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The exploitation of cytochromes P450 for novel biotechnological application and for the investiga-
tion of their physiological function is of great scientific interest in this post genomic era, where an
extraordinary biodiversity of P450 genes has been derived from all forms of life. The study of P450s
in the myxobacterium Sorangium cellulosum strain So ce56, the producer of novel secondary metab-
olites of pharmaceutical interest is the research topic, in which we were engaged since the begin-
ning of its genome sequencing project. We herein disclosed the cytochrome P450 complements
(CYPomes) of spore-forming myxobacterial species, Stigmatella aurantiaca DW4/3-1, Haliangium
ochraceum DSM 14365 and Myxococcus xanthus DK1622, and their potential pharmaceutical signif-
icance has been discussed.
� 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The cytochromes P450 are a group of heme-mono-oxygenase en-
zymes and are ubiquitously distributed in all forms of life. They are
involved in essential or crucial steps in metabolism such as bioacti-
vation and detoxification of a wide variety of drugs and xenobiotics
[1,2], and synthesis of important endogenous compounds and tailor-
ing of secondary metabolite products [3–6]. The catalytic function of
the P450 in most cases requires reducing equivalents derived from
NAD(P)H (via different electron carriers) and molecular oxygen [7].

Myxobacteria are Gram-negative gliding d-proteobacteria [8,9]
with a high G + C content, which can perform a complex series of
cellular differentiation processes that culminate in the formation
of fruiting bodies during starvation. They are a phylogenetically
coherent group and can be isolated from terrestrial [10] and marine
environments [11]. Myxobacteria exhibit a multitude of possibili-
ties for the production of bioactive substances of pharmaceutical
importance. The approximately 7500 identified myxobacterial
strains have yielded at least 100 distinct core structures and some
500 derivatives [12,13]. The genus Sorangium alone can produce
nearly 50% of the metabolites isolated from myxobacteria [14]. Dif-
ferent strains of Sorangium produce several novel antimicrobial
chemical Societies. Published by E

ernhardt).
macrolides, the leupyrrins [15], the thuggacins [5,16], the sorangi-
cin [17], phoxalone [18] and other components like a new sesqui-
terpene, sorangiodenosine [19], a free-radial scavenger,
soraphinol C [20], as well as a novel class of antineoplastic agents,
the epothilones and their analogs [21]. The selected strain S. cellulo-
sum So ce56 produces the natural secondary metabolites chiv-
osazol, etnangien and myxochelin [22–24]. Moreover, the
complex life cycle of S. cellulosum So ce56 is mediated by an exten-
sive regulatory network, including enhancer binding proteins, two
component regulatory systems, extra cytoplasmic function family
protein sigma factors, and serine/threonine/tyrosine protein ki-
nases [25].

The genomic sequence information of organisms, which is being
determined at an accelerating rate, has provided a novel tool for
the investigation of gene and corresponding protein functions.
The genomic sequencing projects continue to disclose the ever
increasing number of orphan cytochrome P450 genes and have
revealed the extraordinary biodiversity of this superfamily. To
date, 12,456 P450s are named, with about 6000 more that are
known, but not yet annotated [26]. The large pool of P450s identi-
fied in the genome has attracted much attention as a resource for
new oxidation biocatalyst having endogenous function and bio-
technological applications.

The genome sequence of the pharmaceutically and physiologi-
cally important myxobacterium S. cellulosum So ce56 revealed 21
lsevier B.V. All rights reserved.
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Fig. 1. Physical map showing the distribution of cytochromes P450 in the genome of spore forming myxobacterial species. The cytochrome P450 complements (CYPomes) are
assigned in the genomic location of the respective genome of Sorangium cellulosum So ce56 (refseq: NC_010162) (A), Stigmatella aurantiaca DW4/3-1 (refseq: NC_014623) (B),
Haliangium ochraceum DSM 14365 (refseq: NC_013440) (C) and Myxococcus xanthus DK1622 (refseq: NC_008095) (D) with their corresponding gene locus showing 21, 18, 17
and 7 P450s, respectively. The P450s with distinct PKS/NRPS are shown in bold. The double or triple arrows represent the location of two or more P450s in adjacent position.

