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Abstract—We present a new numerical method based on discrete mollification for identification
of parameters in one-dimensional inverse heat conduction problems (IHCP). With the approximate
noisy data functions (initial temperature on the boundary ¢ =0, 0 < x < 1, temperature and space
derivative of temperature on the boundary z = 0, 0 < t < 1) measured at a discrete set of points,
the diffusivity coefficient, the heat flux, and the temperature functions are approximately recovered
in the unit square of the (z,t) plane. In contrast to other related results, the method does not regquire
any information on the amount and/or characteristics of the noise in the data and the mollification
parameters are chosen automatically. Another important feature of the algorithm is that it allows for
the recovery of much more general diffusivity parameters, including discontinuous coefficients. Error
bounds and numerical examples are provided.

Keywords—Ill-posed problems, IHCP, Discrete mollification, Automatic filtering.

1. INTRODUCTION

The identification of parameters in one-dimensional inverse heat conduction problems (IHCP) has
received considerable attention from many researchers using a variety of different methods. A
brief list of investigators who studied the estimation of spatially dependent thermal transmissivity
includes Ciampi et al. [1], Kravaris and Seinfeld [2], Liu and Chen [3], and Huang and Ozigik [4].
See Chapter 6 in [5] for more details and further references.

The use of space marching schemes along with certain regularization procedures has proven to
be an effective way for solving these problems. A finite difference space marching scheme with
hyperbolic regularization, which requires exact initial data, was introduced by Ewing and Lin
in [6]. By combining the mollification method and hyperbolic regularization, Mej{a and Murio 7]
modified the scheme in [6] allowing for the presence of noise in both initial and boundary data.

In this paper, we present a numerical space marching scheme based on discrete mollification
and automatic iterative filtering by the method of Generalized Cross Validation (GCV) for the
identification of parameters in one-dimensional THCP. In contrast to other related results, the
method does not reguire any information on the amount and/or characteristics of the noise in
the data and the mollification parameters are chosen automatically. Another important feature
of the algorithm is that it allows for the recovery of much more general diffusivity parameters,
including discontinuous coefficients.

*Partially supported by a URC Fellowship.
T Partially supported by a C. Taft Fellowship and Colciencias Grant No. 1118-05-111-94.
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2 S. ZHAN AND D. A. MurIO

The paper is organized as follows. The results of mollification and discrete mollification are
presented in Section 2. The space marching scheme and the error analysis are considered in
Section 3. Section 4 includes details on the implementation of the algorithm and numerical
results.

2. MOLLIFICATION

The 6-mollification is based on convolution with the kernel

t2
A6*mw(——),IHSp&

Ps.p(t) = { P &
0, It > pé,

where p > 0,6 > 0, and 4, = (J?_ exp(—s?) ds)~. For simplicity, in the future, we denote ps,p(t)

by ps(t).
Let I =[0,1)], Is = [p6,1 — pb], K = {t1,t2,...,ta} (0<t1 <t2 < -+ < tp_1 <tp < 1), and

At = max; |tj+1 — t;j|. If f is integrable on I, we define its 6-mollification by the convolution

1
Jsf(t) = /0 ps(t — s)f(s)ds, for t € Is.

Let G = {g;}}-, be a discrete function defined on K. We define the discrete §-mollification of G

as follows: for t € I,
n 3].
gs(t) =) (/ ps(t — s) ds) i
8j-1

=1

where 89 =0, s, =1, and 55 = (1/2)(¢; +tj41) 1 £j<n~1).

From now on, C will represent a generic constant independent of the mollification parameter 8,
and the grid size At. The following theorems were established in [8]. A complete description of
the mollification method and several of its applications can be found in [5).

THEOREM 2.1. Consistency of §-mollification.
1. If f is uniformly Lipschitz on I, then there is a constant C such that

IJ6f = flloo,rs < C6.
2. If f is uniformly Lipschitz on I, then there exists a constant C such that
1(Js£Y = F'll .z, < C8.

