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Unordered Canonical Ramsey Numbers
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We define a weak form of canonical colouring, based on that of P. Erdo� s and
R. Rado (1950, J. London Math. Soc. 25, 249�255). This yields a class of unordered
canonical Ramsey numbers CR(s, t), again related to the canonical Ramsey
numbers ER(2; s) of Erdo� s and Rado. We present upper and lower bounds (the
latter via a construction) for CR(s, t) which are significantly tighter than the best-
known corresponding bounds for ER(2; s). � 2000 Academic Press
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Erdo� s and Rado extended Ramsey's original theory of monochromatic
graphs [6] to allow infinitely many colours [4]. This extension created the
theory of canonical colourings. The Erdo� s�Rado theorem assumes that
there is a pre-existing ordering on the vertices of the graph. It states that,
for sufficiently large n, an arbitrary colouring of the edges of Kn contains
some Ks which is coloured according to one of the following methods
(where c(e) is the colour of the edge e and uv is an edge with u<v):

v Ks is monochromatic;

v c(uv)= f (u), where f injective, i.e., minimum-coloured;

v c(uv)= f (v), where f injective, i.e., maximum-coloured; or

v c(uv)= f (uv), where f injective, i.e., Ks is distinctly edge coloured.

Let ER(2; s) be the smallest n for which the above holds. The best
bounds known for ER(2; s) are those given by Lefmann and Ro� dl in [5],
2c1s 2

�ER(2; s)�2c2s2 log s for some constants c1 , c2 . When considering
k-uniform hypergraphs, the best upper bounds for ER(k; s) for general
fixed k are due to Shelah [7]. The upper bounds obtained by Shelah are
towers of height k, the same height as the towers of the lower bounds of
the corresponding Ramsey numbers, and therefore in a sense these bounds
are best possible.
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Here we present a weaker definition of canonical colourings, which does
not require a fixed ordering on the vertices of our graph. In our definition,
we combine the first three categories into a single type. Take some G=Ks

for arbitrary s. Colour the edges of G with arbitrary colours. We call such
a colouring orderable if we can order V(G) such that the colour of each
edge is completely determined by the smaller of its two vertices. That is, if
c(e) denotes the colour of the edge e, and uv is an edge with u<v, then
c(uv)= f (u). Note that this definition does not require that f be injective,
and hence monochromatic graphs are orderable. Also note that the minimum-
and maximum-colourings specified by Erdo� s and Rado are orderable, as we
can select either the given ordering of the vertices (to satisfy a minimum-
colouring) or reverse ordering (to satisfy a maximum-colouring).

Let CR(s, t) be the smallest N such that every colouring of the edges of
KN contains either an orderable Ks or a distinctly edge coloured Kt .
Certainly CR(s, t)�ER(2; max(s, t)), and so in particular CR(s, t) exists.
In this paper we prove both an upper bound (in Theorem 0.1) and lower
bound (Theorem 0.2) for CR(s, t), having the same order of magnitude.

The notion of orderable colourings was stimulated originally by the
proof of Ramsey's theorem given by Erdo� s and Szekeres [2]. Restricting
ourselves to two colours, we have an analogue of the standard Ramsey
numbers, rather than the Erdo� s�Rado numbers. Denote by \(n) the smallest
k such that any 2-colouring of Kk must contain an orderable Kn . Now a
monochromatic Kn is orderable, and conversely any 2-coloured orderable
K2n&2 must contain a monochromatic Kn . (This is why we do not require
f to be injective in our definition of orderable graphs.) Thus \(n)�r(n)�
\(2n&2), and so the standard bounds on r(n) [2, 3] show that \(n) grows
exponentially in n. Moreover, the argument of Erdo� s and Szekeres [2]
shows \(n+1)�2\(n), and since it is easily checked that \(3)=3 and
\(4)=6 we obtain the upper bound \(n)�3 } 2n&3.

We now return to our main purpose, dealing with arbitrarily many
colours and thereby obtaining bounds on CR(s, t). We begin with an upper
bound.

Theorem 0.1. CR(s, t)�73&st4s&4.

Proof. Let n=CR(s, t)&1. Then there exists some colouring G of Kn

such that G contains no orderable Ks or distinctly edge coloured Kt . Hence
every Kt /G contains a pair of like-coloured edges. We say that a pair of
edges of the same colour which lie in the same Kt block that Kt (as they
prevent it from being distinctly edge coloured). As each Kt is blocked by
at least two edges, some edge e blocks at least 2( n

t )�(
n
2) distinct Kt .

Two disjoint edges of like colour block ( n&4
t&4) distinct Kt , while two

adjacent edges of like colour block ( n&3
t&3) distinct Kt . If we denote by k the
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number of edges incident with e of the same colour as e, and by l the
number of other edges of the same colour as e, then

l \n&4
t&4++k \n&3

t&3+�2
\n

t+
\n

2+
So there must be a large number of edges of the same colour as e. Note,

however, that G is also free of orderable Ks graphs, and this restricts the
number of edges of any single colour. Let c=CR(s&1, t). If some vertex
v # G had degree at least c in one colour, then either G contains a Kt

distinctly edge coloured, or the neighbourhood of v in that colour contains
an orderable Ks&1 , and hence G contains an orderable Ks . Hence each
vertex incident with e has at most c&2 edges of the same colour as e
besides e itself. Hence k�2c&4.

