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1. Introduction

Let C be a nonsingular projective curve of genus g, defined over a finite field F; of odd cardinal-
ity g. The zeta function of C is defined as

oo n 1
Zew =exp ) Na(©, Iul < (1

n=1

where Nj(C) is the number of points of C with coefficients in an extension Fgn of F; of degree n.
The zeta function is known to be a rational function of the form

_ Pc(u)
Zc(u) = A—md—q (1.2)

where P¢ € Z[u] is a polynomial of degree 2g, with Pc(0) =1, satisfying a functional equation

1
Pc(u) = (quz)gpc<q—u>.

By the Riemann hypothesis (proved by Weil [9]), we may interpret Pc(u) as the characteristic polyno-
mial of a 2g x 2g unitary matrix ©c, where the eigenvalues e®i of ®©¢ correspond to zeros g~ 1/2¢~i
of Zc(u):

Pc(u) =det(I — u/qO¢). (1.3)

The conjugacy class of @¢ is called the unitarized Frobenius class of C.
We consider the family Hg41 of hyperelliptic curves of genus g given in affine form by an equa-
tion

Co: ¥*=Q®)

where Q (x) € Fq[x] is a square-free, monic polynomial of degree 2g 4 1. We will study the expected
value of products of traces of high powers of the Frobenius class of C as we vary the curve C over
Hag+1, and show that these statistics determine the n-level density of the eigenvalues. Our work is
in the limit of large genus and fixed constant field.
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Consider Hg41 as a probability space with the uniform probability measure, so that the expected
value of any function F on Hygy1 is defined as

fy— > FQ).

TN
281 QeHygin

Katz and Sarnak [5] showed that for a fixed genus, the Frobenius classes ®p become uniformly
distributed in USp(2g) in the limit ¢ — oo of large field size. That is, for any continuous function on
the space of conjugacy classes of USp(2g),

lim (F(©q))= / F(U)dU.
q— o0
Usp(2g)

If we take the opposite limit, that of fixed constant field and large genus g — oo (that is, without
first taking ¢ — oo, which was crucial to the approach of Katz and Sarnak), since the matrices ®q
now inhabit different spaces as g grows, it is not clear how to formulate an equidistribution problem.
However, we can discuss the statistics of products of traces of powers of ®q, that is, (]_['}:1(tr Ukiyay,
Rudnick [8] showed that for a fixed constant field and large genus g — oo, if 3log, g <n < 4g —

5log, g but n # 2g then
n n ]
{rum™) = trU"dU +o 2)

USp(2g)

In the case of fixed ki,...,ky, a1,...,a, Bucur, David, Feigon and Lalin [1] studied the variation of
the trace of the Frobenius endomorphism in the cyclic trigonal ensemble. They showed that for g
fixed and g increasing, the limiting distribution of the trace of Frobenius equals the sum of q + 1
independent random variables taking the value 0 with probability 2/(q+2) and 1, e271/3, ¢47i/3 each
with probability q/(3(q + 2)). This extends the work of Kurlberg and Rudnick [6] who considered the
same limit for hyperelliptic curves.

In this paper (in continuation of Rudnick’s work [8]), we study the general case of average of
product of traces (]_[']-:] (tr ka)“f), where ki, ..., k, are of order of the genus g, and ay,...,a, are
fixed.

1.1. Result
First we state a result [3,2,4] which expresses the mean value of products of traces of high powers
when averaged over the unitary symplectic group USp(2g) in terms of independent standard normal

random variables.
Let Z; be independent standard normal random variables, and let

|1 ifkjiseven,
i =10 ifk;isodd.