3. If f! is uniformly Lipschitz on I and f€¢ is an integrable function on I, satisfying sup; |f —
¢l € &, then there exists a constant C such that

17655 = £lloore <€ (5+5)-

Notice that if € is known, then an “optimal” selection of § is provided by § = O(,/€).

THEOREM 2.2. If G = {g(t;)}}=, and G°* = {gj}]., is a perturbed version of g satisfying
|G — G¥||oo,k < €, then the following holds.

1. If g is integrable, then there exists a constant C such that
lg5 — Js9lloo,1, < C (e + AD),

where g5 is the discrete 6-mollification of G*.
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2. If ¢’ is uniformly Lipschitz on I, then there exists a constant C such that

d d At
=gl <o (0454 5)

3. If g is uniformly Lipschitz on I, then there exists a constant C such that

At
< c(f + —).
o 5778

Assuming, from now on, that |t;;; —t;] = At forall j = 1,2,...,n—1, the following proposition
holds.

THEOREM 2.3.
1. If G = {g;}}-, is a discrete function defined on K, then

” 95— J69

|1 D8 (G o kT S ”uGuooK,

where I5 = [p6 + At,1 — ps — At], D§(G) = Do(9s)| xnz;» and Do(gs) is the centered
difference approximation of the mollified derivative £ gs.

2. If g is uniformly Lipschitz on I, G = {g(tj)};‘=1 and G* = {gj};;l are discrete functions
satisfying |G — G®||os k < €, then there exist a constant C and a constant Cjs, depending
on 6, such that

£

d At
Do (¢5) — <c (- ) T Cs(AD2.
00, KNIg 6 6

o —Jsg

Moreover, if ¢’ is uniformly Lipschitz on I, then we have

d At
Do (95) - o ” <C (6+ Sy 5 ) + Cs(At)2.
o0 KﬂIa

3. THE IDENTIFICATION PROBLEM

3.1. Description of the Problem

Find a(z) in I and u, u; throughout the domain [0, 1] x [0, 1] of the (z,t) plane, from measured
approximations of a(t), 8(t), v, and 7(z) (or n(x)) satisfying

= (a(z)ug), + f, 0<t<l,0<z<l,
u(0,t) = a(t), 0<t<1,
u,(0,1) = B(t), 0<t<1,

a{0) =
u(z,0) =71(z), (or ug(z,0) =n(z)), 0<z<1.

Notice that a(t), 8(t), v, and 7(z) (or n(x)) are not known exactly. The available data a®, 3¢, 4¢,
and 7¢(or 7°) are measured approximations of a(t), A(t), v, and 7(z) (or n(z)), respectively, and
they satisfy the estimates || — 0f|lco,s < &, 1B = B%lco,r <&, |7 —7¢| <&, and |7 = 7%||0o1 < €
(or ln — n|loo,r < €).

We further assume that a(z) > £ > 0, |uz(z,0)] > ¢ > 0 for z € [0,1], where £ and ¢ are
constants.
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3.2. Regularized Problem

First, we stabilize our problem using the mollification method. The stabilized problem is:
find v,v,, and a(z) satisfying

v = (a(z)vg)z + [, O0<t<l, 0<z<1,
v(0,t) = Jsa(t), 0<t<1,
vz(0,t) = Jo- B(t), 0<t<1,
a(0) =1,

v(z,0) = Jg7(z), (or vz(z,0) = Jorn()), 0<z<l1,

where all §-mollifications are taken with respect to t except Js7(z) (or Jsn(x)) in which the
é-mollification is taken with respect to z. '

Let h = Az = 1/M and k = At = 1/N be the parameters of the finite difference discretization.
We denote by QF, R}, WF, U, U/, Aj;, and P} the discrete approximations of the mollified
heat Aux a(jh)v;(jh,nk), the mollified space derivative of temperature v;(jh,nk), the mollified
time derivative of temperature v;(jh, nk), the derivative of the initial temperature v,(jh,0), the
second derivative of the initial temperature v;;(jh,0), the coefficient a(jh) and the derivative of
the coefficient a’(jh), respectively, obtained by the numerical method. We also denote f(jh, nk)
by F}.

