
Theoretical Computer Science 43 (1986) 345-350 
North-Holland 

345 

N O T E  

A SIMPLE P R O O F  OF A TIME-SPACE TRADE-OFF FOR  
S O R T I N G  W I T H  L I N E A R  C O M P A R I S O N S  * 

Donald B. JOHNSON 
Department of Mathematics and Computer Science, Dartmouth College, Hanover, NH 03755, U.S.A. 

Communicated by R.M. Karp 
Received December 1983 
Revised December 1985 

Abstract. It is shown how to extend the techniques originally used to prove a lower bound of 
ft(n 2) for the product of the time and space consumed for sorting in branching programs with 
elementary comparisons, to the case of linear branching programs where linear functions on n 
input elements can be computed in unit time. 

1. Introduction 

The time complexity of sorting n keys x = ( x l , . . . , x , )  is well known to be 
O(n log n) in the decision tree model of computation where comparisons on keys 
are restricted to linear combinations of the keys and each comparison is assumed 
to be done at unit cost. While decision trees capture faithfully the time expended 
by a variety of computations in which comparisons dominate other operations, they 
do not reflect the space consumed by such computations. To capture a notion of 
space consumption, an extension of the decision tree model called branching pro- 
grams was introduced in [2]. Using this model, the authors of [2] showed that the 
time-space product for sorting in branching programs that allow only elementary 
comparisons satisfies f~(n 2). Yao [3] has extended this result to branching programs 
where comparisons on linear combinations of the keys are allowed. Borodin and 
Cook [1] have extended these results to an even more general model, obtaining a 
bound of TS=f~(n2/log n). In the present note we shall give a simplification of 
Yao's proof. 

Yao's proof rests on two results. First, it is shown how to replace any linear 
branching program with a MIN branching program with the same time and capaeity. 
A MIN branching program is one in which each non-leaf node v tests a subset Xv 
of the set of  input values X, and branches according to the index of the smallest 

* This research was partially supported by the National Science Foundation under Grant MCS- 
8002684. 

0304-3975/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland) 



346 D.RJohnson 

value in Xo. The second is a result on slanted partial orders which is used to prove 
the following theorem. 

Theorem ([3]). The relation TS = ~ ( n  2) holds for any MIN branching program of 

capacity S that sorts an input x with n elements in no more than T comparisons. 

We show how to extend the proof in [2] to obtain the theorem directly without 
using Yao's result on slanted partial orders. 

2. Branching-programs 

An elementary branching program (on n inputs) C tn~ is a directed graph with a 
distinguished initial vertex of indegree zero. A vertex with outdegree zero is a leaf. 
At each non-leaf vertex there is a comparison of the form xi : xj where x is a vector 
(x~ , . . . ,  xn) of input values. Each non-leaf vertex has three outgoing edges corre- 
sponding to the outcomes on xi : x i o f " < " ,  " = " ,  and " > " .  An elementary branching 
program takes any input x for which these outcomes are defined. Edges also specify 
zero or more outputs. The computations of an elementary branching program are 
analogous to those of computation trees. For any input, computation begins at the 
initial vertex and traverses some path to a leaf. The output of the program is the 
sequence, in path order, of outputs associated with the edges of the computation 
path traversed. We require that the program always reach a leaf in a finite number 
of steps. Therefore, we may define the time T(C (~)) as the maximum over all inputs 
of the length of a computation path in C (~). Length is measured as the number of 
edges traversed. The capacity S (C  (~)) is defined as log2(lC(n)l), where [C('° I is the 
number of vertices in C (~). Pippenger has observed (see [2]) that for any branching 
program there is an acyclic branching program which makes the same tests and 
performs the same computation in the same time bound T and has capacity no 
more than twice that of the given program. Therefore, for the purpose of lower 
bounds on the functional growth of the time-space product, we may assume that 
elementary branching programs are acyclic. This observation extends as well to 
MIN branching programs and linear branching programs, which we shall define now. 

A linear branching program is defined similarly to an elementary branching 
program, except that it employs comparisons of the form l (x) :0  where l (x)= 

q_ n 
c F ~  1 aix~ for real valued x, c, and {ai}. Each elementary branching program is 
isomorphic to a linear branching program for which, in any linear comparison 
l(x) : 0, c = 0 and a~ = 0 for all i except for distinct il and /2 for which a~, = 1 and 
a~=-1 .  A M I N  branching program is also defined similarly to an elementary 
branching program, except that each aon-leaf vertex v identifies MIN(Xo) for some 
X,, _c X = {x~, x 2 , . . . ,  x,,} and chooses its output edge according to index i of some 
x~ = MIN(X,,). Elementary and MIN branching programs are conservative in the 
sense that the only operations allowed on elements of x are comparisons. A tree 
program is a branching program in which no vertex has indegree greater than one. 
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3. A lower bound on the depth of correct k-ranking programs 

