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Abstract--We present a new numerical method based on discrete mollification for identification 
of parameters in one-dimensional inverse heat conduction problems (IHCP). With the approximate 
noisy data functions (initial temperature on the boundary t = 0, 0 < x < 1, temperature and space 
derivative of temperature on the boundary x --= 0, 0 < t < 1) measured at a discrete set of points, 
the diffusivity coefficient, the heat flux, and the temperature functions are approximately recovered 
in the unit square of the (x, t) plane. In contrast to other related results, the method does not require 
any information on the amount and/or characteristics of the noise in the data and the mollification 
parameters are chosen automatically. Another important feature of the algorithm is that it allows for 
the recovery of much more general diffusivity parameters, including discontinuous coefficients. Error 
bounds and numerical examples are provided. 

g e y w o r d s - - I l l - p o s e d  problems, IHCP, Discrete mollification, Automatic filtering. 

1. I N T R O D U C T I O N  

The identification of parameters in one-dimensional inverse heat conduction problems (IHCP) has 
received considerable attention from many researchers using a variety of different methods. A 
brief list of investigators who studied the estimation of spatially dependent thermal transmissivity 
includes Ciampi et al. [1], Kravaris and Seinfeld [2], Liu and Chen [3], and Huang and (~ziqik [4]. 
See Chapter 6 in [5] for more details and further references. 

The use of space marching schemes along with certain regularization procedures has proven to 
be an effective way for solving these problems. A finite difference space marching scheme with 
hyperbolic regularization, which requires exact initial data, was introduced by Ewing and Lin 
in [6]. By combining the mollification method and hyperbolic regularization, Mejia and Murio [7] 
modified the scheme in [6] allowing for the presence of noise in both initial and boundary data. 

In this paper, we present a numerical space marching scheme based on discrete mollification 
and automatic iterative filtering by the method of Generalized Cross Validation (GCV) for the 
identification of parameters in one-dimensional IHCP. In contrast to other related results, the 
method does not require any information on the amount and/or characteristics of the noise in 
the data and the mollification parameters are chosen automatically. Another important feature 
of the algorithm is that it allows for the recovery of much more general diffusivity parameters, 
including discontinuous coefficients. 

*Partially supported by a URC Fellowship. 
?Partially supported by a C. Taft Fellowship and Colciencias Grant No. 1118-05-111-94. 
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2 S. ZHAN AND D. A. Mumo 

The paper is organized as follows. The results of mollification and discrete mollification are 

presented in Section 2. The space marching scheme and the error analysis are considered in 

Section 3. Section 4 includes details on the implementation of the algorithm and numerical 

results. 

2. MOLLIFICATION 

The 6-mollification is based on convolution with the kernel 

p&p(t) = Ap5 - l  exp - ~  , Itl < pS, 

0, Itl > p6, 

where p > 0, 6 > 0, and Ap = (f_Pp e x p ( - s  2) ds) -1. For simplicity, in the future, we denote p&p(t) 

by p6(t). 
Let I = [0, 1], I6 = [pS, 1 -pSI ,  K = { t l , t 2 , . . . , t n }  (0 _< t 1 ( t2 < . . .  < tn-1 < tn ~ 1), and 

At = maxj [tj+l - tj[. If f is integrable on I ,  we define its 6-mollification by the convolution 

& . f ( t )  = p6( t  - s ) $ ( s )  ds ,  for t e h .  

n Let G = {gj}j=l be a discrete function defined on K.  We define the discrete 6-mollification of G 
as follows: for t E I6, 

) ge( t )  = pe ( t  - s)  ds  g j ,  
f f=l  --1 

where So = 0, Sn = 1, and sj = (1/2)(tj  + t j+l)  (1 < j < n - 1). 
From now on, C will represent a generic constant independent of the mollification parameter 6, 

and the grid size At. The following theorems were established in [8]. A complete description of 
the mollification method and several of its applications can be found in [5]. 

THEOREM 2.1. Consistency of 6-mollification. 