3.3. The Algorithm
INPUT. Parameter p and grid sizes h and k.

Step 1.
1. Select &, 89, and 63. Extend of, 5%, and 7¢(or 7°) and compute G, ,ng, and
75, (or n5,) in the interval [0,1]. Set Rf = (6%)n, QF = 'ye(ﬂgg)n, and Ag = 7°.
2. Perform mollified differentiation in time of o , perform mollified differentiation
in space of 75, (or ng,) to get the approximation of v;(z,0) (or vzs(x,0)). (If
the initial condition is u{z,0) = 7(z), we then select 65 and perform mollified
differentiation in space of Dy(73,) to get the approximation of vz;(z,0).)
1. Set W' = (Do(c§, ))n- The mollified derivative is approximated by centered
differences.
2. Set U}, Uy to be the discrete approximations of v;(z,0) and vz(z,0) given
by Do(75,) and Dgé‘( Do(75,)) (or m5, and Do(nj,)), respectively.
3. Set Py = [W§ — AoUY — F3)/U{. '
Note: when using centered differences to approximate derivatives, we apply
linear extrapolation to get the endpoint values.
Step 2. Initialize § = 0. Do while j < M.
1. Q71 =QF + (W] — FT).
WP, = WP+ hDg (R).
. R?+1 = Q?+1/A?+1-
P = [WJQ+1 - Aj+1Uff|-1 - F}Q+1]/UJ/'+1
Select 651", perform mollified differentiation in time of +1, use extrapolation
to get the endpoint values.
7.j=7+1
Step 3. Use quadrature formulae to approximate

=K NN SN

v(jh,0) from U}, i=0,...,M,
v(jh,nk) from W}, j=1,...,M,n=1,...,N,1=0,...,n—1.
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3.4. Analysis

In what follows, we denote |Y;| = max,|Y]*| . We also rewrite Step 2 in the algorithm as
follows:

B[S — 4,07 — K9

Ajy1=4;+ 7 , (3.1)
J
Qfy1=Qf +h (W} —F}), (32)
n n 1 6] n 3 :
Wia =W} +hrDPQS,  if5>0, (3.3)
Wi =Wy + kDS g (3.4)

Notice that A;, QF, and W are the quantities that we need to compute.

According to the considerations in Section 3.1, the corresponding assumptions for our nu-
merical data are 4; > £ > 0, IU;| > ¢ >0forall 5 =0,1,..., M, for some constants &;
and Cl'

THEOREM 3.1. (Stability of the algorithm.) There exist two constants C, Cy such that
C
max{Ane,[Qu Wi} < (oxp (£ ) ) (max{Ao, ol Wl + Go),

where 8 = min; &,
PROOF. Let C) = 1/¢; , C2 = max;{|U}|}, and C3 = maxo,1)x[o,1) | f(z,?)]. From the algorithm,
we readily see that
Aj+1 < Aj + hCl (|WJO‘ + CzAj + 03) s
|QF 1| < Q7|+ R (IW;| + Cs),
1 &
Wiy | < |Wp| +h— || D22 1041
j

Thus,
max {A;+1,|Qj+1l, |Wjip1]} < (1 + hM;s) max {4;,]Q;|, |W;|} + hCy,
where Ms = max{1,C; + C1C3,2A,/(6261)} and C] = max{Cs3,C;Cs}.
The iteration of the last inequality leads to

Cy
max { A, |Quml, (Wi} < (1 + hMgs)Y (maX{Ao, |Qol, IWol} + 2 ,;) ,
which implies

masx (Anr,Qur Wi} < (exp Ms) (s o, [Qol IWol} + - ).

