A Note on "Oscillation and Nonoscillation for Second-Order Linear Differential Equations"

metadata, citation and similar papers at core.ac.uk

Department of Applied Mathematics, Tsinghua University, Beijing, China

Submitted by Xiaojing Yang

Received December 30, 1998

In a recent paper Chunchao Huang [1] studied the oscillatory behavior of the second-order linear differential equation

$$u'' = -p(t)u, (1)$$

where $p(t) \in C[0, \infty)$ and $p(t) \ge 0$.

Let $\alpha_0 = 3 - 2\sqrt{2}$, and let N be the set of natural numbers; then Huang obtained the following theorems:

Theorem 1. If there exists $t_0 > 0$ such that for every $n \in N$,

$$\int_{2^{n_{t_0}}}^{2^{n+1}t_0} p(t) dt \le \frac{\alpha_0}{2^{n+1}t_0},$$
 (2)

then Eq. (1) is nonoscillatory.

THEOREM 2. If there exists $t_0 > 0$ and $\alpha > \alpha_0$ such that for every $n \in N$,

$$\int_{2^{n}t_0}^{2^{n+1}t_0} p(t) dt \ge \frac{\alpha}{2^n t_0}, \tag{3}$$

then Eq. (1) is oscillatory.

Huang also stated a typical result about the oscillatory properties of Eq. (1) as follows.

THEOREM A [2]. If

$$\lim_{t \to \infty} \sup t \int_{t}^{\infty} p(s) \, ds < \frac{1}{4},\tag{4}$$

then Eq. (1) is nonoscillatory, but if

$$\lim_{t \to \infty} \inf t \int_{t}^{\infty} p(s) \, ds > \frac{1}{4},\tag{5}$$

then Eq. (1) is oscillatory.

Huang claimed, "It is obvious that (4) and (5) are conditions on the integrals of p(s) in $[t,\infty)$ for arbitrarily large values of t, while (2) and (3) are conditions only concerning the integrals of p(s) in $[2^n t_0, 2^{n+1} t_0]$ for every $n \in N$, therefore they are different kinds of conditions."

However, after careful consideration of Huang's Theorems 1 and 2 and the well-known Theorem A, we find Theorem 1 and Theorem 2 are only special cases of the following Theorem 3, and Theorem 3 is also a special case of Theorem A.

THEOREM 3. If there exists $t_0 > 0$ such that for every $n \in N$,

$$\int_{t_0/\varepsilon}^{t_0/\varepsilon^{n+1}} p(t) dt \le \frac{\alpha(\varepsilon)}{t_0/\varepsilon^{n+1} - t_0/\varepsilon} = \frac{\alpha(\varepsilon)\varepsilon^{n+1}}{(1-\varepsilon)t_0},$$
 (6)

where $0 < \varepsilon < 1$, $\alpha(\varepsilon) = (1 - \sqrt{\varepsilon})^2$, then Eq. (1) is nonoscillatory. If there exists $t_0 > 0$ and $\alpha > \alpha(\varepsilon)$ such that for every $n \in N$,

$$\int_{t_0/\varepsilon^n}^{t_0/\varepsilon^{n+1}} p(t) dt \ge \frac{\alpha(\varepsilon)}{t_0/\varepsilon^{n+1} - t_0/\varepsilon} = \frac{\alpha(\varepsilon)\varepsilon^{n+1}}{(1-\varepsilon)t_0}, \tag{7}$$

then Eq. (1) is oscillatory.

If we take $\varepsilon=\frac{1}{2},\ \alpha=\alpha_0/2=\frac{1}{2}(3-2\sqrt{2}\,)$ in Theorem 3, then we get Theorems 1 and 2.

The proof of Theorem 3 can be performed by a similar method used in [1]. We prove only that Theorem 3 is a special case of Theorem A.

In fact, let $n = n_0$, $n_0 + 1$,..., and add both sides of (6) and (7):

$$\int_{t_0/\varepsilon^{n_0}}^{\infty} p(t) dt = \sum_{n=n_0}^{\infty} \int_{t_0/\varepsilon^n}^{t_0/\varepsilon^{n+1}} p(t) dt$$

$$\leq \frac{\left(1 - \sqrt{\varepsilon}\right)^2}{\left(1 - \varepsilon\right)t_0} \sum_{n=n_0}^{\infty} \varepsilon^{n+1} = \frac{\left(1 - \sqrt{\varepsilon}\right)^2 \varepsilon^{n_0+1}}{\left(1 - \varepsilon\right)^2 t_0}$$
(8)

$$\int_{t_0/\varepsilon^{n_0}}^{\infty} p(t) dt = \sum_{n=n_0}^{\infty} \int_{t_0/\varepsilon^n}^{t_0/\varepsilon^{n+1}} p(t) dt$$

$$\geq \frac{\alpha}{(1-\varepsilon)t_0} \sum_{n=n_0}^{\infty} \varepsilon^{n+1} = \frac{\alpha \varepsilon^{n_0}}{(1-\varepsilon)^2 t_0}.$$
 (9)

Then (8) and (9) can be written as

$$\frac{t_0}{\varepsilon^{n_0}} \int_{t_0/\varepsilon^{n_0}}^{\infty} p(t) dt \le \left(\frac{1-\sqrt{\varepsilon}}{1-\varepsilon}\right) \varepsilon, \tag{8'}$$

$$\frac{t_0}{\varepsilon^{n_0}} \int_{t_0/\varepsilon^{n_0}}^{\infty} p(t) dt \ge \frac{\alpha}{(1-\varepsilon)^2}.$$
 (9')

Let

$$f(x) = \left(\frac{1-x}{1-x^2}\right)^2 x^2, \qquad 0 < x < 1,$$
$$g(x) = \frac{\alpha}{(1-x)^2}, \qquad 0 < x < 1.$$

Then

$$f(x) = \left(\frac{x}{1+x}\right)^2$$
; hence $0 < f(x) < \frac{1}{4}$ for $0 < x < 1$,

and

$$0 < \left(\frac{1 - \sqrt{\varepsilon}}{1 - \varepsilon}\right)^2 \varepsilon = f(\sqrt{\varepsilon}) < \frac{1}{4} \quad \text{for } 0 < \varepsilon < 1, \tag{10}$$

and

$$g(x) > \frac{\alpha(x)}{(1-x^2)^2} = \frac{(1-x)^2}{(1-x)^2} = \frac{1}{(1+x)^2} > \frac{1}{4},$$

$$\frac{\alpha}{(1-\varepsilon)^2} > \frac{\alpha(\varepsilon)}{(1-\varepsilon)^2} = \frac{(1-\sqrt{\varepsilon})^2}{(1-\varepsilon)^2} > \frac{1}{4}.$$
(11)

From (8)–(11) and letting $n_0 \to \infty$, $T_0 = t_0/\varepsilon^{n_0}$, we obtain

$$\overline{\lim}_{t \to \infty} T_0 \int_{T_0}^{\infty} p(t) < \frac{1}{4} \tag{8"}$$

or

$$\overline{\lim}_{t\to\infty} T_0 \int_{T_0}^{\infty} p(t) > \frac{1}{4}$$
 (9")

From Theorem A, we obtain the results of Theorem 3. Hence, Theorems 1 and 2 are also special cases of Theorem A.

REFERENCES

- C. Huang, Oscillation and nonoscillation for second order linear differential equations, J. Math. Anal. Appl. 210 (1997), 712–723.
- C. A. Swanson, "Comparison and Oscillatory Theory of Linear Differential Equations," Academic Press, New York, 1968.