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We show that the spherically symmetric isolated horizon can be described in terms of an SU(2)

connection and an su(2)-valued one-form, obeying certain constraints. The horizon symplectic structure 
is precisely the one of 3d gravity in a first order formulation. We quantize the horizon degrees of 
freedom in the framework of loop quantum gravity, with methods recently developed for 3d gravity 
with non-vanishing cosmological constant. Bulk excitations ending on the horizon act very similarly to 
particles in 3d gravity. The Bekenstein–Hawking law is recovered in the limit of imaginary Barbero–
Immirzi parameter. Alternative methods of quantization are also discussed.
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1. Introduction

The standard black hole entropy calculation in loop quantum 
gravity (LQG) strongly relies on the interplay with the Chern–
Simons theory describing the horizon degrees of freedom (dof). 
The relevance of TQFT in non-perturbative quantum gravity when 
a boundary of finite area is present was first pointed out in [1]. 
The central role of Chern–Simons theory was then further estab-
lished in [2] by means of the isolated horizon (IH) boundary con-
ditions [3], providing a local definition of an isolated black hole 
more general and physically relevant than the notion of event hori-
zon. The U (1) gauge fixing adopted in [2] has been more recently 
relaxed for all physically relevant kinds of black holes. This was 
systematically derived and developed in the sequence of papers 
[4–6], providing a fully SU(2)-invariant Chern–Simons description 
of isolated horizons boundary theory. This analysis provided the 
theoretical framework for analytical [7,8] and numerical [9] tech-
niques developed for the counting of the number of boundary 
dof. Along the lines of the original point of view of [2], the lead-
ing term for the IH entropy has been shown to be in agreement 
with the Bekenstein–Hawking semiclassical formula [10] for a fixed 
numerical value of the Barbero–Immirzi parameter β given by 
β0 = 0.274067 . . . . See [11] for a review of these results.

This unexpected central role of the Barbero–Immirzi (BI) pa-
rameter in recovering a semiclassical result of QFT on a fixed 
geometry has recently motivated an alternative scenario. In [12]
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it has been noted that, by taking an analytic continuation of the 
dimension of the SU(2) Chern–Simons Hilbert space on a punc-
tured 2-sphere (modeling a quantum IH) to SL(2, C) together with 
some assumptions on the spin representations, the semiclassical 
result could be recovered without the numerical restriction β = β0. 
Such analytic continuation was interpreted as the passage to an 
imaginary BI parameter, and this choice is physically preferred 
due to the correct transformation of the Ashtekar self-dual con-
nection [13] under space–time diffeomorphisms [14]. In particular, 
in [15] it was shown how local Lorentz invariance underlies the 
strict connection between the analytic continuation to β = i and 
the thermality of the quantum IH.

However, regardless of the status of β , the fundamental role 
played by Chern–Simons theory in the black hole entropy calcula-
tion is evident. In order to claim this as a full success of the LQG 
approach, it would be desirable to have a quantization of the IH 
boundary theory completely within the kinematical framework of 
the theory and be able to perform the counting without relying on 
the Verlinde formula for the Chern–Simons Hilbert space dimen-
sion. Moreover, the standard coupling between bulk and boundary 
theories, requiring identification of certain structures of LQG and 
Chern–Simons theory, presents a number of ambiguities which af-
fects the entropy calculation and are at the core of some of the still 
open issues. A more uniform treatment uniquely in terms of the 
LQG formalism, besides making the whole derivation more sound, 
can help to solve the latter and also provide further insight on the 
aspects of the calculation mentioned above.

A first attempt along this direction was made in [16], where 
some structures of the quantum deformation SLq(2) of the SU(2)

group (with q the deformation parameter), expected to be asso-
ciated to the Chern–Simons theory, appeared; however, a clear 
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Hilbert space structure was still lacking there. In this paper we 
proceed further on this route.

More precisely, in Section 2 we show how the IH conserved 
presymplectic form can be re-expressed in terms of first order 
gravity variables and list the boundary conditions that these have 
to satisfy. In Section 3 we show how the Ashtekar–Barbero con-
nection on the IH becomes non-commutative and we introduce 
a second new non-commutative connection in order to be able 
to rely on techniques developed in [17,18] in the context of 2+1 
gravity with non-vanishing cosmological constant to quantize the 
boundary theory using LQG techniques. The quantization is car-
ried out in Section 4, where the IH quantum state is defined by 
regularizing point punctures with finite loops, as required by the 
extended nature of the LQG configuration variables and in analogy 
to the proposal of [19]; we then define the physical scalar prod-
uct of the horizon theory, imposing the quantum version of the 
boundary conditions. In Section 5 we use the equivalence [18] be-
tween the Chern–Simons observables expectation values and the 
physical amplitudes of 2+1 canonical LQG to compute the number 
of IH dof by means of the physical scalar product previously de-
fined. We find that the degeneracy of the boundary quantum state 
satisfies the Bekenstein holographic bound for β = i, thus provid-
ing further evidence for the new perspective advocated above. In 
Section 6 an alternative quantization scheme closer in spirit to the 
approach of [16] is presented, by developing a comparison with 
the context of 2+1 gravity coupled to point particles. Section 7
contains a summary of our results. In this paper we focus our at-
tention on the spherically symmetric case.

