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The singular boundary value problem

(g(u")) = —k(t)f(u), 0<t<1,
u(0)=u(1)=0

is studied in this paper where g(s) = |s|”~2s, p > 1. The singularity may appear at
u=0andat ¢t = 0or¢=1and the function f may be discontinuous. The authors
prove that for any p > 1 and for any positive, nonincreasing function f and
nonnegative measurable function k& with some integrability conditions, the above-
mentioned problem has a unique solution. Also, the properties of the solution are
discussed in the paper.  © 1996 Academic Press, Inc.

1. INTRODUCTION

The boundary value problem for the one-dimensional p-Laplacian

u(0) = u(1) =0, '
where g(s) = [s]”~%s, p > 1, has been studied extensively. For details, see,
for example, Refs. [1-5, 7]. The boundary value problem treated in the
above-mentioned references is not able to possess singularity.
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In [6], Taliaferro considered a particular case of (1.1) where p = 2,
fu)=u"* A>0, and k(¢r) is positive and continuous in (0,1). The
following theorem was established there.

TALIAFERRO’S THEOREM. Assume that p = 2, f(u) =u~*, A > 0, and
k() is positive and continuous in (0,1). Then the following statements hold.

() The boundary value problem (1.1) has a unique solution u,(t) if
and only if

[ 1= k(1) de < +. (1.2)
0
(D max{u,(r); 0 <t < 1} < M, where M is the positive solution of the

equation
M—1\(M+1)\*
== -
2 2

with
N : max{fo k(t)tdt,fl/zk(t)(l ) dt}.

(1D u,(t) tends to 1, uniformly on compact subsets of (0,1), as
A >+

(V) (0 +) = lim, | qu\ () u\(1 =) = lim,, ,u)(¢)) is finite if and only
if

[Pk <+ (fl k(£)(1— 1) “dt < +%|. (1.3)
0

1/2

The above particular case of (1.1) possesses singularity at u = 0 and is
able to possess singularity at t+ = 0 and ¢ = 1. The existence and unique-
ness of the solution u,(¢) were obtained by means of the shooting method.

The aim of this paper is to extend the above-mentioned results. We
adopt the following hypotheses:

(H1) f(u) is positive, right continuous, nonincreasing in (0, + ) and

f(0+) = Iimf(u) = +oo, (1.4)

(H2) k(¢) is a nonnegative measurable function defined in (0, 1).
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We will prove the following theorem.

THEOREM 1. Assume that (H1) and (H2) are satisfied. Then the follow-
ing statements hold.

(1) The boundary value problem (1.1) has a positive solution u(t) if
and only if

o<f01/2c;([1/2k( )dr)ds+f1/2 (fls/zk(r)dr

where G(x) is the inverse function to g(s).
() If for every 6 > 0,

ds < +», (15)

(1.6)

Y2 (P f(0r) dr <+, Y k() (8L = 1)) dr < +
0 1/2

then u'(0+) (u'(1-)) is finite.
M) If w'©+) (u'(A-)) is finite, then (1.6) holds for 6 > u’(0+)

(0 = |u'(DD.
M-1
2 Jels

amn I
N = max{fol/2 (fl/zk(r)dr)ds f/ZG(/lszk(r)dr)ds}

has a positive solution M and u is the positive solution of (1.1), then u < M.

M+1
2

Remark 1. The existence of the positive solution will be obtained
by means of the perturbation technique and the Schauder fixed point
theorem.

Remark 2. The condition (1.5) allows k() to be equal to zero on some
open or closed subintervals of (0, 1). For example, the function

e 0<t<1/9,0<a<p,
k(t) = {0, 1/9<t<8/9,
(1-1)"", 8/9<t<1,0<B<p

satisfies the condition (1.5).
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Remark 3. When f(u) =u~*, A > 0, (1.6) becomes

fl/ZG(fl/zk(r)r" dr) ds < +oo,
0 s

1/2 s Y
(/O G(fl/zk(r)(l —r) tar

Therefore, u'(0+) (u'(1-)) is finite if and only if the above condition
holds.

ds < +

Remark 4. The claim (I11) in Taliaferro’s Theorem is also true for
f(u) = u=*, the proof is the same as that in [6].

