
Theoretical Computer Science 43 (1986) 345-350
North-Holland

345

N O T E

A SIMPLE P R O O F OF A TIME-SPACE TRADE-OFF FOR
S O R T I N G W I T H L I N E A R C O M P A R I S O N S *

Donald B. JOHNSON
Department of Mathematics and Computer Science, Dartmouth College, Hanover, NH 03755, U.S.A.

Communicated by R.M. Karp
Received December 1983
Revised December 1985

Abstract. It is shown how to extend the techniques originally used to prove a lower bound of
ft(n 2) for the product of the time and space consumed for sorting in branching programs with
elementary comparisons, to the case of linear branching programs where linear functions on n
input elements can be computed in unit time.

1. Introduction

The time complexity of sorting n keys x = (x l , . . . , x ,) is well known to be
O(n log n) in the decision tree model of computation where comparisons on keys
are restricted to linear combinations of the keys and each comparison is assumed
to be done at unit cost. While decision trees capture faithfully the time expended
by a variety of computations in which comparisons dominate other operations, they
do not reflect the space consumed by such computations. To capture a notion of
space consumption, an extension of the decision tree model called branching pro-
grams was introduced in [2]. Using this model, the authors of [2] showed that the
time-space product for sorting in branching programs that allow only elementary
comparisons satisfies f~(n 2). Yao [3] has extended this result to branching programs
where comparisons on linear combinations of the keys are allowed. Borodin and
Cook [1] have extended these results to an even more general model, obtaining a
bound of TS=f~(n2/log n). In the present note we shall give a simplification of
Yao's proof.

Yao's proof rests on two results. First, it is shown how to replace any linear
branching program with a MIN branching program with the same time and capaeity.
A MIN branching program is one in which each non-leaf node v tests a subset Xv
of the set of input values X, and branches according to the index of the smallest

* This research was partially supported by the National Science Foundation under Grant MCS-
8002684.

0304-3975/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

346 D.RJohnson

value in Xo. The second is a result on slanted partial orders which is used to prove
the following theorem.

Theorem ([3]). The relation TS = ~ (n 2) holds for any MIN branching program of

capacity S that sorts an input x with n elements in no more than T comparisons.

We show how to extend the proof in [2] to obtain the theorem directly without
using Yao's result on slanted partial orders.

2. Branching-programs

An elementary branching program (on n inputs) C tn~ is a directed graph with a
distinguished initial vertex of indegree zero. A vertex with outdegree zero is a leaf.
At each non-leaf vertex there is a comparison of the form xi : xj where x is a vector
(x~ , . . . , xn) of input values. Each non-leaf vertex has three outgoing edges corre-
sponding to the outcomes on xi : x i o f " < " , " = " , and " > " . An elementary branching
program takes any input x for which these outcomes are defined. Edges also specify
zero or more outputs. The computations of an elementary branching program are
analogous to those of computation trees. For any input, computation begins at the
initial vertex and traverses some path to a leaf. The output of the program is the
sequence, in path order, of outputs associated with the edges of the computation
path traversed. We require that the program always reach a leaf in a finite number
of steps. Therefore, we may define the time T(C (~)) as the maximum over all inputs
of the length of a computation path in C (~). Length is measured as the number of
edges traversed. The capacity S (C (~)) is defined as log2(lC(n)l), where [C('° I is the
number of vertices in C (~). Pippenger has observed (see [2]) that for any branching
program there is an acyclic branching program which makes the same tests and
performs the same computation in the same time bound T and has capacity no
more than twice that of the given program. Therefore, for the purpose of lower
bounds on the functional growth of the time-space product, we may assume that
elementary branching programs are acyclic. This observation extends as well to
MIN branching programs and linear branching programs, which we shall define now.

A linear branching program is defined similarly to an elementary branching
program, except that it employs comparisons of the form l (x) :0 where l (x)=

q_ n
c F ~ 1 aix~ for real valued x, c, and {ai}. Each elementary branching program is
isomorphic to a linear branching program for which, in any linear comparison
l(x) : 0, c = 0 and a~ = 0 for all i except for distinct il and /2 for which a~, = 1 and
a~=-1 . A M I N branching program is also defined similarly to an elementary
branching program, except that each aon-leaf vertex v identifies MIN(Xo) for some
X,, _c X = {x~, x 2 , . . . , x,,} and chooses its output edge according to index i of some
x~ = MIN(X,,). Elementary and MIN branching programs are conservative in the
sense that the only operations allowed on elements of x are comparisons. A tree
program is a branching program in which no vertex has indegree greater than one.