2. Isolated horizon presymplectic form

In order to express the conserved presymplectic form in terms 
of BF variables,1 let us recall first some useful relations following 
from the IH boundary conditions (see [11] for more details and 
definitions). The phase-space variables of gravity in the first or-
der formalism are given by the 2-form densitized triad �i (with 
i, j, k = 1, 2, 3 and I, J = 0, i internal SL(2, C) indices) defined as:

� I J ≡ eI ∧ e J �i ≡ ε i
jk�

jk (1)

and the 1-form extrinsic curvature K i = ω0i , where ω I J is the spin 
connection defined by ω I J

a ≡ eIb∇ae J
b and related to the metric 

through the relation gab = eI
ae J

b ηI J , where ηI J = diag(−1, 1, 1, 1).
In terms of these phase-space variables we can write the 

presymplectic form for gravity as:

κ�(δ1, δ2) =
∫
M

δ[1�i ∧ δ2]Ki , (2)

where κ = 8πG , M is a Cauchy surface representing space and 
δ1, δ2 ∈ T p�, i.e. they are vectors in the tangent space to the phase-
space � at the point p. � is an infinite-dimensional manifold 
whose points p are given by solutions to the Einstein equations 
and are labeled by a pair p = (�, K ).

We now want to introduce the Ashtekar–Barbero variables de-
fined through the introduction of the connection Ai

a:

Ai
a = �i

a + βK i
a , (3)

1 A description of non-rotating isolated horizons in terms of symmetry reduced 
SO(1, 1) BF theory was used in [20].
where �i = − 1
2 ε i jkω jk and β is the Barbero–Immirzi parameter. 

The connection Ai is still conjugate to �i and in terms of it the 
presymplectic form (2) takes the form:

κ�(δ1, δ2) = 1

β

∫
M

δ[1�i ∧ δ2]βKi + 1

β

∫
M

δ[1�i ∧ δ2]�i

− 1

β

∫
M

δ[1�i ∧ δ2]�i

= 1

β

∫
M

δ[1�i ∧ δ2] Ai − 1

β

∫
∂M

δ[1ei ∧ δ2]ei , (4)

where ∂M is the boundary of M . If we assume ∂M to correspond 
to a 2-sphere cross-section IH of M with an isolated horizon 
, 
then the isolated horizon boundary conditions [3] imply the fol-
lowing relation to hold on the 2-sphere:

F i
⇐(A+) = −�2 �i

⇐ (5)

from which

F i(�) = −Re(�2)�i
⇐ +1

2
ε i

jk K j
⇐ ∧ K k

⇐ ,

d� K i
⇐ = −Im(�2)�i

⇐ , (6)

where Ai+ = �i + iK i , �2 is the only non-vanishing Weyl scalar, 
the curvature F i(A) is given by F i(A) = dAi + 1

2 εi jk A j ∧ Ak; the 
double arrows denote the pull-back to 2-sphere IH and we will 
omit them from now on to lighten the notation. In particular, in 
the spherically symmetric case (�2 = 2π

aIH
), the above conditions 

imply

F i(A) = − π

aIH

(1 − β2)�i , d� K i = 0 , (7)

where aIH is the area of the isolated horizon. In [5], by means of 
a special gauge where the tetrad (eI ) is such that e1 is normal to 
IH and e2 and e3 are tangent to IH, it has been shown that (7)
implies K 1 = 0, which in turn shows that v ��1 ∧ K1 = 0, where v
is a vector field tangent to IH. Since in the chosen gauge the pull 
back of �2 and �3 on the horizon is zero, then one has

v � �i ∧ Ki = 0 . (8)

Therefore, (8) being true in a particular gauge is true in general, 
since it is a gauge invariant relation. Another useful relation valid 
on IH is [5]

K j ∧ K kεi jk = 2π

aIH

�i . (9)

The IH boundary conditions also restrict the variations δ =
(δ�, δA) ∈ Tp(�) such that for fields pulled back on the hori-
zon they are given by linear combinations of SU(2) internal gauge 
transformations and diffeomorphisms which preserve the preferred 
foliation of 
.

In [5] it has been shown that the IH boundary conditions listed 
above preserve the presymplectic form (4), in the sense that it is 
independent of M . We are now going to show that the boundary 
term in (4) can be rewritten in terms of first order gravity variables 
on IH.

Proposition 1. In terms of Ashtekar–Barbero connection and its con-
jugate momentum variables the conserved presymplectic structure of a 
spherically symmetric IH takes the form

κ�(δ1, δ2) = 1

β

∫
M

δ[1�i ∧ δ2] Ai + 1

β2

√
aIH

2π

∫
IH

δ[1ei ∧ δ2] Ai .

(10)
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Proof. we need to show that the phase space one-form �(δ) de-
fined by

�(δ) ≡
∫
IH

ei ∧ δei + 1

β

√
aIH

2π

∫
IH

ei ∧ δAi (11)

is closed, where the exterior derivative of �(δ) is given by

d�0(δ1, δ2) = δ1(�0(δ2)) − δ2(�0(δ1)) .