If kj,a; €{1,2,...} for 1 < j <n are such that Z?zl ajkj <2g+1, k; distinct, then

n

[[(ru*)*du = E(n(\/’?jzj - nk,-)“f>
j=t

usp(2g) J=1

where E denotes the expectation. For the proof see [3,2,4].
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Since Z; are independent standard normal random variables, we have
n n 4 a; ) .
E(l_[( ijj—nkj)aj) HE (fZ]—n]<j HE(Z(;)( ijj)l(_nkj)aj—l>
j=1 j=1 =

(‘?)( k) E((Z)') (=)@~

j=1i=0
n L%J .
aj) if (20! aj-2i
=TT () (5o ) 2. (14)
| J

=120 2i 21(i)!
We will show
Theorem 1.1. Assume kj € {1,2,...} for 1 < j <n are such that Z] 1ajkj <2g — 1 for fixed integers a;.
Assume that kj are distinct and logq gL mm(k], ..., kn), then

n n Lz .
uki)* k af) @D a2 11, 15
(1ot =TT 3w (G ) o com s s

j=1i;=0
Comparing (1.4) and (1.5) we find

Corollary 1.2. If log, g < min(ki, ..., kn) and Y_}_ kja; < 2g — 1, then

<1_[trUkJ > / HtrUkl )¥ dU +o(1). (1.6)
j=1

Usp2g) 1=1

To prove these results, we cannot use the same methods that were used for the fixed genus case
by Katz and Sarnak [5]. Rather, we use a variant of the analytic methods similar to those used in [8].

1.2. Application: The n-level density
Denote by 61, ...,0y the sequence of angles of U a unitary matrix of size N x N. The traces of
powers determine the number of sets of angles 6;,,...,6;, lying in a subinterval of R/27Z, or the

n-level density. For the case of n =1 or the one-level density see [8]. To define the n-level density,
we start with an even test function f, in the Schwartz space S(R), and for any N > 1 set

- 6(% )

which has a period of 277 and is localized in an interval of size ~ 1/N in R/27Z. For a unitary N x N
matrix U with eigenvalues e?i, j=1,..., N, define

N
Zp(U) =Y F(O)),

j=1
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which counts the number of “low-lying” eigenphases 6; in the smooth interval of length ~ 1/N
around the origin defined by f. The product Z? counts the number of sets of angles 6;,,...,6;,
in the smooth interval of length ~ 1/N around the origin defined by f. In order to study the n-level
density, we need to compute the n-th moment of Zy.

Katz and Sarnak [5] conjectured that for fixed g, the expected value of Z; over Hag,1 will con-
verge to fUSp(Zg) Z¢(U)dU as g — oo for any such test function f. Rudnick [8] proved this conjecture

for a test function f such that the Fourier transform f“ supported in (—2, 2). Corollary 1.2 implies:

Corollary 1.3. If suppf - (’F], %) then the first m moments of Z¢(U) converge to the Gaussian moments
with mean

1
f) - / fdu
0

and variance

1/2

2 / lul f ()2 du.

-1/2

This is called “Mock Gaussian” behavior in [4].
To show Corollary 1.3, one uses a Fourier expansion to see that (for N =2g)

T 1
Zp(U) = / fodxt

Zf(%) tr Uk, (1.7)

k#0
and then by Corollary 1.2 and [4], the above follows.
2. Background on Dirichlet characters and L-functions

In this section we review some known background on quadratic L-function. See [7] for details.
2.1. The zeta function

For a nonzero polynomial f € Fy[x], we define the norm |f|:= qie¢f. A prime polynomial is a
monic irreducible polynomial. For a monic polynomial f, the von Mangoldt function A(f) is defined

to be zero unless f is a prime power in which case A(P¥) =degP.
The analog of Riemann’s zeta function is

G =[] 1-1P%)"" R <1 (21)

P prime

As a result of expanding in additive form using unique factorization, we have

1
Zq(s) = 1_dis (2.2)

qlfs'
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The following identity is equivalent to (2.2):

> A =4q" (23)
(}eg f;n

Let 7q(n) be the number of prime polynomials of degree n. The Prime Polynomial Theorem in
Fq[x] asserts that

7q(n) = ‘% +0(¢"?) (2.4)

which follows from (2.3).
2.2. Quadratic characters

Let P € Fg[x] (q odd) be a prime polynomial. The quadratic residue symbol (%) € {£1} is defined
for f coprime to P by

(i) = f(%) mod P.