A simple proofofa time-space trade-off 347

3. A lower bound on the depth of correct k-ranking programs

Let wx denote a sorting permutation for x, that is, for all i and j, 1 ~< i, j<~ n,
~r,(i)<~ ~r,(j) implies xi<~xj. Let M be a MIN branching program with output
(ij, : rj,,/~: r j~, . . . , ijm : rj~,) on an allowed input x (an input in which all elements are
distinct). We call M a k-big ranking program if the following conditions are met:

(i) the output is correct (wx(ii,) = rj,, for l = 1 , . . . , m), though it may not show
the ranks of all n elements, and

(ii) at least k of the larger half of the input elements are ranked correctly (there
exists a set I _c { 1 , . . . , n} for which II] >t k, Try(i) t> [½n] for i ~ I, and for each h ~ I,

there is at least one index l, 1 ~< l ~ < m, for which h = it,).
In [3] the quantity [½n] is parameterized as no, but this generalization is unnecessary
for the result. Any program that sorts must be a [½nJ-big ranking program, that is,
it has to get at least the [½nJ largest elements correct.

It follows from the input conditions that all outcomes implied by MIN(Xv) will
be strict, that is, in {<, >}. Let the outcome i > j define a directed edge from a point
labeled i to a point labeled j. Then the MIN's performed on any path 0 taken in
M by some allowed input define a directed acyclic graph Ha over the indices
{ i~ , . . . , i n } = { 1 , . . . , n} of the input x. We call the graph induced by these MIN
operations a Hasse diagram over { i l , . . . , i,}.

Vertex I dominates vertex m in H if there is a nontrivial directed path (l , . . . , m)
in H. A permutation ~ r (i l , . . . , i,) is consistent with a Hasse diagram H if ~r(l) >
It(m) whenever l dominates m.

Given a Hasse diagram H and a set of vertices { i~ , . . . , ik}, we denote the set
of permutations ~r of x, consistent with H and in which ~r(it) = rt for l = 1 , . . . , k,
as P (H ; i ~ : r l , . . . , ik:rk). We also define D(H, i) to be the set of vertices that
contains i and also all vertices that i dominates in H. Notice that ih ~ D(H, i) implies
i ~ D (H , ih) if i~ ih . As shown in [2], [P(H; i : r) [<~[P(H- i) [, where H - i is H
from which i is removed and to which edge (h, l) is added whenever both edges
(h, i) and (i, l) are present in H.

Lemma 3.1. For any H, and for all r and i satifying'[½n] <<-r < . n and I t(i)= r for
some ~r consistent with H,

[½n IIP(H ;i: r)l <-ID(H, i)IIP(H)I.

Proof. The quantity r I P (H - i) l is the number of permutations ,r, consistent with
the class of allowed inputs and with H - i and in which ~r(i) <~ r. To show that the
expression ID(H, i)IIP(H)I is an upper bound for nIP(H - i)l, it will suffice to show
how to assign each of these permutations ~ to a unique pair (i,., ~-~) where i,.
D(H, i) and ~rz ~ P (H) . As shown in [2], given m let the path from i to i,, in H be
i=io, i ~ , . . . , ira. ThUS, there is a unique sequence of elements ,,~ =
(~r(i) = ~'(io) > 1r(il) >" • • > 7r(i,.)) and a ~r' defined by ? for which the permutation
~r'(~') = ~r~. The permutation ~-' is the identity on every element not in the sequence

348 D.B. Johnson

2. Otherwise, ~r'(Tr(/o)) = 7r(im), and, f o r j = 1 , . . . , m, "n"('n'(ij)) = Ir(/j_,). The result
follows since [½n] ~< r. []

Lemma 3.2. For any set { i , , . . . , ik} of vertices and for { r l , . . . , rk} satisfying [½hi ~<
m i n { r l , . . . , rk} <~ n,

[½nl! Ie (H; i , : r , i~:rk)l<~(~ ID(,i)I)IP(ml. (r½,,l-k)' ' " " • h = I

Proof. When k = 1 the lemma reduces to Lemma 3.1. Therefore, we proceed by
induction, essentially as in [2]. For k > 1,

r½nl~ IP(H;i,:r,,...,i~'rk)l
([½nl-k)!

(l-}n/2"l- 1)!]P(H;i , :r ,)c~P(H;i2"r: , , ik:rk)l = r 'n l - • •

([½.1-1)~ [P(H--i,;i2:r2,...,ik'rk)l ~< r½nl (([½n]- 1) - (k - 1))t

(A ,) ~< r½nl ID(H--i~,ih)]P(H-i~)}

<~ [½n]lP(H-i,) l ID(H, i~)1

[]

The proof of the theorem uses the above result by first showing that any M I N
branching program needs time to output some small number, k, of ranks that are
no smaller than [½n] or equivalently, as is expressed in the following lemma, that
there is an upper bound on the number of permutations that any M I N branching
program can k-big rank correctly when there is some bound t on the time allowed
for the computation. This result does not depend on capacity. Therefore, we state
it in terms of a computation tree and use the fact that a computation tree partitions
input permutations among its leaves•

Lemma 3.3. Let P(~) be the set of permutations of x for which a M I N tree program
7 computes a k-big ranking o f x correctly on allowed input x. Then for [½n] >1 k,

p(~ .) l< ([½n] - k)!
[Xn] ! n ! (t + l) k

where t is the length of the longest path in ~.