Fig. 2. The genomic organization of P450s potentially involved in secondary metabolite biosynthesis. The genetic organization of the cluster of CYP263A1 (A) and CYP265A1
(B) of Sorangium cellulosum So ce56; three P450s (STAUR_5213, STAUR_5214 and STAUR_5220) of Stigmatella aurantiaca DW4/3-1 (C); three P450s (Hoch_2966, Hoch_2967
and Hoch_2973) of Haliangium ochraceum DSM 14365 (D); and a P450 (MXAN3943) of Myxococcus xanthus DK 1622 (E) are illustrated. The genomic foot prints in accordance
with the genome databases showing the direction of transcription (arrow head) are depicted. The P450 genes and the PKS/NRKS genes are shown in grey and black
respectively. The putative gene products encoded by the analyzed clusters are listed in the Supplemental Table S2.
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P450s [22,27]. Since our laboratory has a particular interest in the
enzymology of the P450 systems of myxobacteria, we report here
the characterization and comparison of the cytochrome P450 com-
plements (CYPomes) of spore-forming myxobacteria Sorangium
cellulosum strain So ce56 [22], Myxococcus xanthus strain DK1622
[28], Stigmatella aurantiaca DW4/3-1 [29], and Haliangium ochrace-
um strain DSM 14365 [30]. Our study particularly focused on the
CYPome of S. cellulosum So ce56.

2. Comparison of the CYPomes of spore-forming myxobacteria

As myxobacteria have a complex life cycle and a multitude of
possibilities for the production of bioactive compounds, the exploi-
Fig. 3. The radial view of an unrooted phylogenetic tree obtained by MEGA4 (version
cellulosum So ce56 with other myxobacterial species and well-characterized bacterial P4
sequences of the P450s from the fruiting bodies forming strains of the myxobacteria, S.
DW4/3-1 (eight P450s in black with ‘STIAU’) [29], Haliangium ochraceum strain DSM 143
Myxococcus xanthus (seven P450s in light green with ‘MXAN’) [28] are selected. The tree
prefix ‘Mtb’) [36], Streptomyces coelicolor A(3)2 (18 P450s in violet with prefix ‘Sc’) [37], R
aromaticivorans DSM 12444 (14 P450s in grey with prefix ‘Na’) (http://www.cyped.u
Citrobacter braakii (AF456128_1) [38], CYP107H1_P450BioI from Bacillus subtilis (NP_39
from Sulfolobus acidocaldarius DSM 639 (1F4T_A) [41], CYP107A1_eryF from Saccharopol
(1RF9_A) [43], CYP266A3_tdtD from Pseudomonas diterpeniphila (AF274704_2) [44], CYP
[46] and P450-SU1 (CYP105A1) [47] from Streptomyces griseolus (AAA26823), CYP210A1_
crocatus (CAQ18837) [49] (all shown in brown), are also included. The relatedness of th
tation of the inherent P450s for the elucidation of their physiological
function or pharmaceutical applications is of great interest. At the
time of this study, the complete genome sequence information
was available for nine myxobacterial strains, the soil isolates (S. cell-
ulosum strain So ce56, M. xanthus strain DK1622, S. aurantiaca DW4/
3-1, Anaeromyxobacter dehalogenans strains 2CP-1, 2CP-C, Fw109-5
and K) and the marine isolates (Plesiocystis pacifica SIR-1 and H. och-
raceum DSM 14365) [31]. Among the nine sequenced myxobacterial
genomes, S. cellulosum strain So ce56 has the largest bacterial
genome (13,033,779 bp, refseq-NC_010162), followed by Plesiocystis
pacifica SIR-1 (10,587,646 bp, refseq-NZ_ABCS00000000), S. auranti-
aca strain DW4/3-1 (10,260,756 bp, refseq-NC_014623), H. ochrace-
um strain DSM 14365 (9,446,314 bp, refseq-NC_013440), M. xanthus
4.0) analysis for the determination of relatedness of the P450s from Sorangium
50s. The clusters of S. cellulosum So ce56 are shown in red branches. The amino acid
cellulosum So ce56 (21 P450s in blue with suffix ‘Soce’) [22], Stigmatella aurantiaca