1. I f  f is uniformly Lipschitz on I, then there is a constant C such that 

I[&f  - fl[oo,,, < C& 

2. I f  f '  is tmiformly Lipschitz on I, then there exists a constant C such that 

I I ( J , f ) ' -  -< c 6  

3. I f  f r  is uniformly Lipschitz on I and f~ is an integrable function on I, satisfying supz If - 
re[ < e, then there exists a constant C such that 

' '  ' (6+~)  II(J,S ) - s IIo ,,, -< c 

Notice that ire is known, then an "optimal" selection of 6 is provided by 6 = O( vfE). 

T H E O R E M  2.2. I f  G = {g(tj)}~= 1 and G" = {g~]'jn__ 1 is a perturbed version of g satisfying 
fIG - Gel[oo,K _< e, then the following holds. 

1. I f  g is integrable, then there exists a constant C such that 

IIg$ - &glloo,z, -< C (~ + At) ,  

where g~ is the discrete 6-mollification of G ~. 
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2. Hg'  is uniformly Lipschitz on I, then there ex/sts a constant C such that  

I d e d g o o , i ~ ( e  ) "~ g6 - < C 5 + ~ A- ~ --~t . 

3. I f  g is uniformly Lipschitz on I, then there exists a constant C such that 

~ g ~ - d j s g  ~,I~ < _ C ( ~ + ~ ) .  

Assuming, from now on, that  Itj+l - t j l  = At for all j = 1, 2 , . . . ,  n - 1 ,  the following proposition 
holds. 

THEOREM 2 .3 .  

1. I f  G = {gJ}j~=l is a discrete function defined on K, then 

lidos(a) -< Ilalt , , 

where ~ = [p5 + At, 1 - p5 - At], D~o(G) = D0(ge)lKng, and Do(ge) is the centered 
difference approximation of the mollified derivative d gs. 

n 2. If g is uniformly Lipschitz on I, G = {g(tj)}~=~ and G ~ = {g~}j=~ are discrete functions 
satisfying I]G - Gelloo,K < e, then there exist a constant C and a constant C6, depending 
on 5, such that 

d 
Do(g~)--~J~g oo,Kn < ~ C ( ~ + ~ ) + C ~ ( A t ) 2 .  

Moreover, if g' is uniformly Lipschitz on I, then we have 

Do (g~) - d g  I < C (5 + e + ~ - )  + C~(At) 2. 

3. T H E  I D E N T I F I C A T I O N  P R O B L E M  

3.1. D e s c r i p t i o n  of  t h e  P r o b l e m  

Find a(x) in I and u, ux throughout the domain [0, 1] x [0, 1] of the (x, t) plane, from measured 
approximations of ~(t), f~(t), % and T(X) (or ~(x)) satisfying 

ut = (a(z)ux)x + f, 0 < t < 1, 0 < x < 1, 

u(O, t) = ~(t), o < t < 1, 

u x ( o , t )  = e ( t ) ,  o < t < 1, 

a(0) = 
u(x,O) = T(X), (or ux(x,O) ---- n(x)),  0 < x < 1. 

Notice that  a(t) ,  f~(t), % and T(X) (or ~(x)) are not known exactly. The available data  a ~, iV, ~/~, 
and Te(or ~e) are measured approximations of a(t), ~(t), % and T(X) (or ~(x)), respectively, and 
they satisfy the estimates Ila - oteHoo,I  --_ e ,  ]]~ - f~el]o¢,I < e ,  h '  - "/el -< s ,  and I1~- - q 'e l loo , i  < $ 

(or lln - nel]oo,I <_ e) .  
We further assume that  a(x) > ~ > O, luz(x,O)l > ~ > 0 for x E [0,1], where ~ and ~ are 

constants. 
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3.2. Regula r ized  P r o b l e m  

First, we stabilize our problem using the mollification method. The stabilized problem is: 
find v, vz, and a(x) satisfying 

vt = (a(z)v~)~ + L o < t < 1, o < z < z, 

v(O, t) = J6~(t) ,  o < t < l ,  

vz(O,t) = J6*~(t), 0 < t < 1, 

a(o) = % 

v(x,O) = J6,r(x), (or vz(x,O) = J6,~/(x)), 0 < x < 1, 

where all 6-mollifications are taken with respect to t except Jvr (x)  (or J6,~(x)) in which the 
6-mollification is taken with respect to x. 