For arbitrary monic Q € Fy[x] and for f coprime to Q, the Jacobi symbol (é) is defined by writing
Q =[] P; as a product of prime polynomials and setting

()-1()
Q P;
If f, Q are not coprime we set (é) =0.
The law of quadratic reciprocity asserts that for A, B € Fg[x] monic polynomials

B q-1 A
) = (=1 (*7-)degAdegB( % . 2.5
(£)=co : 25
For D € [Fg[x] a monic polynomial of positive degree which is not a perfect square, we define the
quadratic character xp by
D
x0=(7): 26)
f

2.3. L-functions

For the quadratic character xp, the corresponding L-function is defined by

_ 1
L xp)= ] (1-xoPuder)™, ul<

P prime

Expanding in additive form using unique factorization, we write

L, xp)= Y Ap(Bu”

20



E. Roditty-Gershon / Journal of Number Theory 132 (2012) 467-484 473

with

Ap(B):= D> xp(B).

deg B=p
B monic

If D is nonsquare of positive degree, then Ap(8) =0 for 8 > deg D and hence the L-function is in fact
a polynomial of degree at most degD — 1.

Now, assume that D is also square-free. Then L(u, xp) has a trivial zero at u =1 if and only if
deg D is even. Thus

—

, degD even,

_ A ¥ —
Lu, xp) = (1—u)"L*(u, Xp), )‘—[o, deg D odd

where £*(u, xp) is a polynomial of even degree

20 =degD —1—A

satisfying the functional equation

1
25w, xp) = (qud)’ [ —, xp ).
(u, xp) = (qu*) <qu XD)
We write
26
L¥u, xp) =) Ap (B,
B=0

where A} (0) =1, and the coefficients A}, (B) satisfy

b(B) =0" A 25— p). (27)
In particular, the leading coefficient is A}, (26) = q.
2.4. The explicit formula

For D monic, square-free, and of positive degree, the zeta function (1.2) of the hyperelliptic curve
2 .
y-=D(X) is

L*(u, Xp)

=G0 -

By the Riemann Hypothesis (proved by Weil [9]) all the zeros of Zp(u), hence of L£*(u, xp), lie on
the circle |u| = 1/q. Thus we may write

L*(u, xp) =det(I —u/qOp)

for a unitary 2g x 2g matrix @p.
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By taking a logarithmic derivative of the identity

det(I - uy/GOp) = (1 = [](1 = xp(Pu?) ™",
P
we find
Oh=—r+ A 28
—tr D_anquanXf: (Hxp(f). (2.8)
eg f=n

2.5. The Weil bound

Assume that B is monic of positive degree and not a perfect square. Then we have a bound for the
character sum over primes:

B deg B
2 (—)‘« 2. (2.9)
p n

deg P=n
P prime

This is deduced from the explicit formula (2.8) when writing B = DC? with D square-free of positive
degree, and from the unitarity of ©p.

3. The hyperelliptic ensemble H g1
3.1. Averaging over Hag1

We denote by H, the set of square-free monic polynomials of degree d in Fg[x]. By using (2.1)
and writing

#Hq s 509
2 g% _;'f' T 4g(29)

d>0

where the sum is over monic and square-free polynomials. We have

_la-1/9¢ d>2,
# =
T {q, d=1.

In particular, for g > 1,

#Hag1 = (q — Dg%s.

We consider Hg41 as a probability space with the uniform probability measure, so that the ex-
pected value of any function F on Hg41 is defined as

(F)i= ——— Z F(Q). (31)
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We can pick out square-free polynomials by using the Mobius function v of Fg[x]

Z (A = : 1, Q is square-free,

0, otherwise.
A21Q

Thus we may write the expected value as
(F(Q)= m Yo > > wAF(A%B) (3.2)
20+p=2g+1 deg B=p deg A=ar
the sum is over all monic A, B.
3.2. Averaging quadratic characters
For a given polynomial f e Fy[x] apply (3.2) to the quadratic character xq (f). Then

B\(A\’ _[(®), gcd(A, f)=1
= — - = f ’ ' ’
Xazg(f) (f) (f) { 0, otherwise.