65 (17 P450s in dark blue with prefix ‘Ho’ and gene identification number) [30], and
also comprises the CYPome of Mycobacterium tuberculosis (20 P450s in green with
hodopedomonas palustris (nine P450s in pink with prefix ‘Rp’) and Novosphingobium

ni-stuttgart.de). The well characterized bacterial P450s, CYP176A1_P450cin from
0897.1) [39], CYP106A2_Bm from Bacillus megaterium (CAA79985) [40], CYP119_Ss
yspora erythraea NRRL 2338 (1Z8O_A) [42], CYP101_camC from Pseudomonas putida
167A1_epoK from Sorangium cellulosum (AF217189_9) [45], P-450soy (CAA45146)

SpiL from Polyangium cellulosum (CAD43453) [48] and Leu_Orf24 from Chondromyces
e S. cellulosum So ce56 clustered with the other P450s are shown.
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(9,139,763 bp, refseq-NC_008095), and A. dehalogenans strains
Fw109-5 (5,277,990 bp, refseq-NC_009675), K (5,061,623 bp, ref-
seq-NC_011145), 2CP-1 (5,029,329 bp, refseq-NC_011891) and
2CP-C (5,013,479 bp, refseq-NC_007760) (www.ncbi.nlm.nih.gov/
genome). All the five myxobacterial species, except A. dehalogenans
strains, have been demonstrated to initiate fruiting body formation
and sporulation in response to starvation [31,32]. In this manuscript,
we focused only on the four spore-forming strains, the most investi-
gated myxobacteria, S. cellulosum So ce56, M. xanthus DK1622, S.
aurantiaca DW4/3-1 and H. ochraceum DSM 14365.

The genome sequencing project of the S. cellulosum strain So
ce56 revealed 21 P450s, where nine P450s (�66.66%) (CYP259,
CYP260, CYP261, CYP262, CYP263, CYP264, CYP265, CYP266 and
CYP267) belong to novel families [27]. The bioinformatic analysis
of the S. cellulosum So ce56 genome also revealed the presence of
eight ferredoxin (Fdx) and two reductase genes (FdR) [33], but none
of them is organized in a cluster with any of the P450 genes. Thus,
no conclusion about the possible autologous electron transfer path-
ways could be drawn from the genomic context. Beside this, the
CYPomes from the above mentioned other myxobacterial strains
have not been studied to date. Therefore, we investigated the cyto-
chrome P450 encoding genes in the myxobacteria based on their
corresponding genome-sequence data. We revealed 18 P450s genes
in S. aurantiaca followed by H. ochraceum and M. xanthus with 17
and 7 P450s, respectively. The comparison of the conserved P450
signatures and the variants in the I-helix, the K-helix and the
heme-domain of the four spore-forming myxobacteria is illustrated
in Supplemental Table S1. The physical map of these myxobacterial
strains showing the distribution of P450s is depicted in Fig. 1.

Analyzing the neighboring genes of the P450s on the genomes,
we disclosed P450s clustered with genes coding for polyketide syn-
thase (PKS) and/or non ribosomal polyketide synthase (NRPS) pro-
teins. In the genomic sequence of S. cellulosum So ce56, two P450s
(CYP263A1 and CYP265A1) are clustered with PKS and/or NRPS pro-
teins encoding genes, whose products were not isolated to date
(Fig. 2A and B, Supplemental Table S2). In the genome of S. aurantiaca
DW4/3-1 (refseq: NC_014623), three of the P450s (STAUR_5213,
STAUR_5214 and STAUR_5220) are found embedded in the PKS
gene-cluster (Fig. 2C, Supplemental Table S2), which synthesize
the myxobacterial polyketide secondary metabolites aurafuron A
and B [34]. However, a detailed characterization of those P450s
has not yet been performed. In H. ochraceum DSM 14365 (refseq:
NC_013440) three of the P450s (Hoch_2966, Hoch_2967 and
Hoch_2973) are inside a putative PKS gene cluster (Fig. 2D, Supple-
mental Table S2), whose product has not been isolated so far. Simi-
larly, the genome of M. xanthus DK 1622 (Refseq: NC_008095) also
contains a P450 (MXAN_3943) in a putative PKS gene cluster
Fig. 4. The genomic organization of P450s clustered with a terpene cyclase and other un
putative terpene cyclase, and the unique cluster of CYP109D1 and CYP259A1 (B. I), CYP2
with the genome databases showing the direction of transcription (arrow head) are illu
sce7164) of CYP267B1 are shown overlapped. The structural RNA at the upstream of CY
clusters are listed in the Supplemental Table S4.
(Fig. 2E, Supplemental Table S2), but the product has not been stud-
ied to date.