We saw above that the gauge symmetry transformations allowed 
by the IH boundary conditions on IH are given by infinitesimal 
SU(2) transformations and diffeomorphisms tangent to the hori-
zon. Therefore let us consider variations of the form δ = δα + δv , 
where α : IH → su(2) and v is a vector field tangent to IH. Under 
such transformations we have

δαei = [α, e]i , δα Ai = −dAαi ,

δv ei = Lv ei = v � dei + d(v � ei) = (δ∗
v − δα(A,v))ei

= v � dAei + dA(v � ei) − [v � A, e]i ,

δv Ai = Lv Ai = (δ∗
v − δα(A,v))Ai = v � F i(A) + dA(v � Ai) ,

where α(A, v) = v � A and δ∗
v is defined as δ∗

v Ai = v � F i(A) and 
δ∗

v ei = v � dAei + dA(v � ei).
Let us also derive a useful relation, which will represent an ex-

tra boundary condition due to the doubling of the boundary d.o.f. 
introduced with the new boundary term in (10), namely

dAei = d�ei + βε i
jk K j ∧ ek

= βε i
jk K j ∧ ek = −β

√
2π

aIH

�i , (12)

where in the second passage we have used the Cartan equation 
dei + ε i

jk�
j ∧ ek = 0 and in the last one the relation

K i
a = −

√
2π

aIH

ei
a (13)

derived in [5] (from which (9) follows). We also recall that on a 
2-manifold A ∧ v � B = −v � A ∧ B for any 2-form A and 1-form B , 
while A ∧ v � B = v � A ∧ B for any 1-form A and 2-form B .

Let us start with the gauge transformations:

d�(δ, δα)

=
∫
IH

2δ[ei ∧ δα]ei + 1

β

√
aIH

2π

∫
IH

(
δ[ei ∧ δα] Ai − δ[αei ∧ δ] Ai

)

=
∫
IH

4δei ∧ εi jkα
jek

− 2

β

√
aIH

2π

∫
IH

(
δei ∧ dAαi + εi jkα

jek ∧ δAi
)

= −2
∫
IH

δ(�i + 1

β

√
aIH

2π
dAei)αi = 0 ,

where in the last passage we used (12). For diffeomorphisms we 
have:

d�(δ, δv)

=
∫

4δei ∧ δv ei + 2

β

√
aIH

2π

IH
×
∫
IH

(
δei ∧ (δ∗

v − δα(A,v))Ai) − (δ∗
v − δα(A,v))ei ∧ δAi

)

= 4
∫
IH

δ
(

dei ∧ v � ei
)

+ 2

β

√
aIH

2π

∫
IH

δ
(

ei ∧ v � F i(A)
)

+ 2

β

√
aIH

2π

∫
IH

δ
(

dAei v � Ai

)

= −4
∫
IH

δ(ε i
jk�

j ∧ ek ∧ v � ei)

− (1 − β2)

β

√
2π

aIH

∫
IH

δ
(

ei ∧ v � �i
)

− 2
∫
IH

δ
(
�i v � Ai

)

= −β

∫
IH

δ(K i ∧ v � �i) = 0 ,

where in the third line we have used the result of the previous 
calculation with α = v � A and the relation δdA Ai = δF i(A), in the 
fourth Cartan’s equation, and Eq. (8) for the vanishing of ei ∧ v ��i

in the last line. �
Hence, the IH conserved presymplectic form can be expressed 

in the form (10), which shows how the boundary theory can be 
parametrized by the variables (A, e) satisfying the boundary con-
ditions

F i(A) = − π

aIH

(1 − β2)�i (14)

dAei = −β

√
2π

aIH

�i . (15)

3. Non-commutative connection

On the isolated horizon IH we have a 2 + 1 theory. In the 
previous section we have seen that, upon the standard 2+1 de-
composition, the phase space of the theory can be parametrized 
by the pullback to IH of the Ashtekar–Barbero connection and the 
triad. In local coordinates we can express them in terms of the 
2-dimensional connection Ai

a and the dyad field ei
a where a = 1, 2

are space coordinate indices on IH and i, j = 1, 2, 3 are su(2) in-
dices. As already pointed put in [5], the boundary term in the 
presymplectic from (4) implies that the horizon dyad field satisfy 
the Poisson bracket

{ei
a(x), e j

b(y)} = −κβεab δi jδ(2) (x, y) , (16)

where εab is the 2d Levi-Civita tensor. At the same time, if we 
parametrize the IH phase space in terms of first order gravity vari-
ables (A, e), the boundary term in the presymplectic from (10)
indicates that the Poisson bracket among them is given by

{Ai
a (x) , ẽ j

b (y)} = κβεab δi jδ(2) (x, y) (17)

where

ẽi
a := 1

β

√
aIH

2π
ei

a . (18)