Remark 5. Our result shows that the function f may be discontinuous.

2. SOME PRIMARY RESULTS

Assume (1.5) and consider the “approximate” boundary value problem
(8(u)) = —k()f(w),  0<r<1,
u(0) = u(l) = h.
A function u(¢) is said to be a positive solution to the boundary value
problem (2.1), with & > 0, if the following conditions are satisfied:
() u() € Cl0,1]1 n CY0O,1);
(i) w@®@)>0in (0,1, u(0) = u() = h;
(iii)  g(u'(¥)) is locally absolutely continuous in (0, 1), and
(v) (gw'(1) = —k()f(u(t)) a.e. in (0,1).

LEMMA 1. For each fixed h > 0, the boundary value problem (2.1), has at
most one positive solution.

(2.1),

Proof. Suppose that u,(t) and u,(z) are positive solutions to (2.1),.
If u(¢) # u,(¢) on [0,1], then there would exist a ¢, € (0,1) at which
u,(ty) > u,(ty) and hence there would exist an interval (a, b) such that
u(t) > uy(¢) in (a,b) and u(a) — u,(a) = u(b) — uy(b) =0. Let m =
u,(B) — u,(B) be the positive maximum of u,(¢) — u,(¢) on [a, b]. Then
B € (a, b) and u}(B) = u/,(B). Notice that for j = 1,2,

(g(w(r))) = —k(r)f(ui(r)) ae.in(0,1).

Integrating both sides of this equality over [s, B], a < s < B, we get

ui(s) = G(g(u;-(B)) + fsBk(r)f(uj(r))dr , a<s<B.
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Integrating both sides of the above equality from a to B, we obtain

u,(B) — u,(a) =faBG(g(u;(B)) +fsBk(r)f(uj(r))dr ds.

Consequently, we are lead to a contradiction 0 < m = u,(B) — u,(B) < 0.
Here we have used the fact that f(u) is nonincreasing in u. The proof of
the lemma is complete.

To prove the existence of solution to (2.1), with 4 > 0, we consider the
boundary value problem

{(g(u'))' = —k(t)f(w(t)), 0<t<1,

u(0) = u(1) = h > 0. (22)u

for any w(t) € D, == {w € C[0,1]; w(¢) > h}.

LEMMA 2. For each fixed h > 0 and each w € D, the boundary value
problem (2.2), has a unique solution u(t) > h.

Proof. We only prove the existence since the proof of the uniqueness is
very simple. Set for 0 <t <1

ds.

x(1) = fOtG(j:k(r)f(w(r))dr)ds—fth(/tsk(r)f(w(r))dr

Clearly, x(¢) is continuous and nondecreasing in (0,1) and x(0+) <0 <
x(1 — ). Thus, x(¢) has zeros in (0,1). Let A be a zero of x(z) in (0, 1).
Then

fOAG(fSAk(r)f(W(r))dr) ds=fAlG(f1:k(r)f(w(r))dr)ds. (2.3)
Put

h+ OtG(fSAk(r)f(w(r)) dr) ds, 0=<t<A4,

u(t) = (bw)(r) = L s
h+ [ G(fAk(r)f(w(r))dr) s, A<r<l.

Then, u is a well-defined differentiable function and

w'(1) = (dw)'(t) = G(ftAk(r)f(w(r)) dr), 0<r<L.
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It is obvious that u'(z) = (®w)'(¢) defined as above is continuous and
nonincreasing in (0, 1), u’'(A4) = 0, u(¢) € D,,, and (2.2),, is satisfied for a.e.
t € (0,1). This shows that u(¢) is a solution of (2.2), and a concave
function defined on [0, 1]. The lemma is proven.

Remark 6. It is easy to show that (2.3) and (2.4), are independent of
the choice of the zero A. Therefore, @ is a well defined map on D,,.

LEMMA 3. Let ®: D, — D, be the mapping defined by (2.3) and (2.4),,
and wi,w, € D,. If wi(t) < w,(t) on [0,1], then (Pw,)t) > (dPw,)¢) on
[0, 1].

