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Abstract 

ECG is an important tool to measure health and disease detection. Due to many noise sources, this signal has to be denoised and 
presented in a clear waveform.   Noise sources may consist of power line interference, external electromagnetic fields, random 
body movements or respiration.   In this project, five common and important denoising methods are presented and applied on real 
ECG signals contaminated with different levels of noise. These algorithms are: discrete wavelet transform (universal and local 
thresholding), adaptive filters (LMS and RLS), and Savitzky-Golay filtering. Their denoising performances are implemented, 
compared and analyzed in a Matlab environment. 
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1. Introduction 

Electrocardiography (ECG) is the recording of the electrical activities of the heart. It is very important for 
screening and diagnosis of many diseases. For its importance, an ECG signal should be presented as clean and clear 
as possible to support accurate decisions by physicians and doctors. As an electrical signal, ECG is susceptible to 
different kinds of noise. The main sources of this noise are electrical activities of other body muscles, baseline shift 
because of respiration, poor contact of electrodes, and equipment or electronic devices [1-2]. Since the ECG is a 
non-stationary signal [2], normal filters cannot be effective to remove the noise; so, several techniques are used to 
do so for such types of signals. 

There are different techniques available for use in denoising signals, such as adaptive filtering, wavelet, and 
Savitzky-Golay filtering. These methods are referenced in the literature of ECG denoising. 

Many publications present wavelets in denoising ECG signals, such as [3-6]. In Gokhale [7], the wavelet is used 
to remove the 50/60 Hz Power line interference from ECG signals. Savitzky-Golay is used in smoothing ECG 
Signals in [8] and [9]. Adaptive filtering is used with ECG signals for noise cancelation in [10] and [11]. 

In this paper, these methods are presented and applied for ECG denoising with a comparison between their 
performances. The algorithms are: discrete wavelet transform (universal and local thresholds), adaptive LMS 
filtering, adaptive RLS filtering, and Savitzky-Golay filtering. The performance measure is based on the difference 
between the original ECG (without noise) and the denoised version after contamination with noise. Actual recorded 
ECG signals are available online, such as [12-14]. In this project, these signals are used after adding different levels 
of noise and then compared to the original and the denoised versions for the prescribed methods. 

1.1. Wavelet 

Recently, signal processing engineers have used the Wavelet Transform (WT) in various applications including 
the processing of non-stationary signals. Unlike Fourier transform, WT provides more information in its domain, 
which includes both frequency and time representation. Discrete Wavelet Transform (DWT) is more popular in 
application because of the usage of computers. In [15], Mallat's developed a very efficient and reliable algorithm to 
compute the DWT decompositions using consecutive filters and decimators, as shown in Fig. 1. The HPFs and LPFs 
determine the corresponding Details  and Approximations  coefficients respectively, of the applied 
signal. The use of the down-samplers is important to remove redundant samples from the output of the filters and to 
keep the total number of samples the same. According to the characteristics of the applied signal and the required 
degree of processing, we can reapply the approximation to the most recent decomposition segment several times. 

 
Fig 1. Two levels of Mallat's algorithm for decomposition. 

 
The approximation coefficients  are related to the low frequency part of the signal, which contains the main 

features and information. On the other hand, detail coefficients  are important to preserve the perfect shape when 
reconstruction is invoked. It is noticeable that  coefficients at higher levels of noiseless signals are sparse. So, in 
these high levels, larger coefficients can be assumed to be actual ones plus noise; the remaining coefficients can be 
considered as pure noise. Fig. 2 illustrates the idea of denoising signals using wavelet thresholding of detail 
coefficients. ‘SureShrink’ and ‘NeighBlock’ are the two famous thresholding methods in the use of wavelets for 
estimation of unknown signals in the presence of noise. These methods are developed by Donoho et.al. [16] and Cai 
et.al. [17], respectively. 

 
Fig. 2. Denoising steps using Wavelet [3]. 