The two Poisson brackets (16) and (17) are consistent with each 
other as soon as we take into account the relation (13) holding on 
the horizon 2-sphere. In particular, this implies that the Ashtekar–
Barbero boundary connection becomes non-commutative. This 
should not be surprising if one wants, as standardly done in the 
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literature, interpret the boundary condition (14) as the eom of the 
SU(2) Chern–Simons theory on a punctured 2-sphere, since the 
Chern–Simons connection in the l.h.s. of (14) is non-commutative. 
Despite such non-commutativity, the theory (17), (14), (15) bears 
a strong resemblance with 2+1 gravity with cosmological con-
stant.2 Let us clarify this classical set-up so that it will then be 
straightforward to apply LQG techniques developed in that context 
to quantize the boundary theory. In order to do so, we introduce a 
new connection

Ãi
a = Ai

a + α(aIH)ẽi
a , (19)

where α(aIH) is a function of the IH area aIH to be determined by 
expressing the condition (14) as a flatness condition for the new 
connection. More precisely,

F i( Ã) = dÃi + 1

2
ε i

lm Ãl ∧ Ãm = F i(A) + (
aIH

2πβ2

α2

2
− α)�i = 0 ,

where in he last passage we used the boundary condition (15). 
Therefore, the condition (14) is recovered once α± = β(β ±
1)2π/aIH . The IH boundary conditions can thus be re-expressed as

F i( Ã) = 0 (20)

dAẽi = −�i , (21)

where

Ai
a = �i

a + βK i
a = �i

a − 2πβ2

aIH

ẽi
a = �i

a − β

2�2
P (1 − β2)k

ẽi
a , (22)

Ãi
a = Ai

a + α±ẽi
a = �i

a ± 2πβ

aIH

ẽi
a = �i

a ± 1

2�2
P (1 − β2)k

ẽi
a , (23)

and we have used the relation [5]

k = aIH

4π�2
P β(1 − β2)

(24)

between the Chern–Simons level k and the IH area aIH .
The boundary condition (20) imposes the flatness of the non-

commutative connection (23), in analogy to the treatment of [17,
18] for 2+1 gravity in presence of a non-vanishing cosmolog-
ical constant. While (21) encodes a modification of the Gauss 
constraint encoding singularities in the torsion of the Ashtekar–
Barbero connection on the boundary in the form of punctures 
induced (in the quantum theory) from the bulk spin network links 
piercing IH. This is analog to the case of 2+1 gravity coupled to 
point particles [21]. We can thus combine the LQG techniques de-
veloped in the framework of 2+1 gravity to quantize the boundary 
theory on the IH.

4. Quantization

We now want to quantize the IH boundary theory parametrized 
by the BF variables (Ai, ̃ei) and satisfying the constraints (20), (21)
just relying on LQG techniques. Then, one can think to extend the 
quantization techniques of the bulk to the isolated horizon. There-
fore, the basic kinematical observables on the horizon are given by 
the holonomy of the connection and appropriately smeared func-
tionals of the dyad field ẽ. Namely, one can find an irreducible 
representation of the quantum counterpart of these observables on 
a kinematical Hilbert space H IH

kin whose states are given by func-
tionals �[A] of the (generalized) connection A which are square-
integrable with respect to a diff-invariant measure.

2 in Section 6 we will present an alternative point of view where the horizon 
theory is treated as genuine BF 2+1 gravity coupled to point particles.
The non-commutativity of the Ashtekar–Barbero connection on 
the IH 2-sphere does not represent an obstacle to the construction 
of the IH Hilbert space. This is the case since the non-commutative 
holonomy acting on the Ashtekar–Lewandowski vacuum [22] still 
has a multiplicative action. Moreover, the intersection of two such 
holonomies has been explicitly computed in [17] and shown to 
reproduce the Kauffman’s crossing bracket [23]; in particular, the 
action of one non-commutative holonomy on another can again be 
recast in a multiplicative form. This allows us to apply standard 
LQG kinematical techniques to the construction of the IH Hilbert 
space. Therefore, holonomies of A are quantized as in the 3+1 the-
ory on the Hilbert space L2(A(2), dμAL) via multiplication,3 while

ẽi(η) =
∫
η

ẽi
aη̇

a (25)

is the analog of the 3d flux, in the sense that the quantity (25) rep-
resents the flux of e across the one-dimensional paths ηa(t) ∈ IH, 
with η̇a = dηa/dt . It is quantized analogously such that the asso-
ciated operator acts non-trivially only on holonomies hγ along a 
path γ ∈ IH that are transversal to η, namely

[ˆ̃e(η),hγ ] = ih̄κβ
∑

p∈η∩γ

sign(εabη̇
aγ̇ b(p))hγ2(p) J ihγ1(p) , (26)

i.e. acts as the derivative operator ˆ̃ei
a = −ih̄κβεab δi

jδ/δA j
b .

In order to impose the curvature constraint, we are going to use 
its non-commutative connection formulation (20) so to be able to 
import techniques developed in [17,18]. But let us first concentrate 
on the modified Gauss law (21). From the LQG quantization of the 
densitized triad �i in the bulk we have

εab�̂i
ab(x) = 2κβ

∑
p∈�∩IH

δ(x, xp) Ĵ i(p) , (27)

where the fixed graph � ⊂ M has end points on IH denoted � ∩ IH
and the Ĵ s satisfy the su(2) algebra [ Ĵ i(p), Ĵ j(p)] = ε i j

k Ĵ k(p). 
Therefore, the bulk geometry induces conical singularities in the 
boundary torsion, which can be interpreted as point particles. It 
follows that, in order to remove ambiguity in the definition of the 
boundary connection at the location of the point particles, these 
have to be blown-up to circles [21]. These new boundaries on the 
horizon then inherit the spin- j irrep carried by the corresponding 
bulk link piercing the horizon. In this way, quantum IH states can 
then be represented by a collection of small loops �i (i = 1, . . . , N , 
N being the total number of particles) colored with SU(2) irreps ji , 
each surrounding one puncture and connected by links forming a 
single intertwiner4 as in Fig. 1.