Proof.  The proof of this lemma is very similar to that of Lemma 1 and
hence omitted here.

LEMMA 4.  For any w € D, we have
h < (Pw)(t) < (Ph)(1) < (Ph)(A*) on [0,1],

where A* is a zero of the function
t t 1 s
ty =] G k(r)dr|ds — G k(r) dr|ds, 0<t<1.
s = Lo [ arf s ['of [ 1oy |

Proof. The lemma follows from Lemma 3 and the definition of ®.
LEMMA 5. ®(D,) is equicontinuous on [0, 1].

Proof. For any € > 0, from the continuity of (®4)(¢) on [0, 1], it follows
that there is a 8, € (0,1/4) such that

(®h)(268,), (Ph)(1 —26,) <€+ h.
If (Dw)(A) < € + h, then for any ¢, ¢, € [0,1]
(@w)(11) = (Pw)(1,) | <|(Pw)(A) — (w)(0)] < e.

If (bw)A)>€+h, then A4 (25,1 —26,] and hence for 7[5,
1-§,]

(w01 =|6{ [ k1w )

< G(f;_alk(r) dr)G(f(h)) - L.

1
Put 8, = €/L, then for ¢,,t, € [5,,1 — §,], lt; — 1,1 < &,
((Pw) (1) = (Pw) (1)l = [(Pw)'(E)lt; — 1] <L5, = e,
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where ¢ lies between ¢, and ¢,. Set § = min{§,, 6,}. Then for ¢,,¢, € [0, 1],
lt, — 1,] < &,

(Pw) (1) = (Pw)(L,)| <e.

This shows that ®(D,,) is equicontinuous on [0, 1].

LEMMA 6. The mapping ® is continuous on D, if the function f is
continuous in its variable.

Proof. Assume that {w}"_, € D, and w,(¢) converges to wy(¢) uni-
formly on [0,1]. By Lemma 5, it follows that {(®w,)#)}_, is uniformly
bounded and equicontinuous on [0, 1]. The Arzela— ASCO|I Theorem tells us
that there exist uniformly convergent subsequences in {(dw)()}_,. Let
{(dw;, X1)},_, be a subsequence which converges to v(t) unlformly on
[0,1] and {4}, converges to A. Then there exists an H > h such that

h<w(t)<H on[0,1],
and hence
(®H)(1) < (Pw)(1) < (®h)(1)  on[0,1].
Put
[a,b] = {t € [0,1]; (®h)(¢) = max(®H)(1) > h}.

Then [a,b] € (0,1) and {A4,} C [a, b] where A; is the maximum point of
(dw;)(#) in (0,1). Thus,

(Pw;)(A4;) =h + f()A/G(j;A/k(r)f(wj(r)) dr) ds

<h+ be(fsbk(r) dr) dsG(f(h)),

0

1

(@w,)(A;) =h + [ G(f:k(r)f( (r))dr) ds

™

J

<h+ falG(fsk(r) dr) dsG(f(h)).

a
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Notice that

h+f0fc(/s*‘.fk(r)f(wj(r))dr) ds, 0<r<4,
(Pw;)(1) = 1 s
h +/t G(f/l_k(r)f(wj(r))dr) ds, A, <t<l.

Inserting w;,,, and A, into the above and then letting » — <, we obtain

j(n

h +/tG(f/Tk(r)f(wo(r))dr)ds, 0<t<A,
U(t) _ 0 s

IA

<1,

h + fth(//;k(r)f(wo(r))dr) ds, A
and

v(A) —h= fOfTG(/;A_k(r)f(wo(r)) dr) ds

1

- [o{ [ k)00 | s

A

Here we have applied Lebesgue’s Dominated Convergence Theorem since
fw)) < f(h). From the definition of ®, we know that v(¢) = (dw)(¢) on
[0, 1]. This shows that each subsequence of {(dw;)(#)} uniformly converges
to (®w,)(¢). Therefore, the sequence {(®w;)()} itself uniformly converges
to (®w,)(¢). This means that ® is continuous at w, € D, Therefore ® is
continuous on D, since w, € D, is arbitrary.