Similarly, none of the n&2 vertices disjoint from e can have c incident
edges of the same colour as e. The maximum number of edges coloured
similarly to e but disjoint from e is therefore 1

2(c&1)(n&2). Hence

\n&4
t&4+\

n&2
2 + (c&1)+(2c&4) \n&3

t&3+�2
\n

t+
\n

2+
So, writing t(4) for t(t&1)(t&2)(t&3), we have

n&2
2(n&3)

(c&1)+
2

t&3
(c&2)�

4(n&2)
t(4)

.

Note that CR(s, t)=n+1�c. The above inequality therefore holds
whenever

c
2

+
3

2(n&3)
+

2
t&3

(c&2)�
4(n&2)

t(4)

and so

CR(s, t)�3+
t(4)

8 \c+
3

CR(s, t)&4++
t(3)(c&2)

2

�
t4

8 \c+
3

CR(s, t)&4+
whenever n�4, t�4.
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If CR(s, t)<10, then as t�2 CR(s, t)�3t4�2. Otherwise, if CR(s&1, t)
<6, then from the equation above we have that

CR(s, t)�
t4

8 \5+
3

CR(s, t)&4+ ,

and as CR(s, t)�10 this means CR(s, t)�3t4�2. If neither of these bounds
holds, then we instead bound CR(s, t) above by

t4

8 \CR(s&1, t)+
1
2+ ,

so

CR(s, t)�
t4

7
CR(s&1, t).

Note also that CR(2, t)=2 for every t # N (as any single edge is an
orderable K2). Hence we can obtain an upper bound for any CR(s, t) by
using the third bound,

CR(s, t)�
t4

7
CR(s&1, t),

at most s&2 times in succession, until either CR(s, t)<10 or CR(s&1, t)
<6, both of which then yield a fixed bound of at most 3t4�2.

So, for all s�2, t�4,

CR(s, t)�
3t4

2
t4s&8

7s&2 =
3
2

72&st4s&4�73&st4s&4. K

We now consider lower bounds for CR(s, t). Like the original Ramsey
numbers we can obtain a lower bound for CR(s, t) probabilistically. Random
colourings using ( t

2)&1 colours give CR(s, t)�(( t
2)&1)(s&1)(s&2)�2s. But,

unlike the original Ramsey numbers, for the unordered canonical Ramsey
numbers CR(s, t) we can give a lower bound by a simple construction,
which is better than the probabilistic bound.

Theorem 0.2. CR(s, t)�(( t
2)&1)(CR(s&1, t)&1)+1.

Proof. Let G be a 2-coloured graph of order CR(s&1, t)&1. Take
( t

2)&1 copies of G, labelled

G0 , ..., G(t
2)&2 .

Let ck , 0�k�( t
2)&2 be distinct colours not used in G. Colour all edges between

any pair of copies Gi and Gj with colour cl , where l#i+ j mod (( t
2)&1).
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As a result, the colours connecting each Gj to the ( t
2)&2 other copies of G

are distinct for every j. Call the resultant complete graph H. We claim that
H contains no distinctly edge coloured Kt , and no orderable Ks .

Suppose that there exists H$/H, distinctly edge coloured and of order
t. We know that H$/3 Gk for every 1�k�( t

2)&1, as each Gk is free of
distinctly edge coloured Kt s. Alternatively, if no two vertices of H$ lie in the
same Gk /H, then all edges in H$ have colours ck for some 0�k�( t

2)&2,
and hence at least two edges in H$ must have the same colour. So there
must be some Gk /H such that H$/3 Gk , but |H$ & Gk |�2. Then there
exists Gl , l{k, such that at least one vertex of H$ lies in Gl . But then H$
contains two edges between Gk and Gl , which must be of the same colour.
We therefore know that there is no distinctly edge coloured Kt inside H.

We now show that H contains no orderable Ks . For suppose such a Ks

exists. G contains no orderable Ks&1 , hence any orderable Ks /H must
contain either (i) vertices from three different copies of G, or (ii) at least
two vertices from each of two distinct copies of G. In case (i) the three
vertices from distinct copies will form a triangle in which each edge is a
distinct colour, which prevents the Ks from being orderable. In case (ii),
regardless of how we order the vertices, the first vertex v1 has at least one
neighbour in the same copy of G, and one neighbour in a different copy
of G. These two vertices must be connected to v1 , by edges of different
colours, ensuring that G is not orderable. Hence CR(s, t)�|H|+1=
(( t

2)&1)(CR(s&1, t)&1)+1. K

As CR(2, t)=2 for every t�2, we can use Theorem 0.2 recursively to
obtain the following general lower bound.

Corollary 0.1. CR(s, t)�(( t
2)&1)s&2+1.

Further, a theorem of Babai [1] gives us a way to improve the exponent
in this lower bound, but in a non-constructive way. Babai proved that
there exists an edge-coloured complete graph of order 3(t3�log t) in which
no two edges of the same colour are adjacent, but which does not contain
any distinctly edge-coloured Kt . So by using the nesting argument of
Theorem 0.2 with graphs of order 3(t3�log t), rather than order ( t

2)&1 as
used in Theorem 0.2, we obtain a graph of order 3(t3s�(log t)s). This graph
is free of distinctly edge coloured Kt by [1], and is a so free of orderable
graphs of order s, hence CR(s, t)=0(t3s�(log t)s).
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