With this regularization, the modified Gauss law (21) can be 
seen as a relation between the flux of the horizon electric field ẽ
across a given circle �i and the flux of the bulk electric field �
across the surface encircled by �i . The imposition of such relation 
can then be implemented as in [21] by associating an intertwiner 

3 As explained below, the restricted set of boundary observables that will be rel-
evant for the entropy calculation are formed only by loops around each puncture 
which do not intersect each other together with a set of holonomies defined on 
paths connecting each loop to a same single point. It is for this second set of 
holonomies that one should use the Kauffman bracket to represent the action of 
the non-commutative connection in a multiplicative form. However, the physical 
scalar product of the isolated horizon theory can be defined (see below) such that 
this set of holonomies plays no effective role and the boundary observables become 
to all purposes commutative.

4 This last property of the IH states is a consequence of a global constraint that 
follows from (14), namely that the holonomy around a contractible loop encircling 
all particles be trivial.
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Fig. 1. States of the quantum isolated horizon.

ιi of SU(2) to each boundary �i ; note however that, differently 
from the case of [21], there is no free magnetic number associated 
to each particle link, since these are now connected to the rest of 
the bulk graph. Given the restricted structure of the horizon states 
depicted in Fig. 1, each ιi is a trivial bivalent intertwiner.

We now analyze the imposition of the curvature constraint (14). 
We see that away from the particles, the (non-commutative) con-
nection Ai is flat. Around each particle, i.e. along each loop, the 
curvature picks up a contribution proportional to the flux of the 
�i field. We saw in Section 3 that this curvature constraint at each 
puncture can again be expressed in terms of the flatness condi-
tion of a new non-commutative connection (23). This allows us to 
use the analysis of [18,24] to define a projector into the physical 
Hilbert space of the boundary theory. In fact, if we introduce a 
cellular decomposition 
IH of the horizon 2-sphere IH — with pla-
quettes p ∈ 
IH of coordinate area smaller or equal to ε2 — the 
curvature constraint can be written as

C[N] = lim
ε→0

∑
p /∈∪�i

tr
[
Np W p (A)

] + lim
ε→0

∑
p∈∪�i

tr
[

Np W p

(
Ã
)]

= 0

(28)

where W p = 1 + ε2 F + o(ε2) ∈ SU(2) is the Wilson loop of the 
connection A, Ã in the spin-1/2 representation. It is immediate 
to see that the only non-vanishing contributions to the commu-
tator of the constraint (28) with itself, when acting on a gauge 
invariant state, come from the commutator of any of the terms 
p with itself, i.e. of the form 

[
tr

[
Np W p (A)

]
, tr

[
Mp W p (A)

]]
or 

[
tr

[
Np W p

(
Ã
)]

, tr
[

Mp W p

(
Ã
)]]

. In [18], by means of tech-

niques developed in [17,25], it has been shown that such com-
mutators are anomaly-free if and only if the infinitesimal loop 
evaluates to the quantum dimension, namely

= (−)2 j[2 j + 1]q = (−)2 j q2 j+1 − q−(2 j+1)

q − q−1
, (29)

where now

q =
⎧⎨
⎩ e

2π iβ2

aIH
κβh̄

2 = e
2π i

k
β2

(1−β2) , for p /∈ ∪�i

e
2π iβ
aIH

κβh̄
2 = e

2π i
k

β

(1−β2) , for p ∈ ∪�i

(30)

as follows from the expression (22) and (23). Therefore, the con-
dition (29) implies that, at each plaquette, the recoupling theory 
of the classical SU(2) group has to be replaced with the one of 
the quantum group UqSL(2); however, whether the plaquette sur-
rounds a particle or not the deformation parameter q takes one 
of the two different expressions above. We thus have two quan-
tum group recoupling theories entering the quantization of the 
curvature constraint on the horizon. This suggests that, following 
the construction of [18,24], the physical scalar product for the IH 
boundary theory between two horizon states s, s′ can be written as

〈s, s′〉phys = 〈P [A, Ã]s, s′〉 , (31)
where

P [A, Ã] = lim
ε→0

∏
p /∈∪�i

δ(W p(A))
∏

p∈∪�i

δ(W p( Ã))

= lim
ε→0

∑
jp

∏
p /∈∪�i

(−)2 jp [2 jp + 1]q χ jp (W p(A))

×
∏

p∈∪�i

(−)2 jp [2 jp + 1]q χ jp (W p( Ã)) (32)

is the projector operator into the physical Hilbert space of the IH 
boundary theory. In the last line of the expression above the de-
formation parameter q at each plaquette p takes either one of the 
two different values (30) according to the presence or not of a 
puncture inside p.