To prove convergence, we set §, 6*, and &’ in the regularized problem to be 41, 63, and 83, which
we use in the scheme, respectively. First, we use Taylor series to obtain some useful equations
satisfied by the mollified solution v. They are as follows:

Ut(jh’o) - a(jh)'vzz(jhy 0) - f(Jh’ 0)

a((j +1)h) =a(jh) + h + 0 (h?), (3.5)

vz (5k,0)
q ((J + 1)h’nk) = Q(Jh’nk) + h(vt(jha nk) - f(Jh’nk)) + 0 (h‘z) ) (36)
v ((7 + 1)h,nk) = v (jh,nk) + ha—(-;%s%q(jh’nk) + 0 (h?), 3.7

where q(z,t) = a(z)v(z,t).
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We now define the discrete error functions

AAJ' = Aj - a(]h),
AQ7 = QF —q(jh, nk),
AW?P = WP — v;(jh, nk).

Here we only present the proof for the case when the initial condition is given by u;(z,0) = n(z)
(z € [0,1]). Let 6min = min;>o 63. By comparing (3.1) and (3.5), we have

AAj1 = AAj + h®y — h®, — f(jh,0)hP3 + O (hz) , (3.8)
where
&, = WP _ w(ih,0)

U ug(jk,0)°
5, = A;Uf  a(jh)ves(jR,0)
Uj vz (5h,0)
1 1

Ul v:(jh,0)

&3 =

Notice that

, 1
®, = v, (5h,0)D3 + -IFAWJO,
J
a

. . Uy jih .
@3 = a(jh)vss (i1, 0)@s + T A4; + A ) UV = vag(j,0)) .
2 3

U
Applying Theorems 2.2 and 2.3 to U], we have
IU; — vz (jh, 0)' < C(€ + h)7
|U = vz (3R, 0)] < g(e + h) + Csh?.
3

Hence (3.8) implies
Ch 9
|AA 1] € |AA;| + AC (JAW;] + |A4,)) + —5:(6 +h) +0 (h?). (3.9)

By subtracting (3.6) from (3.2), we obtain

AQT,, = AQT +hAW! + O (h?). (3.10)
This implies '
|AQj+1] < 1AQ;] + HIAW;[ + O (R?). (3.11)
Finally, (3.3) and (3.7) give
AW], = AW + h(T; + ¥3) + O (%), (3.12)

where
_ 1 6 n ,
¥, = Aj (DO Qj —qt (Jhank))’

_ _@(jhynk) .,
2= el A
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Figure 1. Example 1. Exact (—) and com-
puted (o) coefficient with ¢ = 0.01 and

Figure 2. Example 1. Exact (—) and com-
puted (o) heat flux at ¢ = 1 with ¢ = 0.01

Ax = At = 128.

and Az = At = 128.

Heat Flux

1.60

L l L l T ]7 T
040  0.60

Time
Figure 3. Example 1. Exact (—) and com-
puted (o) heat flux at z = 1 with ¢ = 0.01
and Az = At = 128.

1

0.00 0.20 0.80 1.00

By Theorem 2.3, neglecting the effect of the 6% mollification on the already mollified solution g,
we have

o
|1 < 5 (|AQ;| + At) + Cs(AL)2.
2
Consequently, (3.12) implies
h
|AW; 14| < |AW;| + %-—IAQJ-] + Ch|AA;| + CshAt + O (h?) . (3.13)
2

Set A; = max{|AA;|, [AQ;|,[AW;[}. By (3.9), (3.11), and (3.13), we have
Ch

6min

Ajir < (1+ )Aj+C'h(€+h>+C§hAt+O(h2),

b3

where min = min; 6.
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Figure 4. Example 2. Exact (—) and com-  Figure 5. Example 2. Exact (—) and com-
puted (o) heat flux at 2 = 1 with € = 0.01  puted (o) coefficient with ¢ = 0.01 and
and Az = At = 128. Az = At = 128.

2.80 —

Heat Flux

0.00 | T ’— T j L [ T ]’ 1——|
0.00 0.20 0.40 0.60 0.80 1.00
X-values

Figure 6. Example 2. Exact (—) and com-
puted (o) heat flux at t = 1 with ¢ = 0.01
and Az = At = 128.