LEMMA 7.  Assume that f is continuous. Then, for each fixed h > 0, the
boundary value problem (2.1), has a (unique) solution u(t; h) > h.

Proof. Lemmas 4, 5, and 6 imply that the mapping ® is a compact
continuous mapping from D, to D,. The Schauder fixed point theorem
tells us that ® has at least one fixed point in D,. Let u(¢; h) be a fixed
point of ® in D,. Then

h+fO‘G(f“Tk(r)f(u(r;h))dr) ds, O0<t<A4,
u(t; h) = ’
h+/1G(/;k(r)f(u(r;h))dr) s, A<t<1,
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and

u@&h)=h+tﬂﬂlzuﬁm@4nm)m)@

1
=h+ _G(

[ik(r)f(u(r; h)) dr) ds.

A

It is easy to check that the function u(¢; #) is a solution of (2.1), with
h > 0.

LEmMMA 8. Ifhy > h, > 0, then
0<u(t;hy) —u(t;hy) <h, —h,. (2.5)
Proof. The proof of (2.5) is very similar to that of Lemma 1 and hence

omitted here.
To prove our result, we need

LEMMA 9. Let fi, f, be two functions satisfying (H1) such that f; < f,. If
u, and u, are two solutions of problem (1.1) corresponding to f, and f,,
respectively, then u, < u,.

Proof. The proof is similar to that of Lemma 1, so we omit the details.

The next lemma asserts that the continuity of f in Lemma 7 is not
necessary in obtaining the existence of solutions of (2.1), for & > 0. We
have

LEMMA 10. Assume (H1) and (H2). Then the boundary value problem
(2.1),, has a (unique) solution u(t; h) > h for each given h < (0, 1].

Proof.  Put

C[f(u),  fuzh>o,
fH(u) = {f(h), otherwise,

1 u+e 1 u
f(u; €) = ;/M fi"(s)ds,  F(u;e) = qu, f"(s) ds on Q,

fu(u) :=f(u; %) F,(u) = F(u; %) n=12.3,...,

where Q = (—o, + ) X (0, + ). Then f,(u), F(u), n =1,2,..., are all
nonnegative, nonincreasing, and continuous on [ 0, +©) ,

fulu) < fria(u) <f"(u) < F, o(u) < F(u)  on [0, +o),

f"(w) = lim f,(u) = lim F,(u)  a.e.on(—c, +©)
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because for almost all (i, €) € Q,

of (u; of(u; JF(u; oF(u;

o) o Al o dFwe) o aF(we)
du e du e

Lemma 7 asserts that for fixed 4 > 0, the boundary value problem (2.1),
with f, (resp. F,) in the place of f has a unique positive solution u,(¢; k)
(resp. U(t; b)) satisfying

h+/;G(/;A”k(r)f,,(un(r;h))dr)ds, 0<r<A,,
u,(t:h) = ;
h+/lG(L k(r)fn(un(r;h))dr) ds, A,<t<1,

with 4, € (0, ).

A similar equality holds for U,(¢; k) with F, and B, in place of f, and
A, respectively.

Lemma 9 tells us that

0<h<u,(t;h) <u,,(t;h) <U,, (t;h) <U(t;h) on [0,1].

Whence it follows that there are continuous functions u(¢; #) and U(z; h)
such that

u(t;h) = limu,(t;h) and U(t;h) = lim U(t; h)
uniformly on [0, 1],
u,(t;h) <u(t;h) <U(t;h) <U,(t;h) on [0,1].
Consequently, we have
u(t;h) >u,(t;h)
t
h+ | G
)
B 1
G
t

"k(r)fn(un(r;h))dr) ds, 0<t<A,,

k(r)fn(u"(r;h))dr) ds, A, <t<1,

"k(r)f,(u(r;h))dr|ds, 0<t<4,,
0

v

1

h+ | G

Is
i
Is
s

h +f
h +/ G )
/ k(r)f,(u(r;h)) dr) ds, A,<t<1,

n
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and
U(t;h) < U, (15h)

o+ fotG(/;B"k(r)Fn(Un(r;h)) dr) ds, O0<t<B8,,

) h+fth(st k(r)F,,(Un(r;h))dr) ds, B, <t<1,

I+ fotG(/;B”k(r)Fn(U(r; hY) dr) ds, 0<t<B,

) I+ fth(j;k(r)Fn(U(r;h)) dr) ds, B, <t<1.