5. Entropy

In order to compute the microcanonical BH entropy we need 
to derive the dimension of the physical Hilbert space of the IH 
boundary theory and then take its logarithm, according to the 
standard relation S = log (N ), with N the number of horizon 
micro-states compatible with the given macroscopic horizon area 
aIH . The quantity N can now be obtained from the relation be-
tween the Chern–Simons partition function on a three manifold 
containing a collection of unlinked, unknotted Wilson lines and the 
scalar product between states of the associated Hilbert space used 
by Witten in his approach to the Jones polynomial [26].

More precisely, given a three manifold M obtained from the 
connected sum of two three manifolds M1 and M2 joined along a 
two sphere S2 and containing N unlinked and unknotted circles Ci
with SU(2) irreps ji associated to them, we denote the correspond-
ing Chern–Simons partition function (or Feynman path integral) as 
Z(M; ∏N

i=1 Ci); then

Z(M;
N∏

i=1

Ci) = 〈�2|�1〉 , (33)

where �1 is the vector determined by the Feynman path integral 
on M1 in the physical Hilbert space associated to the Riemann 
surface S2 and �2 the vector determined by the Feynman path 
integral on M2 in the dual Hilbert space; 〈·|·〉 indicate the physical 
scalar product on this Hilbert space. The expression (33) corre-
spond to the unnormalized expectation value of the link formed 
by the collection of circles Ci from which Jones knot invariants can 
be derived [26]. In the case M = S2 × S1, with S1 corresponding 
to a compact time direction, we have

Z(S2 × S1;
N∏

i=1

Ci) = dimHS2;⊗i ji
, (34)

where the r.h.s. corresponds to the dimension of the Hilbert space 
on a punctured two sphere. The Reshetikhin–Turaev–Witten (RTW) 
invariant of a closed 3-manifold [27] provides a precise defini-
tion of the Chern–Simons path integral (33); at the same time, 
the Turaev–Viro (TV) invariant [28], which represent a state-sum 
model for 3-dimensional Euclidean quantum gravity with positive 
cosmological constant � [29], has been shown to be related to 
the Witten’s Chern–Simons TQFT [26] by the theorem ZTV(M) =
|ZWRT(M)|2 [30]. From a LQG perspective, it has been shown in 
[18] that the Turaev–Viro amplitudes can be recovered from the 
physical scalar product of the 2+1 theory with � > 0 using the 
same formalism introduced in the previous section. In particular, 
with a proper relation between � and k (or aIH), the equivalent 
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of the physical scalar product (31), (32) provides an explicit defini-
tion of the r.h.s. of (33), allowing us to recover the link expectation 
values computed via the Chern–Simons partition function.

Therefore, we can now use these results together with the re-
lation (34) to compute the number N of IH quantum states by 
means of the physical scalar product (31) of the boundary Hilbert 
space. Following this logic, we thus have

N = < P∅, >

= lim
ε→0

∫ (∏
h

dgh

)∏
i

χki
(g�i

)
∏

p /∈∪�i

∑
jp

(−)2 jp [2 jp + 1]q

× χ jp (W p(A))

×
∏

p∈∪�i

∑
jp

(−)2 jp [2 jp + 1]q χ jp (W p( Ã)) (35)

where g�i
is the holonomy along the loop going around the i-th 

particle in the IH state and dgh corresponds to the invariant 
SU(2)-Haar measure. In relation to the notation in (33), we have 
identified the state |�1〉 with the isolated horizon state depicted 
in Fig. 1 and |�2〉 with the vacuum state; one can always find 
a decomposition of M such that this is the case and the final re-
sult is insensitive to such choice (the same expression for the r.h.s. 
of (35) would be obtained for any other decomposition). We can 
graphically represent the physical scalar product (35) as

In order to proceed with the evaluation of the physical scalar 
product, let us recall that, due to the (discrete) Bianchi identity, 
there is a redundancy in the in the product of delta distributions 
entering the expression of the projection operator and associated 
to the plaquettes regulating the two sphere horizon surface. A way 
to deal with such redundancy consists of eliminating the holon-
omy W p(A) around an arbitrary plaquette p /∈ ∪�i . By doing so, it 
is immediate to see that when we perform the group integration 
over the edges belonging to p /∈ ∪�i the intertwiner structure dis-
appears from the scalar product (all the links connecting the loops 
�i are forced into the j = 0 irrep). This is how the disappearance 
of the intertwiner structure mentioned above takes place and the 
evaluation of (35) is considerably simplified. As it is well known 
(see, e.g., [8]), ignoring the intertwiner structure affects the loga-
rithmic correction to the entropy result, but does not modify the 
leading term. Thus, for the purposes of this paper, such simplifi-
cation is irrelevant and our entropy result should be compared to 
the large k limit of the standard counting one can find in the liter-
ature. We, hence, end up with

N = lim
ε→0

∫ (∏
h

dgh

)∏
i

∏
p

∑
jp

(−)2 jp [2 jp + 1]q

=
∏

(−)2ki [2ki + 1]q =
∏

e2π iki [2ki + 1]q , (36)

i i
where, as shown in [18], the q-box integration has to be performed 
according to the renormalized skein relation

= 1

(−)2 j1 [2 j1 + 1]q
δ j1 j2

Therefore, we see that at each puncture, besides the usual term 
given by the SU(2) irreducible representation dimension associated 
to it (in the large k limit), a new degeneracy factor appears which 
reproduces the Bekenstein’s holographic bound for β = i, namely

exp (2π iki) = exp (ai/4�2
P ) , where ai = 8π�2

P βki . (37)

The entropy result (36) matches exactly the one obtained in [19]
by exploiting the local CFT symmetry introduced at each puncture 
by also blowing point particles to infinitesimal, but finite loops. In 
both cases, such a regularization procedure plays a fundamental 
role.