Therefore,

Ap < exp (60

min

)(AO+C(s+h+At)).

Since Ag < (C/61)(e+ At) by Theorem 2.2, we have proved the following convergence theorem.

THEOREM 3.2. If the initial condition is given by uz(z,0) = n(z) (0 < z < 1), then max{|A A,
|AQn|, |[AWpt|} converges to zero as At, h, and € tend to zero.

If the inijtial condition is u(z,0) = 7(z), then the leading term for the error IIUJf’ —Ugg (7R, 0)loos
according to Theorem 2.2, is given by C((/83 + h/83)/83) = C(e + h)/6365. In practice, this
error might be more difficult to control.
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Figure 7. Example 3. Exact (—) and com-  Figure 8. Example 3. Exact (—) and com-
puted (o) coefficient with ¢ = 0.01 and puted (o) heat flux at t = 1 with ¢ = 0.01
Az = At = 128. and Az = At = 128.

Heat Flux

W T T T T T T
000 020 040 060 080  1.00
Time
Figure 9. Example 3. Exact (—) and com-
puted (o) heat flux at z = 1 with ¢ = 0.01
and Az = At = 128.

4. IMPLEMENTATION

4.1. Extension of Data

Computation of Js(g) and gs throughout I = [0, 1], requires the extension of g to a slightly
bigger interval I§j = [—p6,1 + p6]. We seek constant extensions g* of g to the intervals [—pé, 0]
and [1,1 + pé], satisfying the conditions

lJs (g%) ~ gIILz[O,pG] is minimum

N5 (9%) — g"L2[1~—p6,1] is minimum.
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Figure 10. Example 4. Exact (—) and com-  Figure 11. Example 4. Exact (—) and
puted (o) heat flux at = = 1 with e = 0.01  computed (o) coefficient with € = 0.01 and

and Az = At = 128. Ar = At = 128.
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Figure 12. Example 4. Exact (—) and com-
puted (o) heat flux at ¢ = 1 with ¢ = 0.01
and Az = At = 128.

The unique solution to this optimization problem at the boundary £ = 1 is given by

*

s [9®) = i ps(t = 9)a(s) ds] [Ji*7° ps(t — ) ds] dt

P
f11—p.s [ 1 ¥ ps(t — s) ds] dt

A similar result holds at the end point ¢ = 0. A proof of these statements can be found in [7].

For each 6 > 0, the extended function is defined on the interval If and the corresponding
mollified function is computed on I = [0,1]. All the conclusions of the previous sections still hold
in the subinterval I;.
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Table 1. Example 1. Errors of the recovered parameter a(z) and the recovered heat
flux quz at z =1 and t = 1.

a(z) Heat Flux | Heat Flux
h €
r=1 t=1
0.00 0.018 0.026 0.022
-614- 0.01 0.038 0.027 0.125
0.02 0.051 0.022 0.106
0.00 0.009 0.013 0.010
—L 0.01 0.041 0.019 0.108
128
0.02 0.044 0.015 0.094
0.00 0.005 0.006 0.005
—1— 0.01 0.037 0.019 0.121
256
0.02 0.034 0.019 0.112

Table 2. Example 2. Errors of the recovered parameter a(z) and the recovered heat
flux auz at z=1land t = 1.

a(zx) Heat Flux | Heat Flux
h €
r=1 t=1
0.00 0.088 0.011 0.081
1
—_ 0.01 0.11 .0 .1
o1 4 0.015 0.143
0.02 0.119 0.013 0.117
0.00 0.044 0.005 0.041
1
—_— 0.01 0.07 .014 .
128 0 077 0.01 0.118
0.02 0.076 0.013 0.113
0.00 0.022 0.002 0.021
1
— 0.01 0.052 0.016 .115
256 0
0.02 0.047 0.015 0.107

4.2. Selection of the Radius of Mollification

Using matrix notation, the computation of the discrete mollified data vector g = [(g§)1,
.-,(g§)n]T from the noisy data vector G¢ = [g5,...,g5) T can be viewed as follows.