Let h = Ax = 1/M and k = At  = 1IN be the parameters of the finite difference discretization. 
We denote by Q~, R~, W~, Uj, UJ', Aj, and P~ the discrete approximations of the mollified 
heat flux a(jh)vx(jh, nk), the mollified space derivative of temperature vz(jh, nk), the mollified 
time derivative of temperature vt (jh, nk), the derivative of the initial temperature vz(jh, 0), the 
second derivative of the initial temperature vxz(jh, 0), the coefficient a(jh) and the derivative of 
the coefficient a'(jh), respectively, obtained by the numerical method. We also denote f ( jh ,  nk) 
byF?. 

3.3. The  Algor i thm 

INPUT. Parameter p and grid sizes h and k. 

Step 1. 
1. Select 6z, 6 °, and 63. Extend a e, f~¢, and re(or ~f) and compute a ¢ f~,% and 

6z ' 6 2 ' 

v~3 (or r/~s) in the interval [0, 11. Set R~ = (fie)n, Q~ = 7¢(fl~o)n, and A0 = 7 ¢. 
2. Perform mollified differentiation in time of a~z, perform mollified differentiation 

in space of ~-~(or 7/~s) to get the approximation of vx(x,O) (or v~z(x,O)). (If 
the initial condition is u(x, O) = r(x), we then select 6~ and perform mollified 
differentiation in space of D0(r~s ) to get the approximation of vzz(x, 0).) 
1. Set W~' = (Do(a~l))n. The mollified derivative is approximated by centered 

differences. 
2. Set U~, U~' to be the discrete approximations of v~(x, 0) and vzz(x, 0) given 

by D0(r~3 ) and D06~(D0(~-~3)) (or ~/~ and D0(~/~3)), respectively. 
3. Set P0 = [W ° - AoUD ~ - F°]/UD • 
Note: when using centered differences to approximate derivatives, we apply 
linear extrapolation to get the endpoint values. 

Step 2. Initialize j = 0. Do while j < M. 
1. Q~+I = Q~ + h(W? - -  Fin). 
2. Aj+I = Aj + hPj. 

6~ n 3. W."~+, = W? + hD o (R;). 
4. R~+ 1 = Q~+I/A~+I. 
5. P~+z --[Wj°+I -- A j + I U ; + I -  Fo+I]/U$+z. 
6. Select 6~ +z, perform mollified differentiation in time of R~+ a, use extrapolation 

to get the endpoint values. 
7. j = j + l .  

Step 3. Use quadrature formulae to approximate 

v(jh, 0) from U~, j = 0 , . . . ,  M, 

v(jh, nk) from W/, j = 1 , . . . ,M ,  n = 1 . . . . .  N, l = 0 , . . . , n -  1. 
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3.4. Analysis 

In what follows, we denote ]Yjl = maxn [Yjn I . We also rewrite Step 2 in the algorithm as 
follows: 

h [ W O - A  U " 
J ~ - Y°]  (3.1) Aj+I = Aj + U~ ' 

Qs"+~ = Q~ + h (w? - F?) , (3.2) 

Wj~+I = W~ + ~ 1--- r~6~t3~, i f j  > 0, (3.3) 
'~As ~'o ~¢3 ' 

W~ = W$ + hD~o°/3 ~. (3.4) 

Notice that  A s, Q~, and Wj n are the quantities that  we need to compute. 
According to the considerations in Section 3.1, the corresponding a s s u m p t i o n s  for  o u r  nu- 

m e r i c a l  d a t a  are Aj >__ ~1 > 0, [U~] > ~1 > 0 for all j -- 0 , 1 , . . . , M ,  for some constants ~1 
and ¢1. 