Without loss of generality, we may assume that A, —» 4 and B, — B for
some A, B € [0, 1]. Letting n — o in the above, we obtain

h+[’G([Bk(r)f(U(r;h))dr) ds, 0<t<B,

U(t; h) < °o
h+f1G(ka(r)f(U(r;h))dr) ds, B<t<l,
h+[O‘G([Bk(r)f(u(r;h))dr) ds, O0<t<B
Cns fth(j;k(r)f(u(r;h)) dr) ds, B<t<l.

Here we have used the Dominated Convergence Theorem.
Since U, takes its maximum at B, a simple observation shows that

max{h + fOAG(fSAk(r)f(u(r; ) dr) ds,

h +EG(£k(r)f(u(r;h))dr)ds}

<u(A;h) < ”L“m%(Anih) < Iilnw%(Bn;h)
< min{h + fOBG(/Bk(r)f(u(r;h)) dr) ds,

h +fBlG([;k(r)f(u(r;h))dr) ds},
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where we write f(u(t; h)) instead of f"(u(t; h)) since u(t; h) > h. These
equalities and the nonnegativity of the integrands imply that

fOA G(j;Ak(r)f(u(r; ) dr) ds

1

) G(Ek(r)f(u(r; hY) dr) ds

(2.6)

- BG(LBk(r)f(u(r;h))dr)ds

=fBlG(fl:k(r)f(u(r;h))dr)ds,

By using these inequalities, we can easily conclude that

h+/O'G(fAk(r)f(u(r;h))dr) ds, 0<t<A,
u(t;h) = . SS
h +[t G([Ak(r)f(u(r;h)) dr) ds, A<t<l,

on [0, 1]. Therefore, this equality and (2.6) show that u(z; 4) is a positive
solution to the boundary value problem (2.1), with 4 > 0.
The proof of Lemma 10 is complete.

LEMMA 11. The boundary value problem (2.1), has a (unique) positive
solution u(t; 0) if (H1) and (H2) hold.

Proof. Inequality (2.5) implies that as / | 0, {u(z; h)} is nonincreasing in
h. We may assume that u(z; &) — u(¢; 0) uniformly on [0, 1]. We now prove
that the function is the unique solution to (2.1),.

Without loss of generalities, we may choose a sequence {%,),_;, &, |0
such that A4, := A(h,) is monotonically increasing (the proof is similar if
A, is monotonically decreasing) and A, — A* where A4, is a maximum

n

point of u(¢; k,) in (0,1). From the previous proof, we know that

hn+fc(["‘"k(r)f(u(r;hn))dr)ds, O<t<A,,
u(tih,) = .

IA
=

h, +/th(£ k(r)f(u(r;hn))dr)ds, A, <
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and

u(A, h,) =h, = fOAnG(fSA"k(r)f(u(r; h,)) d’) ds,
‘ (2.8)
- fAl G(fA k(r)f(u(r;hn))dr) ds.

Then, the Monotone Convergence Theorem implies that
u(t,0) =[’G(fA*k(r)f(u(r;O))dr)ds, 0<t<d4*, (29)
0 s

here we have used the fact that f is right continuous.
By Fatou’s Theorem,

ilG(E*k(r)f(u(r;O)) dr) ds < u(t,0) < oo, A* <t <1.