The presence of the new degeneracy factor (37) has been previ-
ously postulated in [31] in order to get rid of the quantum gravity 
correction to the entropy formula associated to a chemical poten-
tial term found in [32]. A similar analysis then leads to the entropy

S = 2π i
∑

i

ki + o(
√

aIH ) = aIH

4�2
P

+ o(
√

aIH ) , (38)

in agreement with the Bekenstein–Hawking formula for an imag-
inary BI parameter. Our result provides yet another evidence, this 
time originating entirely within the LQG formalism, in support of 
the new perspective [12,15] in the LQG black hole entropy calcu-
lation allowing for the removal of the numerical restriction on β
in favor of the physically better motivated analytic continuation to 
the Ashtekar self-dual connection.

Notice that, taking the limit β = i, the deformation parame-
ter (30) for plaquettes not containing any puncture reproduces 
the expression q = e

π i
k obtained in the Chern–Simons formula-

tion of 2+1 gravity in presence of a local positive constant cur-
vature (� > 0), in agreement with the deformation parameter of 
the quantum group UqSL(2) entering the definition of the Turaev–
Viro model that one would expect to appear due to the non-
commutativity of the Ashtekar–Barbero connection on IH. On the 
other hand, for plaquettes around the punctures the deformation 
parameter (30) becomes real, again in agreement with the analytic 
continuation from SU(2) to SL(2, C) of the Verlinde formula for 
the dimension of the Chern–Simons Hilbert space on a punctured 
2-sphere performed in [12].

6. Alternative quantization schemes

In this section we want to discuss the relation of the horizon 
theory and its quantization to certain other results in the literature. 
On the one hand, the horizon fields (A, e) and the boundary con-
ditions (14) and (15) bear a striking resemblance to the fields and 
constraints of 3d � = 0 gravity coupled to particles in a first order 
formulation. On the other hand, in [16] it was suggested to imple-
ment the boundary conditions on the horizon field directly in the 
LQG setting, thereby ignoring the boundary term of the presym-
plectic structure. The horizon fields (A, e) seem to be ideally suited 
for this endeavor. Let us discuss these two perspectives in turn.



D. Pranzetti, H. Sahlmann / Physics Letters B 746 (2015) 209–216 215
6.1. Connection to 3d gravity with � = 0

3d Euclidean gravity in first order variables, has structure 
group ISU(2). Generators of this Lie-algebra will be denoted J I , Pi , 
i = 1, 2, 3 with

[Pi, P j] = 0 , [Pi, J j] = εi j
k Pk , [ J i, J j] = εi j

k Jk . (39)

We will closely follow [24]. The gravitational phase space is em-
bedded in the space of ISU(2) connections

A = Ai J i + ei P i (40)

equipped with Poisson bracket

{Ai
a (x) , e j

b (y)} = εab δi jδ(2) (x, y) , (41)

where e can be thought of as co-triad. Up to a prefactor this is 
exactly the Poisson structure coming from the boundary presym-
plectic structure in (10). Coupling of particles to gravity introduces 
the first class constraints

εabFab(0) = (pi J i + ji P i)δ
2(x − x0) (42)

with the ISU(2) connection F = d(A)A and p, j are the particle 
dof. Decomposed into translational and SU(2) components:

εab Fab = pi J iδ
2(x − x0) (43)

with the SU(2) curvature F = d(A) A and

εab(dAe)ab = ji P iδ
2(x − x0) . (44)

The Poisson bracket (41) can be quantized in the standard fashion 
on L2(A, dμAL) [24]. The particle dof obey some constraints on 
their own and are quantized on the Hilbert space HP = L2(SU(2)), 
for details see [21]. What is relevant for us are the consequences 
for the gravitational dof.

1. The particles transform under the action of SU(2). Constraint 
(44) implies gauge invariance under the tensor product of 
gravitational and particle action. This means that particle and 
gravitational dof have to be coupled by an intertwiner to the 
trivial representation.

2. Constraint (43) determines the holonomy of loops: In the 
quantum theory, the connection around a loop is trivial if it 
does not surround a particle

hα = I, α trivial (45)

and is given by an operator on the kinematical Hilbert space 
of the particle,

h�i = �ie
mi J0�−1

i , (46)

where mi is a half integer quantum number of the particle, J0
a fixed generator of SU(2) and �i a multiplication operator on 
the Hilbert space of the particle.