Hence

1 B
(XQ(f)>=m Z Z U(A) Z (T) (3.3)

2a+p=2g+1 degA=a deg B=p
ged(A, f)=1
3.3. A sum of Mébius values
Define
o(fay:=Y  wA. (34)
deg A=«
ged(4, f)=1

Note that o (f,a) depends only on the degrees of the primes dividing f, hence we can write for

P1, ..., Pn distinct primes of degrees k1, ..., k, respectively: o(]‘[?=1 pi,a) =0k, ..., ky; o).
Lemma 3.1. Assume min(kq, ..., k) > 2, then
1, a=0,
oki,....kni0)=1—q, a=1,
0, 2 <a <min(ky,...,kp).

Proof. By definition

olki...kma)= Y uA).
deg A=
ged(A,pr---pn)=1

Now if deg A < min(kq,...,k,) then A is automatically coprime to p1,..., pn, hence in this case the
sum is over all A with degree «. Therefore
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oki,....ky; ) = Z W(A)

deg A=«
which vanishes if @ > 2, equals 1 forc =0 and —q forae =1. O

3.4. The probability that f { Q

Lemma 3.2. Let f = p1p2 - - - px With p1, ..., pn prime polynomials. Then

M 1
(xa(f ))—1+0(p2f:”7”)' (3.5)

Proof. We may write

1, ged(Q.p3---ph #1,

2”_ 2 =1-6 s S b s =
xa(pT - pp) (Q.,p1---p», 8(Q,p1---p) 0. ged(Q.p2-p)=1,

and hence

#{Q € Hog+1: 3pj| Q}

=1—
(xa (p?---p2)) g

Replacing the set of square-free Q by arbitrary monic Q of degree 2g + 1 gives

k g2et
#{Q € Hagy1: Apj| Q) <#{degQ =2g+1=:3p; | Q} < Z|
j=1

so that recalling #Hpg 11 = (q — 1)g%¢ we have

1 k

1
_<1_‘1/q>z|p]| <balpr-eon)) <t

Thus

2 2 1

(o (i) =1+0( 2= ).
iz pjl
as claimed. O
4. Multiple character sums
Define
SBikidkn)i= D Y YD ( ) (41)
degpi=ki degpy=k,  degpn=kn degB=p biba-

the sum over distinct primes pj, ..., p, and arbitrary monic B.
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Let F be a square-free polynomial and
[e.¢]
L xp) =Y ArBWP, ApB):= Y  xr(B).
B=0 deg B=p

By quadratic reciprocity (see (2.5))

SBiki... )= (D TAELP) S S S A ()

degpi=kq degpa=ka  degpn=kn

the sum over distinct primes p1,..., pn.
Since the L-function L£(u, xf) is a polynomial of degree deg F — 1, we have

Lemma4.1.If 8 > > ki then S(B; k1, ..., ky) =0.
5. Averaging []I_, (tr U¥i)%
5.1. Reducing to prime powers

By using the explicit formula (2.8), we can write

-1
wUf=— > A)xe ).

42 deg f=k

We separate out the contributions of primes P, squares of primes O, (appears only in case k is
even), and higher prime powers Hj, to tr U:

a . . .
(—oU") =Pt moe+H) = Y (za ; iB)(Pk)“(nmk)'Z(Hk)“

i1+izx+iz=a
where (il’i‘;ia) = —,.]”.‘;!”3!. Denote
ki
o@m k-)—ﬂ > ((p1)*--- (pm)?) (5.1)
)= T g Xa \(p1 Pm)7), .
q: degpi,..., degpm=g
Disees pm distinct
ki) = (kj)2m 2 2
A@m.kj) = = > xa (P (Pm)?). (52)
q degpq,....deg pm=k;j
P1,...,Pm distinct
(ki)™
P(m.kj) = = > X (P1-+pm). (5.3)

q 2 degpi.....deg pm=k;j
P1s...,Pm distinct

Hence the product 1_['}:1 (tr Uki)% gives various terms

L4 ra;y @ip! . i . .
(1) Squares: [T}_, Yo (;{j)(;ﬂj) (@j —2ip)!q )2 AQij, kj)DO(aj — 2ij, k).