3. The relationship of P450s of S. cellulosum So ce56 with other
bacterial P450s

Since so far experimental data are unavailable for S. cellulosum
So ce56 P450s besides those published [27,33,35], the bioinformat-
ics approach seemed to be a sensible route to derive some hints for
potential P450 functions. Therefore, the protein sequences of indi-
vidual P450s of S. cellulosum So ce56 were compared with other
bacterial P450s and their relatedness was analyzed (Fig. 3 and Sup-
plemental Table S3). Among the 21 P450s of S. cellulosum So ce56,
only four families (CYP109, CYP110, CYP117 and CYP124) belong to
previously assigned P450 families. The CYP109 family of this bac-
terium has three members (CYP109C1, CYP109C2 and CYP109D1)
and they share a sequence identity between 30% and 39% with
CYP107H1 and CYP109B1 of Bacillus subtilis and 30% and 31% se-
quence identity with CYP105D5 of Streptomyces coelicolor A3(2)
(Supplemental Table S3). Since these P450 family members are
shown to be fatty acid hydroxylases [50–52], the relatedness of
the CYP109 family of S. cellulosum So ce56 with them indicate a
similar potential function. Indeed, our experimental results dem-
onstrated that CYP109D1 was able to hydroxylate saturated fatty
acids [27].

CYP110H1 and CYP110J1 of S. cellulosum So ce56 are members
of a larger family having almost 40% sequence identity with
CYP110E1 of Nostoc sp PCC7120, which was shown to have an
affinity for alkanes and fatty acids [53]. In addition, CYP110H1
and CYP110J1 of S. cellulosum So ce56 show 34–37% identity with
members of the CYP135 family of Mycobacterium tuberculosis,
with CYP210A1 of Polyangium cellulosum and with CYP209A1 of
M. xanthus (Supplemental Table S3). However, experimental data
on the function of these P450s are not available. CYP117B1 of S.
cellulosum So ce56 showed almost 41% and 31% sequence identity
with CYP117A1 of Bradyrhizobium japonicum and CYP196A3 of
Novosphingobium aromaticivorans, respectively (Supplemental
Table S3), the first of which was predicted to have an affinity to-
wards terpenoid compounds [54]. However, there are no experi-
mental data available confirming the substrate specificity of
either CYP117A1 or CYP196A3.

CYP124E1 of S. cellulosum So ce56 showed 40–44% sequence
identity with CYP125A1, CYP142A1 and CYP124A1 of M. tuberculosis
(Supplemental Table S3), which were shown to bind and convert
branched fatty acids, and to hydroxylate steroids [55,56]. So, it is as-
sumed that CYP124A1 of S. cellulosum So ce56 might be a potential
candidate for the hydroxylation of branched fatty acids, which are
ique P450 clusters of S. cellulosum So ce56. CYP264B1 (A) adjacent downstream of a
67B1 (B. II) and CYP264A1 (B. III) are shown. The genomic footprints in accordance
strated. The P450 genes are shown in grey. The downstream genes (sce7165 and

P264A1 is shown as Str-RNA. The putative gene products encoded by the analyzed



Table 1
Analysis of the genomic context of cytochrome P450 genes of Sorangium cellulosum So ce56. The genomic information of the P450s and the surrounding genes were analyzed from
the complete genomic information of S. cellulosum So ce56 (13,033,779 nt) available at http://www.ncbi.nlm.nih.gov/genome (the reference genome is NC_010162).

