Unordered Canonical Ramsey Numbers

Duncan C. Richer
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge CB2 1SB, United Kingdom
E-mail: D.C.Richer@dpmms.cam.ac.uk

Received September 20, 1999

Abstract

We define a weak form of canonical colouring, based on that of P. Erdős and R. Rado (1950, J. London Math. Soc. 25, 249-255). This yields a class of unordered canonical Ramsev numbers $C R(s t)$ again related to the canonical Ramsev

iew metadata, citation and similar papers at core.ac.uk

Key Words: Ramsey theory; canonical colouring.

Erdős and Rado extended Ramsey's original theory of monochromatic graphs [6] to allow infinitely many colours [4]. This extension created the theory of canonical colourings. The Erdős-Rado theorem assumes that there is a pre-existing ordering on the vertices of the graph. It states that, for sufficiently large n, an arbitrary colouring of the edges of K_{n} contains some K_{s} which is coloured according to one of the following methods (where $c(e)$ is the colour of the edge e and $u v$ is an edge with $u<v$):

- K_{s} is monochromatic;
- $c(u v)=f(u)$, where f injective, i.e., minimum-coloured;
- $c(u v)=f(v)$, where f injective, i.e., maximum-coloured; or
- $c(u v)=f(u v)$, where f injective, i.e., K_{s} is distinctly edge coloured.

Let $E R(2 ; s)$ be the smallest n for which the above holds. The best bounds known for $E R(2 ; s)$ are those given by Lefmann and Rödl in [5], $2^{c_{1} s^{2}} \leqslant E R(2 ; s) \leqslant 2^{c_{2} s^{2} \log s}$ for some constants c_{1}, c_{2}. When considering k-uniform hypergraphs, the best upper bounds for $E R(k ; s)$ for general fixed k are due to Shelah [7]. The upper bounds obtained by Shelah are towers of height k, the same height as the towers of the lower bounds of the corresponding Ramsey numbers, and therefore in a sense these bounds are best possible.

Here we present a weaker definition of canonical colourings, which does not require a fixed ordering on the vertices of our graph. In our definition, we combine the first three categories into a single type. Take some $G=K_{s}$ for arbitrary s. Colour the edges of G with arbitrary colours. We call such a colouring orderable if we can order $V(G)$ such that the colour of each edge is completely determined by the smaller of its two vertices. That is, if $c(e)$ denotes the colour of the edge e, and $u v$ is an edge with $u<v$, then $c(u v)=f(u)$. Note that this definition does not require that f be injective, and hence monochromatic graphs are orderable. Also note that the minimumand maximum-colourings specified by Erdős and Rado are orderable, as we can select either the given ordering of the vertices (to satisfy a minimumcolouring) or reverse ordering (to satisfy a maximum-colouring).

Let $C R(s, t)$ be the smallest N such that every colouring of the edges of K_{N} contains either an orderable K_{s} or a distinctly edge coloured K_{t}. Certainly $C R(s, t) \leqslant E R(2 ; \max (s, t))$, and so in particular $C R(s, t)$ exists. In this paper we prove both an upper bound (in Theorem 0.1) and lower bound (Theorem 0.2) for $C R(s, t)$, having the same order of magnitude.

The notion of orderable colourings was stimulated originally by the proof of Ramsey's theorem given by Erdős and Szekeres [2]. Restricting ourselves to two colours, we have an analogue of the standard Ramsey numbers, rather than the Erdős-Rado numbers. Denote by $\rho(n)$ the smallest k such that any 2 -colouring of K_{k} must contain an orderable K_{n}. Now a monochromatic K_{n} is orderable, and conversely any 2-coloured orderable $K_{2 n-2}$ must contain a monochromatic K_{n}. (This is why we do not require f to be injective in our definition of orderable graphs.) Thus $\rho(n) \leqslant r(n) \leqslant$ $\rho(2 n-2)$, and so the standard bounds on $r(n)[2,3]$ show that $\rho(n)$ grows exponentially in n. Moreover, the argument of Erdős and Szekeres [2] shows $\rho(n+1) \leqslant 2 \rho(n)$, and since it is easily checked that $\rho(3)=3$ and $\rho(4)=6$ we obtain the upper bound $\rho(n) \leqslant 3 \cdot 2^{n-3}$.

We now return to our main purpose, dealing with arbitrarily many colours and thereby obtaining bounds on $C R(s, t)$. We begin with an upper bound.

Theorem 0.1. $\quad C R(s, t) \leqslant 7^{3-s} t^{4 s-4}$.