A simple proof of a 6me-space trade-off 349

• oof. The computat ion of z remains unchanged if all edges unreachable over any
put are pruned. Assume such a pruning. Let ~b ~ ~- be a (reachable) leaf of ~', and

its Hasse diagram. Let a set of k-big elements ranked correctly by ~" at leaf ~b
: indexed from the set {i~,~, . . . , i~.k}. Thus,

< y. IP(H,;i,.,:r,.,,..., i,,k:r,,k)l,

td, applying Lemma 3.2, the observation that each execution of MIN can increase
e size of a set D(H,¢,, iS.h) by at most one, and the fact that the leaves of ~- partition

e n! permutations of x, we have

ID(H*'

k)!)
I nl! it+ 1)klp(n,)l

<_([½.l-k)' f½.1! "(t+1) k Ie(,)l

(rl,,1--k)!
n ! (t + 1) k . []

The lower bound for M I N branching programs

We now prove the theorem using essentially the strategy employed in [1, 2].

"oof of the Theorem. Let M be a M I N branching program that sorts x, given

lowed input x, and let M have capacity S = S(M) and time T = T(M).
We first observe that T i> n - 1 by the fact that a MIN branching program can

entify at any single vertex at most one new xi for which the relation xi < xj holds
r some xj. It follows that S > log2 n, for n sufficiently large. We may assume also
at S < ¼n, for, otherwise, the result follows without further argument.

Since M is acyclic, we may decompose it into L= [4T/([I] - S - 1) 1 levels, each
• depth ti for I([In] - S - 1) < ti ~< ¼([½n] - S - 1) for i = 0, . . . , L - 1. (Observe that
n] - S - 1 > 0.) Let t = maxi{ti}. A vertex v belongs to level i if the longest path
it from the initial vertex is of length Iv for

i--1 i

~, tj<lv<~ Y, tj.
j=O j--O

~t V~ be the set of vertices in level /, and let V = m v~. We observe that Iv I ~ 2 s.
~r v e V, let My be the subgraph of M rooted in v and restricted to edges incident
3m vertices in V~. For each i = 0 , . . . , L - 1 and for each v e V~, let Tv be the
~-mentary tree program that is the union of the paths in My.

350 D.B. Johnson

By Lemma 3.3, at most

iP~l<~n, (f i n] - S)! (t + 1) s
" I I . 1 !

input permutations or: ~ produce in T~ as many as S of the elements no smaller
than [In] in ~x, provided [in]/> S. This same bound must hold for M,, since it
does not depend on the capacity of T~ but only on ti, n, and [in 1. Let P~ be the
number of input permutations for which edges incident from vertices in level i
output as many as S of the elements no smaller than [in] in 1rx, and let there be
fli2 s vertices in level i. Thus, summing the preceding inequality over all v in V~, we
have

iP, l<~ f l ,2Sn, (f-~,, 1 - s)v. (t + 1) s
" f ' , , l !

_ film! (2(t+ 1)) s
r i , l - . . (r i , , l - S - 1)

<3 in ! ((2 (t+ l) ~s
rlnl-S)]

#,n ! (2 (r 'n I - s - I) / 4~ ~
t ' s

< #in ! (i) s.
It follows that

L-- I

Y Ie, l< nt,
i = 0

indicating that at least one input permutation ~.~1 produces fewer than S new
elements of ~'x no smaller than [In] in each level. Since M must produce n - r½n] =
[InJ elements of 7rx no smaller than [½n] over all levels, L > linJ/S, and therefore,

[4T] [½n]

(r½,. ,1-s-1 >-7'
4 TS> (rOn I - s - 1) tinJ,
T (M) S (M) = D,(n2).

This result holds for all n, since when n is not large enough for our arguments
above, ~ (n 2) follows trivially, []

References

[1] A. Borodin and S. Cook, A time-space tradeoff for sorting on a general sequential model of
computation, Proc 12th Ann. A C M Syrup. on Theory of Computing, Los Angeles, 1980, 294-301.

[2] A. Borodin, MJ. Fischer, D.G. Kirkpatdck, N.A. Lynch and M. Tompa, A time-space tradeoff for
sorting on non-oblivious machines, Proc 20th Ann. IEEE Syrup. on the Foundations of Computer
Science, San Juan, Puerto Rico, 1979, 319-327.

[3] A.C.-C. Yao, On the time-space tradeoff for ~orting with linear queries, Theoret. Comput. $c~ 19(2)
(1982) 203-218.