CYPa/Geneb Genomic information and other key facts

1. P450s potentially involved in secondary metabolite formation
CYP263A1 (sce4885) Member of a novel bacterial P450 family, which lies three genes upstream of a polyketide synthase (PKS) module (sce4888)

(Fig. 2A and Supplemental Table S2).
CYP265A1 (sce8224) Member of a novel bacterial P450 family, which lies five genes downstream of a nonribosomal polyketide synthase (NRPS)

module (sce8219) (Fig. 2B and Supplemental Table S2). A similar PKS/NRPS module is present in the genome of several
Streptomyces and Mycobacterium sp. [57–59]. In Streptomyces sp., the P450s are involved in many polyketide biosynthetic
pathways and catalyze the stereo- and regio-specific oxidative tailoring of antibiotics e.g. novobiocin from S. spheroides with
CYP163A1 [60], doxorubicin from S. peucitius with CYP129A2 [61], amphotericin B from S. nodosus with CYP105H4 and CYP161A3
[62], complestatin from S. lavendulae with CYP165E1 and CYP165B5 [63], avermectin from S. avermitilis with CYP171A1 [64],
PKSIII of S. coelicolor with CYP158A2 [65].

2. P450 clustered with a terpene cyclase
CYP264B1 (sce8551) Member of a novel bacterial P450 family. This is the only P450 clustered with a terpene cyclase gene (geoA, sce8552) adjacent

downstream and separated by 63 bp (Fig. 4A and Supplemental Table S4), which could possibly be arranged in an operon. The
genomic organization of this ORF resembles that of CYP170A1 of S. coelicolor A3(2), in which a coupled action of this CYP170A1
with epi-isozizaene synthetase for the biosynthesis of albaflavenone was described [4]. A similar cluster was also reported in S.
avermitilis where the gene SAV2999 encoding CYP183A1 has been described to catalyze the conversion of pentalenene(3) to
pentalen-13-al(7) by stepwise allylic oxidation via pentalen-13-ol(6) [66].

3. P450s with unique clusters
CYP109D1 (sce4633) and

CYP259A1 (sce4635)
CYP109D1 is a member of the pre-assigned CYP109 family, which contains saturated fatty acid and isoprenoid hydroxylases
[27,35]. CYP259A1 represents a member of a novel bacterial P450 family. CYP109D1 and CYP259A1 are positioned in an anti-
directional orientation in the genome and separated by a single gene, sce4634, encoding an anti-anti sigma regulatory factor
(Fig. 4BI and Supplemental Table S4). The adjacent upstream gene (sce4632) of CYP109D1 belongs to the beta-CA superfamily
protein and encodes a carbonate hydratase (CA), which catalyzes the reversible hydration of carbon dioxide, and is also found as a
conserved gene in Myxococcus xanthus DK1622 (73% identity), Streptococcus sp N1 (52% identity) and in several Acinetobacter sp
ADP1 (52% identity). The putative product of the adjacent downstream gene (sce4636) of CYP259A1 (sce4635) shows in parts
sequence identity with a squalene cyclase (i.e. 343-416 amino acids out of 511 amino acid sequence), which is also conserved in
Rhizobium sp (40% identity), Mesorhizobium sp (39% identity), and Mycobacterium tuberculosis CDC1551 (30% identity) as a
putative cyclase.

CYP267B1 (sce7167) Member of a novel bacterial P450 family, which is clustered with a DNA repair exonuclease family protein encoding gene
(sce7166) upstream and a hypothetical protein encoding gene (sce7168) downstream (Fig. 4. B.II and Supplemental Table S4). A
unique cluster of a tymovirus analogue gene (sce7164), coding for a tymovirus 45/70 Kd protein, is present in the upstream
region, where a hypothetical protein encoding gene (sce7165) is found overlapping sce7164. Downstream of CYP267B1, genes
encoding an a-gluconotransferase (sce7169), an a-amylase family protein (sce7170), and an ABC transporter ATP family protein
(sce7171) are available.

CYP264A1 (sce6323) Member of a novel bacterial P450 family, which is next to a sigma-54 dependent transcriptional regulator (sce6324) showing a
very unique XylR-N/v4r signal domain. This domain is present as an activator in several proteobacteria, including activators of
phenol degradation such as XylR [67]. A putative function of this P450 can not be hypothesized as all other ORFs upstream and
downstream encode hypothetical proteins (Fig. 4B.III and Supplemental Table S4).