The Donoho et.al. algorithm removes the noise by thresholding most of the detail coefficients according to the 
value of the threshold , which depends on the level of decomposition. There are two approaches to decide 
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whether  is a pure noise or an actual coefficient plus noise: soft and hard decisions as given in Equation (1) [18]: 
 

 if 
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d       ,    
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i i

i i i

d d
d d d  (1) 

In the hard decision, coefficients are set to zero if they are less than  or preserved otherwise. This type of 
decision is modified by the soft decision as all coefficients are considered with noise, so deducting  from the 
coefficients which are considered non-pure noise values. Denoising using the soft decision method performs better 
than the hard decision approach. Thus, in this project the soft decision is considered among the wavelet denoising 
methods. 

Donoho et.al. proposed an approximation to caculate the optimum value of , which is based on Stein's Unbiased 
Risk Estimate (SURE), as:  , where  is the number of coefficients. This fixed thresholding per 
decomposition level is called SureShrink [16]. Fig. 3(a) illustrates how a unique threshold is applied to the entire 
coefficients set. In this Figure, the noise levels are increased, changed several times to show that a single threshold is 
not always efficient. Therefore utilizing several thresholds for the complete set of coefiecients, improves the 
denoising  performance. The thresholds are chosen according to local noise levels and the method is called the 
NeighBlock [17]. In this algorithm, detail coeffiecients are grouped according to their local properties to find an 
optimum  for each group. The coefficients of the th block are caculated by Equation 2 [19]. 
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Where  is the  of the th block, , and . With this algorithm, the 
accuracy of signal estimation is improved compared to the SureShrink. Fig. 3 (b) shows a different threshod is 
calculated for each set of set of coefficients according to their noise level . 

 

      
(a) SureShrink                              (b) NeighBlock 

Fig. 3. Wavelet thresholding methods. 

1.2. Adaptive Filtering 

An adaptive filter uses iterative computations to minimize the error “in modelling the relationship between two 
signals in real time” [20]. Fig. 4 shows a basic diagram of an adaptive filter. Here, the input  represents the ECG 
which is observed with the additive noise . The reference signal  is either a pure noise generator or a signal related 
to . Since the  and  are uncorrelated, then . [1] 
 

 
Fig. 4. A general diagram of an adaptive filter. 

 
Let the  coefficients of the filter at the  iteration be denoted as . For an input 
vector , the output will be given in Equation (3) as: 
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The filter’s task is to adjust its weights  iteratively to minimize the mean square error (MSE) between the primary 
and the reference inputs. This adjustment is mainly achieved by: 
 
Least Mean Squares (LMS) 
Because of the important features of LMS: the simplicity [21] and relatively fewer computational operations [20], it 
is favourable in many applications such as approximation of unknown signals. The weights of the LMS adapting 
algorithm can be calculated at the th iteration as in Equation (4): 
 

1 ( )k k k kW W e k X  (4) 
 
where  is the step size parameter which controls the rate of convergence. The value of this step size should be 
optimized empirically to trade off the speed of convergence and instability [1]. 
 
Recursive Least-Squares (RLS) 
This algorithm is considered more attractive than the LMS in terms of the number of iterations required for 
convergence, but the price is paid as the number of computations per iteration. Proakis et. al. [22] summarize the 
iterative steps to update the weights  of an RLS filter as in Equation (5): 

1 1( )k k k k kW W K I X W  (5) 

where:  is an identity matrix, and the Kalman gain vector  and correlation matrix  are given by Equations 
(6) and (7) respectively: 
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 is a weighting factor . Haykin [21] points out that replacing the step-size parameter in LMS 
by the correlation matrix of the input vector in RLS has a great effect on expediting the convergence rate and 
achieving the required minimized mean square error at fewer steps. 