Given 6 and At, the data extension discussed in the previous section requires the addition of
r = INT (p/At) constant values, say {u;}_;, ps = pand {&}_,, & =6,i=1,2,...,7, to G¢
to obtain

T
Gth = [/J'—T, Bert1y. .oy =2, l-l'—lvgi’g;) tee ’92—1’92;61’627 v 1§r—1,§r] .
Now define the n x (n + 2r) circulant matrix As where the first row is given by

f-’j pﬁ(—s)ds’ .7 = 1v2a---yn1

851

0, i=n+1,...,n4+2r

(Ash; = {

Then
A5G€ext = gg'
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Table 3. Example 3. Errors of the recovered parameter a(z) and the recovered heat
flux auz at =1 and t = 1.

a(x) Heat Flux | Heat Flux
h €
r=1 t=1
0.00 0.001 0.005 0.006
6—14- 0.01 0.043 0.018 0.094
0.02 0.038 0.018 0.081
0.00 0.001 0.002 0.003
1
— 0.01 0.040 . .
128 0 0.020 0.097
0.02 0.044 0.018 0.091
0.00 0.000 0.001 0.001
—1— 0.01 0.039 0.020 0.099
256
0.02 0.034 0.018 0.084

Table 4. Example 4. Errors of the recovered parameter a(x) and the recovered heat
flux ausz at the boundaries z =1and t =1.

a(z) Heat Flux | Heat Flux
h 5
r=1 t=1
0.00 0.027 0.015 0.022
6_14 0.01 0.025 0.014 0.015
0.02 0.026 0.015 0.022
0.00 0.020 0.008 0.011
L 0.01 0.020 0.007 0.005
128
0.02 0.025 0.006 0.004
0.00 0.015 0.004 0.006
1
—_— 0.01 0.018 0.003 0.002
256
0.02 0.020 0.003 0.002

We observe that the mollified data vector requires the computation of n inner products. Since
the noise in the data is not known, an appropriate mollification parameter, introducing the
correct degree of smoothing, should be selected. Such a parameter is determined by the Principle
of Generalized Cross Validation as the value of § that minimizes the functional

(Gox) " (IT — A]) (I — 4s) Gy
Trace [(IT — Af) (I - Ag)]

where the n x (n + 2r) matrix I has entries

{1, i=3 1=12,...n,
I; = )
0, otherwise.

The desired §-minimizer is obtained by a Golden Section Search Procedure. We observe that
for fixed At, the data extension procedure dynamically updates the §-depending dimensions of
all the vectors involved and also that the denominator of the GCV functional can be evaluated
explicitly for each § > 0. Basic references on the subject are [9,10].
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Figure 14. Example 2. Errors of reconstructed temperature in [0, 1] x [0,1].

4.3. Numerical Examples

The algorithm of the previous section has been thoroughly tested. In this section, we present
numerical results from four examples. In all cases, the discretization parameters are as follows:
the number of space divisions is M and Az = h = 1/M; the number of time divisions is N
and At = k = 1/N; the maximum level of noise in the data function is ¢; and we set p = 3.
The value 3 is appropriate because the difference between p; for p = 3 and ps for p > 3 is not
significant.

The use of average perturbation values ¢ is only necessary for the purpose of preparing the
simulations. The filtering procedure introduced in Sections 4.1 and 4.2 automatically adapts the
regularization parameters to the quality of the data.

Discretized measured approximations of the initial and boundary data are modeled by adding
random errors to the exact data functions. Specifically, for a boundary data function g(t), its
discrete noisy version is

gr. = g(tn) +€n, n=0,1,...,N,

where the (£5)’s are Gaussian random variables with variance % =€
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Figure 16. Example 4. Errors of reconstructed temperature in [0, 1] x [0, 1].

The errors of the recovered coefficients and the recovered heat flux at x = 1 and ¢
measured by weighted {%-norms defined as follows.