4. P450s clustered with other genes having distinct physiological roles
CYP124E1 (sce7867) The gene is located directly upstream of sce7866, which has a putative function in protocatechuate catabolism and four genes

upstream of a putative phenylacetic acid (PA) degradation protein encoding gene (sce7863) (Supplemental Fig. S1(A)). PA genes
are found in pathogenic and nonpathogenic mycobacterial species, actinomycetes, and some proteobacteria [68,69]. Moreover,
CYP124E1 in Mycobacterium tuberculosis performed x-hydroxylation of methyl-branched lipids and degradation of the
cholesterol [70,71].

CYP262A1 (sce2191) Member of a novel bacterial P450 family, which lies 3 genes downstream of a putative hydrolase encoding gene (xysA, sce2188)
(Supplemental Fig. S1(B)).

CYP266A1 (sce5624) CYP266A1 represents a member of a novel bacterial P450 family and lies adjacent upstream of ubiE4 (sce5625), the gene encoding
a putative ubiquinone/menaquinone biosynthesis protein. CYP266A1 is the only P450 in S. cellulosum So ce56, which is located in
proximity to a NADH-flavin oxidoreductase (ferredoxin reductase, sce5629) within the distance of 4 genes (Supplemental
Fig. S1(C)).

5. P450s clustered with carbohydrate-metabolism related genes
CYP109C1 (sce0122) The P450 encoding gene is clustered with a predicted universal stress protein encoding gene (uspA, sce0123) adjacent

downstream and a beta-xylosidase (yagH, sce0125), 3 genes downstream (Supplemental Fig. S2(A)).
CYP267A1 (sce0675) Member of a novel bacterial P450 family, which is clustered with a polyphosphate-glucose phospho transferase encoding gene

(ppgK, sce0674) adjacent upstream and a succinyl glutamic semialdehyde dehydrogenase encoding gene (sce0676) adjacent
downstream (Supplemental Fig. S2(B)).

6. P450 clustered with regulatory elements
CYP109C2 (sce8913) This gene is clustered with the transcriptional regulator AraC family protein encoding gene (sce8912) adjacent upstream and a

protein kinase gene (sce8916) downstream (Supplemental Fig. S3(A)). Another member of the CYP109 family, CYP109B1 from
Bacillus subtilis, is known to perform hydroxylation of valencene, n-alcohols, terpenoids and fatty acids [51,72].

CYP110H1 (sce3065) This gene is clustered with a two components hybrid system kinase encoding gene (sce3063) as a regulator, 2 genes upstream,
and a conserved hypothetical protein encoding gene (sce3066), having identity with the DUF899 thioredoxin family protein
adjacent downstream (Supplemental Fig. S3(B)). CYP110 from Anabaena 7120 showed the binding of long-chain saturated and
unsaturated fatty acids [53].

CYP110J1 (sce6424) This P450 gene is clustered with regulator encoding genes, ArsR (sce6422) and MaR (sce6423) family transcriptional regulator
gene upstream and a protein kinase encoding gene (sce6427), 3 genes downstream (Supplemental Fig. S3(C)).

CYP260A1 (sce1588) Member of a novel bacterial P450 family, which is clustered with a protein kinase regulator (sce1587) adjacent upstream. The rest
of the neighboring genes of CYP260A1 are encoding for hypothetical protein (Supplemental Fig. S3(D)).

CYP261A1 (sce0200) Member of a novel bacterial P450 family, which is clustered with a two components sensor histidine kinase regulator gene
(sce0195) upstream. All the neighboring genes both upstream and downstream code for hypothetical proteins (Supplemental
Fig. S3(E)).

CYP262B1 (sce1860) Member of a novel bacterial P450 family, which is clustered with a regulatory gene (sce1859) adjacent upstream (Supplemental
Fig. S3(F)). The presence of regulatory elements encoding genes for two components regulators and serine/threonine/tyrosine
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Table 1 (continued)

CYPa/Geneb Genomic information and other key facts

kinases are predominant in the genome S. cellulosum So ce56. These kinds of regulators are generally the eukaryotic-like-
regulators (ELR), which were studied in this bacterium [25]. The real significance of these regulators with respect to P450s has not
been studied so far.

a P450 names as annotated at the website: http://drnelson.utmem.edu/CytochromeP450.html and described [27].
b Gene accession deposition in NCBI.
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essential physiological derivatives required during the life cycle of
this bacterium.