Therefore, the function

N

G(/;l*k(r)f(u(r;O)) dr)
is integrable over [ A*, 1]. Notice that for any integers n > N,
G([ k(r)f(u(r;hn))dr) < G([ k(r)f(u(r;0)) dr)
A, Ay

if the right hand side exists. Lebesgue’s Dominated Convergence Theorem
will show that

u(t,0) = lim flG(fs k(r)f(u(r;h,,))dr) ds
L (2.10)
1 s
= /; G(f/ﬁk(r)f(u(r,O)) dr) ds
for A* <t < 1 if we can prove that for some sufficiently large N,
I G(/ k(r)f(u(r;0)) dr| < . (2.11)
Ay AN

If kK = 0,(2.11) is trivial. We may assume that the set {k(¢) > 0; ¢ € [0, 1]}
has positive measure. We claim that there exists a positive number &
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independent of n such that u(A4,,k,) > 8. Furthermore, A4* € (0,1) and
u(A*,0) = max, ¢ o u(t, 0).

We first prove the claim.

If, on the contrary, there were a subsequence of A4, denoted again by
A, such that u(A,, h,) — 0, then by (2.7) and (H1),

u(A,;h,) > v(A,)G(f(u(A,;h,))),

where for any 4 € [0, 1], v(A4) is defined as

(A) = max{/OAG(fsAk(r) dr) ds,fAlG(Ek(r) dr) ds}.

It is obvious that v(A4,) = v(A*) > 0 by the assumption and (1.5). This
leads to a contradiction to the uniform boundedness of u(z, h,) since
G(f(u(A,; h,)) —» +». The other parts of the conclusions in the claim
follow easily.

Since A* € (0,1), u(t, h,) — u(z,0) uniformly on [0,1] and u(z,0)
is continuous, we can find an €, > 0 such that u(¢, h,) > (1/2)8 for t
[A* — €5, A* + €,] € (0,1). Therefore, f(u(z, k,)) is uniformly bounded
on [A* — €, A* + €], (2.11) then can be shown easily.

As a consequence of (2.9) and (2.10) we have that

u( A*,0) = j;A*G(fA*k(r)f(u(r; 0)) dr) ds,
’ (2.12)

- fAl*G(f:*k(r)f(u(r;O)) dr) ds.

It is easy to verify that u(¢,0) is a solution of (2.1),.
This, together with Lemma 1, implies the conclusion of the lemma.

3. PROOF OF THEOREM 1

Now, we give the proof of Theorem 1.

Proof of Theorem 1. If u is a positive solution of the problem (1.1), then
there must be a point 4 € (0, 1) such that u takes its maximum and hence
u'(A) = 0. Integrating the equation over (s, 4), we get

8(w'(5)) = [k F(u(0)) dr.
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Therefore,

w'(s) = G(/;Ak(t)f(u(t)) dt). (3.1)

We then get

u( A) = fOAG(/SAk(t)f(u(t)) dt) ds

A

> G(/SAk(t)dt)dsG(f(A)),

0

which implies that

fl/zG(/l/zk(t) dt) ds < .
0

N

The other part in (1.5) can be derived in a similar way. Therefore the
necessity of the Statement (1) is proven.

The sufficiency of Statement (1) follows from Lemma 9.

Notice that if u(z) is a solution of (1.1), then it must satisfy (2.9)—(2.10)
(by replacing u(t, 0) with u(¢)) and (3.1) and hence u(¢) is nondecreasing in
(0, A) where A4 is a maximum point of u and u’(¢) is nonincreasing for
t € (0, A).

Since u’ # 0 on (0, A), we may assume u'(r,) > 0 for some r, € (0, A);
then the Mean Value Theorem implies that u(r) = u'(&)r > u'(rgr =: 6r
for r € (0, ry). Hence

["k(t)f(u(t))dss ["k(t)f(et) dt,

which, together with (1.6) and (3.1), implies the boundedness of u'(0 +).
The other parts in Statement (11,) can be shown similarly.

Statement (11,) can be proven with a similar argument by replacing
u'(ry) with u’'(0+), so we omit the details.

The proof of Statement (II1) in Theorem 1 is the same as that of
Theorem 2 in [6], so we omit the details.

The proof of Theorem 1 is complete.

Remark 7. From the proof of the above lemmas and theorems, we
know that the condition f(0+) = -+ is not necessary. In fact, if f is a
bounded nonincreasing function, the proof will be much easier since it
suffices to use Lebesgue’s Dominated Convergence Theorem in taking the
limit in (2.7) and (2.8).
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