies that

λmin(V+) �
√

1 − δ2. (31)

On the other hand, using (30) and Lemma 2.6 (with t = 1), we have
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δ(X+, S+;μ) = ‖E − V+‖F = ∥∥(E − V+)(E + V+)(E + V+)−1
∥∥

F = ∥∥(
E − V 2+

)
(E + V+)−1

∥∥
F

� 1

1 + λmin(V+)

∥∥E − V 2+
∥∥

F = 1

1 + λmin(V+)

√
Tr

(
Q 2

V

4
− M

)2

. (32)

Since M is a skew-symmetric matrix, after some elementary reductions, we have

δ(X+, S+;μ) � 1

1 + λmin(V+)
Tr

(
Q 2

V

4

)
� 1

1 + √
1 − δ2

∥∥∥∥ Q 2
V

4

∥∥∥∥
F

= 1

1 + √
1 − δ2

‖Q V ‖2
F

4
= δ2

1 + √
1 − δ2

.

This proves the lemma. �
The following lemma gives an upper bound of the duality gap after a full NT-step.

Lemma 6.5. After a full NT-step, then

X+ • S+ � nμ.

Proof. Since E − Q 2
V

4 � 0 and M is a skew-symmetric matrix, using Property 2.2, we have

X+ • S+ = μTr
(

V 2+
) = μTr

(
E − Q 2

V

4
+ M

)
= μTr

(
E − Q 2

V

4

)
� nμ.

The proof is completed. �
In the following lemma, we investigate the effect on the proximity measure of a full NT-step followed by an update of

the parameter μ.

Lemma 6.6. Let δ = δ(X, S;μ) < 1 and μ+ = (1 − θ)μ, where 0 < θ < 1. Then

δ(X+, S+;μ+) � θ
√

n + δ2

1 − θ + √
(1 − θ)(1 − δ2)

.

Furthermore, if δ � 1
2 , θ = 1

2
√

n
and n � 4, then we have

δ(X+, S+;μ+) � 1

2
.

Proof. By applying (30), (31) and Lemma 2.6 (with t = √
1 − θ ), we have

δ(X+, S+;μ+) =
∥∥∥∥E −

√
X+ S+
μ+

∥∥∥∥
F

= 1√
1 − θ

‖√1 − θ E − V+‖F

= 1√
1 − θ

∥∥(
√

1 − θ E − V+)(
√

1 − θ E + V+)(
√

1 − θ E + V+)−1
∥∥

F

= 1√
1 − θ

∥∥(
(1 − θ)E − V 2+

)
(
√

1 − θ E + V+)−1
∥∥

F

� 1√
1 − θ(

√
1 − θ + λmin(V+))

∥∥(1 − θ)E − V 2+
∥∥

F

= 1√
1 − θ(

√
1 − θ + λmin(V+))

√
Tr

(
−θ E + Q 2

V

4
− M

)2

.

Since M is a skew-symmetric matrix, after some elementary reductions, we have

δ(X+, S+;μ+) � 1√
1 − θ(

√
1 − θ + λmin(V+))

Tr
(

−θ E + Q 2
V

4

)

� 1√
2

∥∥∥∥−θ E + Q 2
V

4

∥∥∥∥

1 − θ + (1 − θ)(1 − δ ) F
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� 1

1 − θ + √
(1 − θ)(1 − δ2)

(
θ
√

n +
∥∥∥∥ Q 2

V

4

∥∥∥∥
F

)

= 1

1 − θ + √
(1 − θ)(1 − δ2)

(
θ
√

n + δ2).
This completes the proof of the first part of the lemma. On the other hand, since n � 4, we have

1 − θ = 1 − 1

2
√

n
� 3

4
.

Thus from δ � 1
2 , we can conclude that

δ(X+, S+;μ+) � 1

2
.

This proves the lemma. �
Remark 6.7. At the start of the algorithm we choose a strictly feasible pair (X0, y0, S0) and μ0 = X0•S0

n such that
δ(X0, S0;μ0) < τ = 1

2 . From Lemmas 6.3 and 6.5, we have X+ � 0, S+ � 0, and X+ • S+ � nμ. After the update of the
barrier parameter to μ+ = (1 − θ)μ, with θ = 1

2
√

n
, we have, by Lemma 6.6,

δ(X+, S+;μ+) � 1

2
.

Thus, after each iteration of the algorithm, the new iteration is strictly feasible, and the properties

X+ • S+ � nμ,δ(X+, S+;μ+) � 1

2

are maintained. Hence the algorithm is well defined.

The following lemma gives an upper bound for the total number of iterations produced by our algorithm.

Lemma 6.8. Suppose that X0 and S0 are strictly feasible, μ0 = X0•S0

n and δ(X0, S0;μ0) � 1
2 . Moreover, let Xk and Sk be the matrices

obtained after k iterations. Then the inequality Xk • Sk � ε is satisfied for

k � 1

θ
log

X0 • S0

ε
.

Proof. Lemma 6.5 implies that

Xk • Sk � nμk = n(1 − θ)kμ0 = (1 − θ)k X0 • S0.

Then the inequality Xk • Sk � ε holds if

(1 − θ)k X0 • S0 � ε.

Taking logarithms, we obtain

k log (1 − θ) + log
(

X0 • S0) � logε,

and using − log (1 − θ) � θ we observe that the above inequality holds if

kθ � log
(

X0 • S0) − logε = log
X0 • S0

ε
.

This implies the lemma. �
Theorem 6.9. Let θ = 1

2
√

n
, then the algorithm requires at most

O

(√
n log

X0 • S0

ε

)

iterations. The output is a primal-dual pair (X, S) satisfying X • S � ε.

Proof. Let θ = 1
2
√

n
, by using Lemma 6.8, the proof is straightforward. �
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Corollary 6.10. If one takes X0 = S0 = E, the iteration bound becomes

O

(√
n log

n

ε

)

which is the currently best known iteration bound for the algorithm with small-update method.

7. Conclusions and remarks

We have extended a primal-dual path-following interior-point algorithm for LO to SDO with full NT-step and derived the
currently best known iteration bound for the algorithm with small-update method, namely, O (

√
n log n

ε ), which is the same
iteration bound as in the LO case. Moreover, the resulting analysis is relatively simple and similar to the LO analogue in [8].

Some interesting topics remain for further research. Firstly, the search directions used in this paper are all based on the
NT-symmetrization scheme. It may be possible to design similar algorithms using other symmetrization schemes and to
obtain polynomial-time iteration bounds. Secondly, the extensions to SOCO and the general convex optimization deserve to
be investigated. Furthermore, numerical test is an interesting topic for investigating the behavior of the algorithm so as to
be compared with other approaches.
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