Error in coefficient: 12

1 & 2
37 2 laGh) = A"
J=0

Error in heat flux at = = 1:

L 1/2
¥ > la()u.(1,nk) — Q7| .
n=0

Error in heat flux at ¢t = 1:
, M 1/2
37 2 lalh)uaih ) - QY|
=0
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All the tables were prepared with At = & = 1/128. No significant changes occur if we consider
values of the time discretization parameter in the (tested) interval {1/32,1/256].

EXAMPLE 1. This example is designed to stress the behavior of the method when attempting to
reconstruct a smooth parameter with strong concavity. We consider the following problem.
Find a(z), u(z,t), usy(x,t) satisfying

u = (a(z)ug), — (4(z — 0.5) + 8(z — 0.5) + 2) =7,

u(0,t) = e7*,
uz(0,t) = e™¢,
a(0) = 2,

Uy (z,0) = €”.

The exact solution for a(z) is
a(z) =1+ 4(z - 0.5)%

Figures 1-3 and 13 give a clear qualitative indication of the approximate solutions obtained by
this method. Further verifications of stability and accuracy are provided by the data in Table 1.

EXAMPLE 2. If a(z) is smooth but changes concavity frequently, the results obtained by the
scheme are very competitive. To illustrate this, we use the algorithm to solve the following
problem.

Find a(z), u(z,t), uz(z,t) satisfying

ug = ((1.5 + sin 20z )uz ), — (2.5 + 20 cos 20z + sin 20z) e*~*,

u(0,t) = e~*,
uz(0,t) = e7?,
a(0) = 1.5,

uz(z,0) = €.

The exact solution for a(z) is
a(z) = 1.5 + sin 20z.

The results are plotted in Figures 4-6 and 14, which show the excellent agreement between the
computed and the exact solutions. Table 2 further illustrates the stability properties and the
practical accuracy of the method.

ExAMPLE 3. This example shows the numerical results obtained when attempting to reconstruct
a nonsmooth coefficient associated with the following problem.
Find a(z), u(z,t), uz(z,t) satisfying

u = (a(2)uz), + f(z,t),

u(0,t) = e™?,
uz(0,t) = e7?,
a(0) =1,
ug(z,0) = €%,
where
—2e%7¢, 0 <1 <0.25,

—(5+4z)e*t, 0.25 <z < 0.5,
(-2 +2z)e*"%, 0.5<z<0.75,
—2.5e%t, 0.75<z < 1.

f(z,t) =
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The exact solution for the parameter a(z) is

1, 0<z<0.25,
4z, 0.25 <z < 0.5,
3-2z, 0.5<z<0.75,
1.5, 0.75<z <1

a{z) =

Figures 7-9, 15, and Table 3 illustrate the stability and accuracy of the method in this case.

EXAMPLE 4. In practice, it is possible to encounter composite materials and a(z) is usually
discontinuous in this case. Assuming that there is no contact resistance at the interface location
zo (i.e., at xo, we have g(zo — 0,t) = g(zo + 0,¢) for all ¢ and u(zo — 0) = u{zo + 0)), consider
the following identification problem.

Find a(z), u(z,t), uz(z,t) satisfying

u = (a(z)uz), + f(z,1),

u(0,t) = e~ 2%,
ug(0,t) = 4™,
a(0) =1,
4et(==08) 0 <z < 0.5,
Ua(®,0) = { 3¢3-05) 05<z<1,

z_lf(r)%_ u(z,t) = z_l}(r)¥15+ u(z, t),

z_lg%_ a(z)ug(z,t) = mllgg+ a(z)ug(z,t),

where

fat { — (3222 + 16z + 17) €409t 0 <z < 0.5,
z,t) =
) (1822 — 6z — 20.5) 3=-08)-t 05 <z <1.

The exact solution for a(z) is

1+ 222, 0<z <05,
a(z) = 9
2-2(xr—-05)2 05<z<l.

The numerical results obtained by the scheme are plotted in Figures 10-12, 16, and also described
in Table 4.
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