(2) Distinct primes: [Tj_; P(aj, k;).
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(3) Mixed terms - distinct primes and squares and some high powers:

]_[] 1Zm+l;2—01 P(m, kj)A(ij, —m,kj)O(},,kj). We can examine a specific term such
as [1j—; P(m;, k,)A(lj1 —mj,kj)O(ij,, kj) since the mixed terms are a finite sum of this kind of
terms.
(4) Higher powers:
ki /d11 ki /dipy. iy, . . .
T, 7' Zdegp, —k )(Q(pl1 -p;, ') where there is 1 <i<n; 1< j<m; (at least one

index) such that d, > 3.

Our findings are, assuming Z’}:l ajkj <2g—1 and log; g < min(k1as, ..., knan):

|

=

14 i ) ‘
( ) L= (aj — 20 ) q) V20 A kp)O(a; —2ij,/<j)>
0

(@) @it e 1
])]<2ij)2ij(ij)!( Nk;)™ ’+O(qg>~

All the other terms contribute o(1) under these terms.

:l:

~.
Il

lij=

n M Nt

f1%

5.2. Squares

Consider the term

<a7.) CU (@) = 211092 A @15, k) O(a; — 21, K7) (54)

which equals to

H o2 (2i))!
Z Z ( ) J(a]—21])'(nk)al 2iA2ij,kjoGaj —2ij,kj).

i1=0 in=0 j=1

Hence it is enough to compute the expected value of the term [j_; A(2ij, kj)O(a; — 2i;,k;). This
contributes to the product ]_['}Zl(tr Ukiyaj

n 2ij ¢ =kiva;—2i; n
(k)7 (5547 2
1_[ kj l_[ pz,] (pZzJ] paj,j)

j=1 q2 deg pii;=k;, 1<I<i; <1=1

g

ki )
degpyi;=+.2i;<I<q;

the sum is over different primes. To average we use Lemma 3.2

a0 ).

PIf
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Hence the average of ]_['}:] AQ2ij, kjO(a; — 2ij, kj) is
n l . Zij __k] aj—zij . k_j
[ ) 75 )0 )
i qijaj ij aj— Zij qmin (ky,....kn)

The contribution of squares to the product ]_[’}:1 (tr Uk is

131 1% 2ij —kiya;—2i ) : ki
Z ZH‘(k]) SR ]( "f)aj_21j< ' )Ql]) (@; 21'1)!(”("(1))( i )
20 0=t q aj 2ij i —2ij

1
(1o (Gumm))

J
n 2 g )2‘1( "f)“f 2] 4i2i; (2ij)! wkp)\ (7%
211:[2:: )™ 21(21> ET (]_2])’< i'])(aj—ZZi)

g :

X (1 +0 <m)>

_ll[tazj M( )a,-fzu<a">(2"1)’ ”(kf)‘”(k))v

_j=1i,~=o q’%aj T 281/ 21 (i) (kj) _lf)!(”(f) —aj+20)!
X (1 + O<qmin(k]1 ..... kn))>

1 S (;;;)ﬁf)"(—nkj)“f—fo o), &3
j=1i;=0 ”

5.3. Primes

In this section we focus on the contribution of different primes: Notice that the case of different
primes is equivalent to the case of aj =1,1 < j <n and all the k;’s are different. Hence we consider
the case of ]_[?:l P, Assume (for the convenience of writing) ky = min(ky, ..., ky). We use (3.3) and
the explicit formula of (2.8) for the mean value of ]_[?:1 P