Let wx denote a sorting permutation for x, that is, for all i and j, 1 ~< i, j<~ n, 
~r,(i)<~ ~r,(j) implies xi<~xj. Let M be a MIN branching program with output 
(ij, : rj,,/~: r j~, . . . ,  ijm : rj~,) on an allowed input x (an input in which all elements are 
distinct). We call M a k-big ranking program if the following conditions are met: 

(i) the output is correct (wx(ii,) = rj,, for l = 1 , . . . ,  m), though it may not show 
the ranks of all n elements, and 

(ii) at least k of  the larger half of  the input elements are ranked correctly (there 
exists a set I _c { 1 , . . . ,  n} for which II] >t k, Try(i) t> [½n] for i ~ I, and for each h ~ I, 

there is at least one index l, 1 ~< l ~  < m, for which h = it,). 
In [3] the quantity [½n ] is parameterized as no, but this generalization is unnecessary 
for the result. Any program that sorts must be a [½nJ-big ranking program, that is, 
it has to get at least the [½nJ largest elements correct. 

It follows from the input conditions that all outcomes implied by MIN(Xv) will 
be strict, that is, in {<, >}. Let the outcome i > j  define a directed edge from a point 
labeled i to a point labeled j. Then the MIN's  performed on any path 0 taken in 
M by some allowed input define a directed acyclic graph Ha over the indices 
{ i~ , . . . ,  i n } = { 1 , . . . ,  n} of  the input x. We call the graph induced by these MIN 
operations a Hasse diagram over { i l , . . . ,  i,}. 

Vertex I dominates vertex m in H if there is a nontrivial directed path ( l , . . . ,  m) 
in H. A permutation ~ r ( i l , . . . ,  i,) is consistent with a Hasse diagram H if ~r(l) > 
It(m) whenever l dominates m. 

Given a Hasse diagram H and a set of vertices { i~ , . . . ,  ik}, we denote the set 
of permutations ~r of x, consistent with H and in which ~r(it) = rt for l = 1 , . . . ,  k, 
as P ( H ; i ~ : r l , . . . ,  ik:rk). We also define D(H,  i) to be the set of vertices that 
contains i and also all vertices that i dominates in H. Notice that ih ~ D(H,  i) implies 
i ~ D ( H ,  ih) if i~ ih .  As shown in [2], [P(H; i : r ) [<~[P(H- i ) [ ,  where H - i  is H 
from which i is removed and to which edge (h, l) is added whenever both edges 
(h, i) and (i, l) are present in H. 

Lemma 3.1. For any H, and for all r and i satifying'[½n ] <<-r < . n and I t( i )= r for  
some ~r consistent with H, 

[½n IIP(H ;i: r)l <-ID(H, i)IIP(H)I. 

Proof. The quantity r I P ( H - i ) l  is the number of permutations ,r, consistent with 
the class of allowed inputs and with H -  i and in which ~r(i) <~ r. To show that the 
expression ID(H, i)IIP(H)I is an upper bound for nIP(H - i)l, it will suffice to show 
how to assign each of these permutations ~ to a unique pair (i,., ~-~) where i,. 
D(H,  i) and ~rz ~ P ( H ) .  As shown in [2], given m let the path from i to i,, in H be 
i=io, i ~ , . . . ,  ira. ThUS, there is a unique sequence of elements ,,~ = 
(~r(i) = ~'(io) > 1r(il) >"  • • > 7r(i,.)) and a ~r' defined by ? for which the permutation 
~r'(~') = ~r~. The permutation ~-' is the identity on every element not in the sequence 
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2. Otherwise, ~r'(Tr(/o)) = 7r(im), and, f o r j  = 1 , . . . ,  m, "n"('n'(ij)) = Ir(/j_,). The result 
follows since [½n ] ~< r. [] 

Lemma 3.2. For any set { i , , . . . ,  ik} of  vertices and for { r l , . . . ,  rk} satisfying [½hi ~< 
m i n { r l , . . . ,  rk} <~ n, 

[½nl! Ie (H; i , : r ,  i~:rk)l<~(~ ID( ,i )I)IP(ml. (r½,,l-k)' ' " "  • h = I  

Proof. When k = 1 the lemma reduces to Lemma 3.1. Therefore, we proceed by 
induction, essentially as in [2]. For k > 1, 

r½nl~ IP(H;i,:r,,...,i~'rk)l 
([½nl-k)! 