1.3. Savitzky-Golay filtering 

The method of sample smoothing proposed by Savitzky and Golay [23] is based on local least-squares 
polynomial approximation. By approximating a group of  noisy samples  by the polynomial 

, it is required to minimize the error:  by selecting the appropriate vector 
a . Each considered group of the input has  samples at each side around the central point, or 
x . The output samples  for each of these sets of the input x are computed 
by the discrete convolution  , where the finite impulse response  is equivalent to the 
least-squares polynomial approximation. The vector a can be computed in Equation (8): 

1
a x xT TA A A H  (8) 

where the matrix  ,  and . For the computation of the impulse response, we set 
x d . Thus, we obtain the vector: a A A A d . 

Now, the throw of the matrix: A A A  is  which equals 
, where  is the polynomial that approximate d with least-square error. 

Thus, .[24-25]. The selection of  and  is important to have the best approximation and smoothing 
of the noisy data. 
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2. Current Work and Approach 

In this project, ECG signals from [12] are normalized and used after being contaminated with different levels of 
AWGN. These noisy signals are applied to the denoising techniques: Wavelet (‘SureShrink’ and ‘NeighBlock’), 
Adaptive filtering (LMS and RLS), and Savitzky-Golay filtering. These different algorithms are used to approximate 
and recover the original ECG signal out of its contaminated one. Next a comparision is made to measure their 
accuracy of performance. The performace of each method is governed by its operation parameters. These parameters 
are tuned in this project to achieve the best feasible performance. The following is the summary of the used 
algorithms and their parameters: 
 Wavelet: The choice of the mother wavelet  function  which forms a set of functions (i.e., family of wavelets) 

and the number of the decomposition levels (lev) is very important in the measure of denoising accuracy. In this 
project it is found that the combination of the function  = ‘sym12’ and lev=3 gives the best performance of 
denoising for both universal and interval-dependent thresholds. The soft-decision thresholding is used instead of 
the hard one because the performance of the former is better. 

 Adaptive Filtering: for both LMS and RLS, the Adaptive filter length is chosen to be 32 tabs, the number of the 
coefficients of the LPF (Hamming window-based, linear-phase, and FIR filter) is set to 32 and its normalized 
cutoff frequency 0.2Hz. Moreover: 
o LMS: step size = 0.0276. 
o RLS: the size of the Initial correlation matrix inverse is 32x32, and the forgetting factor of 0.91398. 

 Savitzky-Golay filtering: The polynomial order is 8, and the frame size is31. 

3.  Discussion of Results 

Quantitative performance results of these methods are obtained by looking at the denoised signals in the time 
domain. Some techniques’ results appear more appealing to the eye than others. Figures 5 and 6 show the denoised 
signals for a noisy ECG signal at SNR=10 and 20dB respectively. The “err” numbers shown for each method are 
calculated in Equation (9) as: 

2err i i
i

x r  (9) 

The comparison can be accomplished using mathematical equations to rank each method’s performance at a 
given SNR. The introduction of these equations requires the definition of all variables. Let  samples of the 
measured signal  represent the summation of the desired unknown ECG signal samples,  and noise samples , 
or , where  ,   is the noise level, and the  are i.i.d. N(0,1) (Independent and identically 
distributed random variables)[17]. The vector  is the denoised version of the measured vector . The 
reconstructed signal can be expressed as: , where  represents the denoising algorithm used. 

Most of the published papers [3-5,7-8] use the Equations (10) and (11) for comparison between different methods 
of denoising, (for clarity, denote the summation  by ).  Equations (10) and (11) respectively are the Percentage 
Root-mean-square Difference (PRD) and the estimated Signal to Noise Ratio : 

2 2PRD 100 i i i
i i

x r x
 

(10) 

2 210 logE i i
i i

SNR x  (11) 

where  is the deformation in the ECG reconstruction. It is determined for this project that the maximum error is 
also a good indicator for evaluating the performance of a denoising algorithm. This normalized measure is denoted 
in Equation (12) by max : 

 
max max i ir s  (12) 
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Fig. 5. A time segment showing one noisy ECG pattern at 
SNR=10dB and the corresponding denoised signals.   

Fig. 6. Time segment shown in Fig. 5 where the SNR=20dB. 