- (=D k)
<1_!Pk,»>=—n [Ti=: 3 ) Xooouny Y (1_[ ]P>
i= q i=

i=1 l+2g
(q — 1) degPi=k; 2a+p=2g+1 degA=a deg B=p
gcd(A, Py)=1

—DTT . k:
=§:)k(M 3 ok 0SQg+1—2a5ke, k). (56)
q~7 *2(q—1) 0<ass

If YF ki <2g, then for « =0 and for « = 1 we have, by Lemma 4.1, S2g + 1 — 2a; k1, ..., ky) = 0.
Now o (kq,...,ky; ) =0 for 2 <o <kqy by Lemma 3.1. Thus it suffices to take k1 <« and 2g+1 —
200 < X0 ki
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For this we use the Weil bound

n
i=

(2g+1-2a)" q2g+172a+71k"

SQg+1=2a;ki,... . ky) < 2 (5.7)
k]kz .. 'kn

to get

n n
ki
<||7>ki>:nq;';“) > ok, ... ki )SQg+1—2a: ki, ... kn)
q i=1"1

2o
i=1 2 T28(q—1) ki<e<g

< ((1;__?) > olki,.... ks )g Qg +1-2)". (5.8)

k-1
max(ky,g— Z’:lz —)<a<g

Notice that o (k1, ..., kn; @) < g%, hence the above term is bounded by

n+1
g+

m ki1 ’
max(lq,g—z':+<’)—l

q
provided (n +2)log, g < k1 this is o(1).
5.4. Mixed terms: Primes and squares

Define ]_['}:1 P(ij—2mj, kj)A(2mj, k;)0(aj —ij,k;) to be the contribution of primes, squares and
some higher powers, to ]_[;?:1 (trU%i)%. In this case ij —2m; #0 for at least one of the j’s, and for
Jj such that k; is odd we have ij = aj. For the convenience of writing we will bound the expected
value of the term P (i —2m, k) A(2m, k)O(a — i, k). The expected value of the product will be bounded
exactly in the same methods. We start by writing

1, ged(Q,p?---pP) #1,

xa (Pt~ pf) =1-8(Q.p1---p. 8(Q,p1---p,)={0 ecd(Q. p2 - pD) =1
’ » P ==

Define

wokp:= Y 8Q,p1---pp) (5.9)

degpq--deg pj=k
p1...p; distinct

the sum is over prime factors. This satisfies

2g+1
kj

(kya-i 2 oy BT Y ik
q(a—i)g Z XQ((pl) o (Pa—i) )_q(a—i)§ ((a—i) O <2>>,

degpi.....deg po_i=5
P1,--.,Da—i distinct

k2m lZm )/
A@m. k) =— > xa (D) (pm)*) = ﬁ <(”n(;)> — ol (k)).

degp1,....deg pm=Kk
P1,...,pm distinct

wly (kj) < mkp™T,

O(@—ik) =
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Hence

PG —2m,k)A(2m, k)yO(a — i, k)

B K2 /(7 (k) (%) () ai( K
=P(i —2m,k) mk(( m ) wQ(’))qa Dk ((a—i>_wQ <2>)

k2m (77 (k) /<m Mol pm+l
qu m qlk (5'10)

I=1

Gy 1 a1 i
e (a—i>_(a—i)!+o 2 ) (5.11)

=1

Notice that

By (5.10), (5.11) and the prime section we have

k2m wd) $ w k) km
<73(1—2m k) — ( o )q(ai)g (a—i)> m(?(l 2m, k))

km gi72m+1

< -
m!(a—1i)! qmax(k,g—(i—zm)g)

which is o(1) provided k > alog, g.
It is enough to compute the expected value of

k2m (lj)a—i [k
<P(z—2m k) — T 'g(k)q(zai)ga)‘a'(E».

By the Cauchy-Schwartz inequality

2m kya ) 21,m
<P(l—2m k) mka( )(2) w‘é“<§>>g((P(i—Zm,k))z)w. (5.12)

-0 qz
Next we show that ((P(i —2m, k))?) is polynomial in g. It follow that for log, g < k the above is o(1).

(PG —2m, 1)) = ((PT2™ — A@, k) (P —2m=2)?)