(l-}n/2"l- 1)! ]P(H;i , :r , )c~P(H;i2"r: ,  , ik:rk)l = r 'n l  - • •  

([½.1-1)~ [P(H--i,;i2:r2,...,ik'rk)l ~< r½nl (([½n]- 1 ) - (k -  1))t 

(A ,) ~< r½nl ID(H--i~,ih) ]P(H-i~)} 

<~ [½n]lP(H-i,) l  ID(H, i~)1 

[]  

The proof  of  the theorem uses the above result by first showing that any M I N  
branching program needs time to output  some small number,  k, of  ranks that  are 
no smaller than [½n ] or equivalently, as is expressed in the following lemma, that  
there is an upper  bound on the number  of  permutations that any M I N  branching 
program can k-big rank correctly when there is some bound t on the time allowed 
for the computation. This result does not depend on capacity. Therefore, we state 
it in terms of  a computation tree and use the fact that a computation tree partitions 
input permutations among its leaves• 

Lemma 3.3. Let P(~) be the set of  permutations of x for which a M I N  tree program 
7 computes a k-big ranking o f x  correctly on allowed input x. Then for [½n ] >1 k, 

p(~ . ) l<  ([½n] - k)! 
[Xn] ! n ! ( t + l )  k 

where t is the length of  the longest path in ~. 
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• oof. The computat ion of  z remains unchanged if  all edges unreachable over any 
put are pruned. Assume such a pruning. Let ~b ~ ~- be a (reachable) leaf of ~', and 

its Hasse diagram. Let a set of  k-big elements ranked correctly by ~" at leaf ~b 
: indexed from the set {i~,~, . . . ,  i~.k}. Thus, 

< y. IP(H,;i,.,:r,.,,..., i,,k:r,,k)l, 

td, applying Lemma 3.2, the observation that  each execution of  MIN can increase 
e size of a set D(H,¢,, iS.h) by at most one, and the fact that the leaves of ~- partition 

e n! permutations of  x, we have 

ID(H*' 

k)! ) 
I nl! it+ 1)klp(n,)l 

<_([½.l-k)' f½.1! "(t+1) k Ie( ,)l 

(rl,,1--k)! 
n ! ( t +  1) k . [] 

The lower bound for M I N  branching programs 

We now prove the theorem using essentially the strategy employed in [1, 2]. 

"oof of  the Theorem. Let M be a M I N  branching program that sorts x, given 

lowed input x, and let M have capacity S = S(M) and time T = T(M). 
We first observe that  T i> n -  1 by the fact that a MIN branching program can 

entify at any single vertex at most one new xi for which the relation xi < xj holds 
r some xj. It follows that  S > log2 n, for n sufficiently large. We may assume also 
at S < ¼n, for, otherwise, the result follows without further argument. 

Since M is acyclic, we may decompose it into L= [4T/(  [ I ] - S - 1 ) 1  levels, each 
• depth ti for I( [In ] - S - 1) < ti ~< ¼( [½n ] - S - 1) for i = 0, . . . ,  L - 1. (Observe that  
n ] - S -  1 > 0.) Let t = maxi{ti}. A vertex v belongs to level i if  the longest path 
it from the initial vertex is of length Iv for 

i--1 i 

~, tj<lv<~ Y, tj. 
j=O j--O 

~t V~ be the set of  vertices in level /, and  let V = m v~. We observe that Iv  I ~ 2 s. 
~r v e V, let My be the subgraph of  M rooted in v and restricted to edges incident 
3m vertices in V~. For each i = 0 , . . . ,  L - 1  and for each v e V~, let Tv be the 
~-mentary tree program that is the union  of  the paths in My. 
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By Lemma 3.3, at most 

iP~l<~n, ( f i n ] -  S)!  ( t +  1) s 
" I I . 1 !  

input permutations or: ~ produce in T~ as many as S of the elements no smaller 
than [In ] in ~x, provided [in ]/> S. This same bound must hold for M,, since it 
does not depend on the capacity of T~ but only on ti, n, and [in 1. Let P~ be the 
number of input permutations for which edges incident from vertices in level i 
output as many as S of the elements no smaller than [in ] in 1rx, and let there be 
fli2 s vertices in level i. Thus, summing the preceding inequality over all v in V~, we 
have 

iP, l<~ f l ,2Sn, (f-~,, 1 - s)v. ( t +  1) s 
" f ' , , l !  

_ film! (2( t+  1)) s 
r i ,  l - . .  ( r i , , l - S - 1 )  

<3 in ! ( (2 ( t+ l  ) ~s 
rlnl-S)] 

#,n ! (2 (  r 'n I - s -  I ) / 4~  ~ 
t ' s 

< #in ! (i) s. 
It follows that 

L-- I  

Y Ie, l<  nt, 
i = 0  

indicating that at least one input permutation ~.~1 produces fewer than S new 
elements of ~'x no smaller than [In ] in each level. Since M must produce n - r½n ] = 
[InJ elements of 7rx no smaller than [½n ] over all levels, L >  linJ/S, and therefore, 

[ 4T ] [½n] 

(r½,. ,1-s-1 >-7' 
4 TS>  (rOn I - s -  1) tinJ, 
T ( M ) S ( M )  = D,(n2). 

This result holds for all n, since when n is not large enough for our arguments 
above, ~ ( n  2) follows trivially, [] 
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