Interestingly, two novel P450 families, CYP266 and CYP267, of S.
cellulosum So ce56 were clustered in the phylogenetic tree (Fig. 3)
with the fatty acid hydroxylase CYP107H1 (P450Biol) of B. subtilis
[39] and members of the CYP107 family from Streptomyces coeli-
color A3(2), respectively, which suggests that these P450s might
have a similar substrate spectrum (fatty acids and several xenobi-
otic compounds as well as terpenoids). The other members of new
P450 families (CYP259, CYP260, CYP261, CYP262, CYP263, CYP264
and CYP265) of S. cellulosum So ce56 were only homologous to
uncharacterized bacterial P450s (Supplemental Table S3), implying
that a putative function of those P450s is not possible to disclose
with the published data presently available (see Fig. 4).

4. Genome organization of cytochromes P450 of S. cellulosum So
ce56

Sequence alignment, homology modeling and spin-shift analysis
are the most commonly used approaches for the prediction of po-
tential substrates for orphan cytochromes P450. These approaches
generally do not consider the existing information present on
neighboring genes of the P450 in a genome. The investigation of
proximal and neighboring genes is more beneficial for those
P450s, which are in a cluster or in an operon with redox partners
or other known genes. Studying the genomic organization of corre-
sponding P450s may help to hypothesize some potential natural re-
dox partners and/or potential natural/analogue substrates.
Although the endogenous role of P450s present in several polyke-
tide synthetase (PKS) gene clusters during secondary metabolite
formation has already been verified in some other strains of S. cell-
ulosum [5,45], the genome of S. cellulosum So ce56 has not been
investigated so far in this respect. As this is the very first detailed
study on the genomic clusters of P450s in S. cellulosum So ce56,
the detailed genomic organization for each of the P450s with re-
spect to the neighboring genes was analyzed using the genome
database of S. cellulosum So ce56 (http://www.ncbi.nlm.nih.gov/
genome; refseq: NC_010162). The P450s were categorized into six
groups, as summarized in Table 1.

5. Conclusions and perspectives

The genome sequencing projects of microbes continue to draw
the attention of scientists for the investigation of novel P450 en-
zymes and to the diversity of their redox partners. The multitude
of possibilities for the production of bioactive substances of pharma-
ceutical importance and the complex life cycle of the myxobacteria
attracted us to study their cytochromes P450. Because of the limited
availability of information regarding the function of these P450s, we
have extensively studied the genomic information on the neighbor-
ing genes of each individual P450, which disclosed several charac-
teristic features on the genomic level and also provided some
information for putative substrates (at least for some novel P450s).

Genome mining of the P450s also disclosed the presence of sev-
eral complex regulator genes and other hypothetical protein
encoding genes, which have not been studied with regard to their
influence on the function of P450s. As we were able to find some
P450s embedded in the cluster of PKS/NRPS proteins encoding
genes of myxobacteria (two P450s in S. cellulosum So ce56, three
P450s in S. aurantiaca, three P450s in H. ochraceum and one in M.
xanthus), the investigation of their potential to produce important
pharmaceutical derivatives could be a promising research topics
for the elucidation of the functional role of the P450s. However, se-
quence information alone is often not sufficient to determine the
catalytic functions or actual substrates of the orphan P450s. Thus,
other strategies like screening of substance libraries and knock-
outs of the genes with subsequent metabolomic analysis might
help to disclose the functions of the identified P450s. Interestingly,
none of the P450s of S. cellulosum So ce56 has been found close to a
putative redox partner such as Fdx or FdR. However, we were able
to identify two autologous electron transport chains for CYP260A1
[33] and CYP109D1 [27,35]. Using these systems, regio- and ste-
reo-selective derivatives of terpenes and terpenoids could be ob-
tained supporting the idea of a potential biotechnological impact
of myxobacterial P450s.
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