((PO@ =M — 282, k) (PP 42 + (A, k) (P2I=2m2)),

We use on this term the same methods as before to have

2 2 2
(P @=4m) — 2<(’;7 (7 (k) — wh (k))) (Pk)”*“m*2> + <<(§7 (7 (k) — wf (k))) (Pk)2<"*2m*2>)>

This comes down to bounding the general term ((P)2), since

2 2 2
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and for terms with a)}2 (k) we use the Cauchy-Schwartz inequality. For example

k? o g + Dk e Al
<_kle (I()(Pk)zl 4m 2> < #((Pk)‘y 8m 4)2 .
q q
Lemma 5.1. For 2g > k > 2llog, g

(Po¥)=0(g"). (513)

Proof. We will prove the lemma by induction.
For I =1 we have

((P)?)=(P2. k) + (AR, k).

By Section 5.3 (the prime section) we have (P(2,k)) =o0(1) For the second term we use (3.5)

2
(A, k)= k—ln(k)(l + o(%)) —k+ o(ﬁ}),
q« q~ qk

In conclusion, for 2g > k > 2log, g we have

(PO?) = 0(g).

Forl=2

(PO = (P@A b))+ (A, k) (Po)?).

By Section 5.3 (the prime section) we have (P(4,k)) = o(1). For the second term we use Cauchy-
Schwartz inequality

k2 k?
(A ) (P?) = <;—, (m (k) — ), (l<))(7>k>2> ~k((P)?) — <;—kw1q (k)(Pk>2>

k2g+1

2 2,3
<k((Po)?) + e ((Po?)?.

By the case of =1 we have

(P4,k))=0(g?).

For the case of general I:

(PO?) = (P@LK) +(AQ. k) (P)H2).

By Section 5.3 (the prime section) we have (P(2l,k)) =o(1). For the second term we use the same
method as before to get

(AQ. k) (PO 2) <K{(PO* %) + kee+D - Dip?-2).
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By the induction

<(Pk)21—2> -0 (gl—l)'

Hence, provided 2llog, g <k < 2g we have

(P0?)=0(g").
This concludes the lemma. O

Going back we get ((P(i — 2m, k))?) is polynomial in g. It follows that the contribution of mixed
terms of primes and squares to the expected value of the product of traces is o(1).

5.5. Higher powers

We now consider the contribution of higher powers to the product of traces. These arise from
terms with Hy; or from the remaining terms which were not considered before (notice that some of
the cases involving higher powers were considered in the previous section). These terms coincide up

kv
to division by factors such as qu(l_Lli) (d is some finite integer), with the contribution of one of the
previous types. Since the mean value of these previous terms is in all cases bounded by gZL1 4 after
the division we get a negligible term (provided log; g < min(ky, ..., kn)).

5.6. Conclusion of the proof

We saw that ( 7:1(tr Uki)%) is the sum of the expected values of the Frobenius class of hyperel-
liptic curves of genus g over the field Iy of various terms:

EPPANGIRY ) ) .
(1) Squares: ]_['}=l Zijzzo (ZJJ) (21{]_) (aj — 2i)!AQij, kj)O(aj — 2ij, kj).
(2) Distinct primes: []}_; P(aj, k;).
(3) Mixed terms - distinct primes and squares and some high powers:
i . .

[Tjzt X0, +iy=a; Cma P kD AG; = m kDO, k-
We saw that under the following condition: k; € {1,2,...} for 1 < j <n are such that Z'}:l ajkj <
2g — 1 for fixed integers aj, and log; g < min(k1, ..., kp), the expected value of all the above terms
is negligible — 0(1), except from the first term, the squares. This gives

n L4 aj\ (2i))!
<1—[ 3 (2i;j>2_i1j(aj —2i/)IAQ2i}. kj)O(a; —2ij,kj)>

j=1i;=0

1]

ifai\ (2i)! o 1
— ki) J i J — Mk, aj—2i O(—)
I 0(<])J<2ij)2'f(l'j)!( )"+ O e

Putting this together gives Theorem 1.1.
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