 
It is important to discuss Fig. 7 prior to the discussion of the graphs for Equations (10)-(12), since it supports a 

greater understanding for these measures. Unlike RLS, the LMS algorithm requires more iteration steps to acquire 
the desired signal and to achieve the least squared error output, which is clear in Fig. 7 subplots (a, c). 
 

 
Fig. 7. LMS and RLS startup errors and the corresponding denoised samples of an ECG with SNR=20dB. 

 
Equations (10)-(12) are evaluated and plotted in Fig. 8. These plots provide insight regarding the “goodness of 

performance” for the denoising algorithm at selected SNRs compared to other methods. 
In LMS and RLS, the denoised signals accordingly have larger error magnitudes at the beginning of the sequence 

rather than later in the remaining segments of the signal stream. Since the performance in equations (9)-(12) 
calculate the total errors for the entire set of samples, these measures for the LMS and RLS are degraded at the start 
of the adaptation. Although the performance measures in these Figures show that LMS and RLS are the worst along 
the SNR range, their denoised signals in the time domain are still acceptable and sometimes are very close to those 
of the other methods. 

The results in Fig. 8, indicate that at higher levels of noise (smaller SNRs), the performance of all the methods 
are similar. This is not surprising because the noise is so high that it extensively distorts the original signal. This is 
not the case in the actual measurements of ECGs, but it should be included nevertheless for a comprehensive 
comparison. We notice in Fig. 8 that the interval-dependent threshold wavelet denoising is slightly better than that 
with universal threshold, which is already expected. That difference is not very noticeable because we apply the 
same noise level to the entire signal samples. But when this is not the case, we observe a much better performance 
for the NeighBlock algorithm compared to the SureShrink one. It is also noticed that at the mid-range SNRs ~15 to 
25 dB, both RLS and the Savitzky-Golay filtering perform better than the wavelet. 
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Fig. 8. (a) The Percentage Root-mean-square Difference. (b) Estimated SNR. (c) Maximum error between the original and the denoised 

signals Where: ID-WL= Interval-dependent threshold wavelet denoising , and UT-WL= universal threshold wavelet denoising. 
 

When the noise of the input signal becomes negligible, the output of the wavelet technique used follows the input 
without any distortion. Because RLS and Savitzky-Golay methods are based on a filtering approach, the outputs of 
noiseless inputs have a slight distortion compared to the wavelet outputs. 

4. Wavelet Improvement 

As stated earlier, we have better performances for the filter based methods at some mid-range SNRs. Therefore, 
if the SNR of a noisy signal was within that range, a signal can be applied to a LPF prior to the wavelet denoising to 
obtain a relative improvement in denoising. As a result we see in Fig. 9, the improvement in wavelet denoising with 
the LPF is only within the mentioned SNR range.  Thus, to utilize this option, an SNR estimator can be used to 
decide when to switch the input to the LPF before the wavelet or to bypass it. 

 
Fig. 9. The effect of the LPF before the wavelet denoising. 

 
(a) before.   (b) after. 

Fig. 10. Baseline removal using a notch filter around the DC. 

5. Baseline removal 

The authors in [26] point out that sometimes ECG is recorded with baseline wanders, which mainly results from 
patient movement or respiration; the frequency of this baseline ranges from 0.5Hz to several Hertz for some periods. 
As it is suggested in [1], a notch filter around zero is designed in this project and is utilized to remove the DC 
component. Additionally, very few frequencies occur and result in baseline drifting, as shown in Fig. 10. In this 
project a LPF with a cutoff frequency very close to the zero is used to remove low frequency content producing this 
drift. 

6. Concluding Remarks 

In this study, several methods of denoising are presented and applied to actual ECG signals at noise levels from 5dB 
SNR to 45dB SNR. The comparison shows that the NeighBlock wavelet algorithm performs better denoising than 
the others.  However the RLS and Savitzky-Golay filters perform better in some mid-range SNRs. 
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