Let us compare this to the quantum theory of the isolated hori-
zon. To bring out the analogy, we proceed as in the 3d gravity 
case, by regarding the boundary conditions (14), (15) constraints to 
be implemented later. Note that due to dAe = βK ∧ e the relation 
(13) follows immediately from (15). Thus the connection A would 
be commutative initially, as in the BF-formulation of 3d gravity. 
Hence the kinematical quantization of the gravity dof on the hori-
zon would be the same. Instead of the particle Hilbert space, we 
would have a piece of the bulk Hilbert space at the puncture
Fig. 2. Operators of the bulk holonomy-flux algebra give operators in the surface 
theory.

Hp =
⊕

j=0,1/2,1,...

H j , (47)

which would play the role of the particle Hilbert space. H j is the 
spin j irrep of SU(2). The consequences of (14), (15) in the quan-
tum theory are as follows. Away from the punctures, the quantized 
version of (15) would enforce gauge invariance of the states on the 
surface. At the puncture, it would enforce gauge invariance of the 
tensor product of bulk and boundary state, resulting in kinemati-
cal surface states of exactly the same nature as in 3d gravity with 
particles. We integrate (15) over the disc D bounded by a loop �
surrounding a puncture:∫
D

h−1
x0 F (x)hx0 d2x = c

∫
D

h−1
x0 �(x)hx0 d2x. (48)

Here h are holonomies from some fixed point 0 on � to the point 
x and c is a constant. The quantization of the right-hand side is 
given by h−1

p0 Li J i hp0, where L is an angular momentum operator 
on Hp , and it can be shown that there is a basis such that Li J i is 
λ J0 for some fixed generator J0 of SU(2) and suitable numbers λ, 
i.e.∫
D

h−1
x0 F (x)hx0 d2x = cλh−1

p0 J0 hp0 . (49)

On the other hand, expanding (46) up to first order, we have

I+
∫
D

h−1
x0 F (x)hx0 d2x = I+ �m J0�

−1 . (50)

Comparing (49) and (50) we see a strong similarity in the quantum 
theory. This suggests that the boundary theory might alternatively 
be quantized as Euclidean � = 0 3d gravity with particles. A quan-
tization of the exponential of (14) has been suggested in [33], 
leading to the expectation value

tr h� = q(2 j+1) − q−(2 j+1)

q − q−1
(51)

for a given quantum number j of the puncture (including j = 0
for the case of a loop not enclosing any puncture). This is of the 
same form as (29) (up to the sign of q), however, q is now given by 
q = e

π i
k , with the level k from (24). That q is different is no contra-

diction to (29), as the holonomies belong to different connections. 
Moreover, as we pointed out at the end of Section 5, once we take 
β = i the deformation parameter (30) reproduces the usual expres-
sion above obtained in the literature.

Let us conclude with an observation on a possible description in 
terms of bulk operators. In [16] it was suggested that the boundary 
quantum theory could be taken as a restriction to the boundary of 
the bulk quantum theory. Indeed, this could be carried out here. 
Holonomies entirely in the surface represent the connection on the 
surface, holonomies that end on the surface contribute defects or 
particles, see Fig. 2. The flux operators in the bulk, which have 
a transversal intersection with the surface, give, when restricted 
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to this intersection, an operator that has the same commutation 
relations with holonomies as the two-dimensional flux (25). This 
is remarkable, because they do correspond to different classical 
quantities. There is no contradiction, however, because the op-
erators are the results of quantizing two different presymplectic 
spaces, the bulk and the surface one, respectively. Constraint (14)
has been investigated in this context [33], but it is not yet clear 
whether solutions are proper states on the holonomy flux algebra. 
The constraint (15) has not yet been investigated in this context. 
Presumably, it is again linked to gauge invariance on the horizon.

7. Summary

As a first step of our analysis, we have re-expressed the IH 
conserved presymplectic form in terms of first order 2+1 gravity 
variables. That this is possible is very satisfying, as these vari-
ables have an immediate geometric interpretation. Then we have 
quantized the boundary theory uniquely in terms of LQG tech-
niques, without relying on structures of the Chern–Simons theory 
on a punctured 2-sphere. We have shown how the physical scalar 
product of canonical LQG can be used to compute the quantum 
IH state degeneracy, leading to an entropy in agreement with the 
Bekenstein–Hawking formula for β = i.

Our analysis avoids several ambiguities present in the usual 
coupling of the bulk LQG and the boundary Chern–Simons Hilbert 
spaces performed in previous literature, thus presenting a more 
coherent and sound picture of black hole entropy calculation 
in LQG, based on a nice interplay between the three and the 
four-dimensional theories.

We would like to point out again how a key ingredient for 
the entropy result, namely the new degeneracy factor (37), is rep-
resented by the punctures regularization via finite circles, which 
appears naturally when employing LQG structures. It would be in-
teresting to study the algebra of observables that one could define 
living on these new boundaries, in analogy with the analysis of 
[19], and investigate if a Virasoro structure might emerge just from 
within the LQG formalism.

Finally, we note that the horizon punctures behave very much 
like particles in the 2+1 quantum gravity describing the horizon. 
This beautiful picture underscores again that the horizon thermo-
dynamics is the thermodynamics of these punctures.
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