Proof. Let $n=C R(s, t)-1$. Then there exists some colouring G of K_{n} such that G contains no orderable K_{s} or distinctly edge coloured K_{t}. Hence every $K_{t} \subset G$ contains a pair of like-coloured edges. We say that a pair of edges of the same colour which lie in the same K_{t} block that K_{t} (as they prevent it from being distinctly edge coloured). As each K_{t} is blocked by at least two edges, some edge e blocks at least $2\binom{n}{t} /\binom{n}{2}$ distinct K_{t}.

Two disjoint edges of like colour block $\binom{n-4}{t-4}$ distinct K_{t}, while two adjacent edges of like colour block $\binom{n-3}{t-3}$ distinct K_{t}. If we denote by k the
number of edges incident with e of the same colour as e, and by l the number of other edges of the same colour as e, then

$$
l\binom{n-4}{t-4}+k\binom{n-3}{t-3} \geqslant 2 \frac{\binom{n}{t}}{\binom{n}{2}}
$$

So there must be a large number of edges of the same colour as e. Note, however, that G is also free of orderable K_{s} graphs, and this restricts the number of edges of any single colour. Let $c=C R(s-1, t)$. If some vertex $v \in G$ had degree at least c in one colour, then either G contains a K_{t} distinctly edge coloured, or the neighbourhood of v in that colour contains an orderable K_{s-1}, and hence G contains an orderable K_{s}. Hence each vertex incident with e has at most $c-2$ edges of the same colour as e besides e itself. Hence $k \leqslant 2 c-4$.

Similarly, none of the $n-2$ vertices disjoint from e can have c incident edges of the same colour as e. The maximum number of edges coloured similarly to e but disjoint from e is therefore $\frac{1}{2}(c-1)(n-2)$. Hence

$$
\binom{n-4}{t-4}\left(\frac{n-2}{2}\right)(c-1)+(2 c-4)\binom{n-3}{t-3} \geqslant 2 \frac{\binom{n}{t}}{\binom{n}{2}}
$$

So, writing $t_{(4)}$ for $t(t-1)(t-2)(t-3)$, we have

$$
\frac{n-2}{2(n-3)}(c-1)+\frac{2}{t-3}(c-2) \geqslant \frac{4(n-2)}{t_{(4)}} .
$$

Note that $C R(s, t)=n+1 \geqslant c$. The above inequality therefore holds whenever

$$
\frac{c}{2}+\frac{3}{2(n-3)}+\frac{2}{t-3}(c-2) \geqslant \frac{4(n-2)}{t_{(4)}}
$$

and so

$$
\begin{aligned}
C R(s, t) & \leqslant 3+\frac{t_{(4)}}{8}\left(c+\frac{3}{C R(s, t)-4}\right)+\frac{t_{(3)}(c-2)}{2} \\
& \leqslant \frac{t^{4}}{8}\left(c+\frac{3}{C R(s, t)-4}\right)
\end{aligned}
$$

whenever $n \geqslant 4, t \geqslant 4$.

If $C R(s, t)<10$, then as $t \geqslant 2 C R(s, t) \leqslant 3 t^{4} / 2$. Otherwise, if $C R(s-1, t)$ <6, then from the equation above we have that

$$
C R(s, t) \leqslant \frac{t^{4}}{8}\left(5+\frac{3}{C R(s, t)-4}\right),
$$

and as $C R(s, t) \geqslant 10$ this means $C R(s, t) \leqslant 3 t^{4} / 2$. If neither of these bounds holds, then we instead bound $C R(s, t)$ above by

$$
\frac{t^{4}}{8}\left(C R(s-1, t)+\frac{1}{2}\right),
$$

so

$$
C R(s, t) \leqslant \frac{t^{4}}{7} C R(s-1, t)
$$

Note also that $C R(2, t)=2$ for every $t \in \mathbf{N}$ (as any single edge is an orderable K_{2}). Hence we can obtain an upper bound for any $C R(s, t)$ by using the third bound,

$$
C R(s, t) \leqslant \frac{t^{4}}{7} C R(s-1, t),
$$

at most $s-2$ times in succession, until either $C R(s, t)<10$ or $C R(s-1, t)$ <6, both of which then yield a fixed bound of at most $3 t^{4} / 2$.

So, for all $s \geqslant 2, t \geqslant 4$,

$$
C R(s, t) \leqslant \frac{3 t^{4}}{2} \frac{t^{4 s-8}}{7^{s-2}}=\frac{3}{2} 7^{2-s} t^{4 s-4} \leqslant 7^{3-s} t^{4 s-4} .
$$

We now consider lower bounds for $C R(s, t)$. Like the original Ramsey numbers we can obtain a lower bound for $C R(s, t)$ probabilistically. Random colourings using $\binom{t}{2}-1$ colours give $C R(s, t) \geqslant\left(\binom{t}{2}-1\right)^{(s-1)(s-2) / 2 s}$. But, unlike the original Ramsey numbers, for the unordered canonical Ramsey numbers $C R(s, t)$ we can give a lower bound by a simple construction, which is better than the probabilistic bound.

Theorem 0.2. $\quad C R(s, t) \geqslant\left(\binom{t}{2}-1\right)(C R(s-1, t)-1)+1$.
Proof. Let G be a 2 -coloured graph of order $C R(s-1, t)-1$. Take $\binom{t}{2}-1$ copies of G, labelled

$$
G_{0}, \ldots, G_{\left(\frac{1}{2}\right)-2} .
$$

Let $c_{k}, 0 \leqslant k \leqslant\binom{ t}{2}-2$ be distinct colours not used in G. Colour all edges between any pair of copies G_{i} and G_{j} with colour c_{l}, where $l \equiv i+j \bmod \left(\binom{t}{2}-1\right)$.

As a result, the colours connecting each G_{j} to the $\binom{t}{2}-2$ other copies of G are distinct for every j. Call the resultant complete graph H. We claim that H contains no distinctly edge coloured K_{t}, and no orderable K_{s}.

Suppose that there exists $H^{\prime} \subset H$, distinctly edge coloured and of order t. We know that $H^{\prime} \not \subset G_{k}$ for every $1 \leqslant k \leqslant\binom{ t}{2}-1$, as each G_{k} is free of distinctly edge coloured $K_{t} \mathrm{~s}$. Alternatively, if no two vertices of H^{\prime} lie in the same $G_{k} \subset H$, then all edges in H^{\prime} have colours c_{k} for some $0 \leqslant k \leqslant\binom{ t}{2}-2$, and hence at least two edges in H^{\prime} must have the same colour. So there must be some $G_{k} \subset H$ such that $H^{\prime} \not \subset G_{k}$, but $\left|H^{\prime} \cap G_{k}\right| \geqslant 2$. Then there exists $G_{l}, l \neq k$, such that at least one vertex of H^{\prime} lies in G_{l}. But then H^{\prime} contains two edges between G_{k} and G_{l}, which must be of the same colour. We therefore know that there is no distinctly edge coloured K_{t} inside H.

We now show that H contains no orderable K_{s}. For suppose such a K_{s} exists. G contains no orderable K_{s-1}, hence any orderable $K_{s} \subset H$ must contain either (i) vertices from three different copies of G, or (ii) at least two vertices from each of two distinct copies of G. In case (i) the three vertices from distinct copies will form a triangle in which each edge is a distinct colour, which prevents the K_{s} from being orderable. In case (ii), regardless of how we order the vertices, the first vertex v_{1} has at least one neighbour in the same copy of G, and one neighbour in a different copy of G. These two vertices must be connected to v_{1}, by edges of different colours, ensuring that G is not orderable. Hence $C R(s, t) \geqslant|H|+1=$ $\left(\binom{t}{2}-1\right)(C R(s-1, t)-1)+1$.

As $C R(2, t)=2$ for every $t \geqslant 2$, we can use Theorem 0.2 recursively to obtain the following general lower bound.

Corollary 0.1. $\quad C R(s, t) \geqslant\left(\binom{t}{2}-1\right)^{s-2}+1$.
Further, a theorem of Babai [1] gives us a way to improve the exponent in this lower bound, but in a non-constructive way. Babai proved that there exists an edge-coloured complete graph of order $\Theta\left(t^{3} / \log t\right)$ in which no two edges of the same colour are adjacent, but which does not contain any distinctly edge-coloured K_{t}. So by using the nesting argument of Theorem 0.2 with graphs of order $\Theta\left(t^{3} / \log t\right)$, rather than order $\binom{t}{2}-1$ as used in Theorem 0.2, we obtain a graph of order $\Theta\left(t^{3 s} /(\log t)^{s}\right)$. This graph is free of distinctly edge coloured K_{t} by [1], and is a so free of orderable graphs of order s, hence $C R(s, t)=\Omega\left(t^{3 s} /(\log t)^{s}\right)$.

ACKNOWLEDGMENTS

[^0]
REFERENCES

1. L. Babai, An anti-Ramsey theorem, Graphs Combin. 1, No. 1 (1985), 23-28.
2. P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470.
3. P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-294.
4. P. Erdős and R. Rado, A combinatorial theorem, J. London Math. Soc. 25, No. 4 (October 1950), 249-255.
5. H. Lefmann and V. Rodl, On Erdős-Rado numbers, Combinatorica 15, No. 1 (1995), 85-104.
6. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264-286.
7. S. Shelah, Finite canonization, Comment. Math. Univ. Carolin. 37, No. 3 (1996), 445-456.

[^0]: I thank my Ph.D. supervisor, Dr. Andrew Thomason, for his invaluable guidance during the development of this paper. I also thank the referees for their useful comments and suggestions.