THEOREM 3.1. (Stability of the algorithm.) There exist two constants C, Co such that 

max{AM, IQMI, IWMI} <-- exp ~2 (max{A0, IQ01, IW01} + Co), 

where 62 = min x 6~. 

PROOF. Let C1 = l/if1 , C2 = maxj{lU~'l}, and C3 = maxi0,a]×i0,a ] ]f(x,t)l. From the algorithm, 
we readily see that  

As+, <_ As + hCl (Iw°l + C=Aj + C3) , 

IQ~+a J -< IQ~I + h(IWJl + C3), 
1 

Iw?÷~l <_ Iw?l + h ~  D~o ~ IQjl. 

Thus, 
max {Aj+I, IQj+I], IWj+ll} < (1 + hM~)max {As, IQjl, IW~I} + hC~, 

where M6 = max{l,  Cx + CIC2, 2Ap/(62~1)} and C~ = max{C3, C1C3}. 
The iteration of the last inequality leads to 

IQM[, IWMI} < (1 + hMs) M (max  {mo, IQol, IWol} + maX{AM, 
- M ~ ] '  

which implies 

( max{AM, IQMI, IWMI} <-- (expM~) max{A0, IQ01, IW01} + M6] " 

To prove convergence, we set 6, 6", and 6~ in the regularized problem to be 61, 6 °, and 63, which 
we use in the scheme, respectively. First, we use Taylor series to obtain some useful equations 
satisfied by the mollified solution v. They are as follows: 

a ((j  + 1)h) = a(jh) + h vt(jh' O) - a(jh)v~z(jh, O) - f ( jh ,  O) 
v~(jh, 0) + O (h2),  (3.5) 

q ((j  + 1)h, nk) = q(jh, nk) + h(vt(jh, nk) - f ( jh ,  nk)) + 0 (h2),  (3.6) 

h 1 d . vt ((j + 1)h, nk) = vt(jh, nk) + ~ - ~ q ( 3 h ,  nk) + 0 (h2), (3.7) 

where q(x, t) =- a(x)vx(x, t). 
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We now define the discrete error functions 

AA~ = A~ - a(jh), 

AQ;, = Q;, _ q(jh, n~), 
A w ?  = w; '  - vt(~h,n~). 

Here we only present the proof for the case when the initial condition is given by u=(x, O) = ~?(x) 
(x E [0, 1]). Let ~fmin -- minj>o 6~. By comparing (3.1) and (3.5), we have 

AAj+l = AAj + h¢1 - h¢2 - f ( jh,  0)h¢3 + O (h2), (3.8) 

where 

¢1 = W° v~(jh, O) 
u; v~(~h,0)' 

A 'U" ¢2 = ~ j a(jh)vx:~(jh, O) 
U~ vx (jh, O) ' 

1 1 
¢3 = U~ vx(jh, O)" 

Notice that  

1 0 

* $  

~;' ~(j)) ,, 
¢2 = a(jh)vzx(jh, 0)Ca + .-~j AAj + ~ (U~ - vz=(jh, 0)). 

Applying Theorems 2.2 and 2.3 to U~, we have 

Ivj - , ~ ( j h ,  0)l _< c (~  + h), 

I~'-.**(jh,0)l < ~(~+ h) +(75h 2. 

Hence (3.8) implies 

Ch (e + h) + 0 (h 2) (3.9) IA&+~l < IA&[ + hO(IAW~[ + ]hA~l) + ~-3 

By subtracting (3.6) from (3.2), we obtain 

t,  Q j ~  = aQ'~ + h a W ?  + 0 (h~) . (3.10) 

This implies 
IAQj+I[ < IAQj[ + h[aWj[ + O (h2). (3.11) 

Finally, (3.3) and (3,7) give 

a W ? +  1 ---~ a w ?  -~ h(~I/1 -[- kT]2) -~- O (h2) ,  (3.12) 

where 

~l  = -~jl (D6o~Q~ - qt (jh, nk)) 

qt (jh, nk) 
~2 = ~ aAj .  
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Figure  1. E x a m p l e  1. E x a c t  ( - - )  and  corn- F igure  2. E x a m p l e  1. E x a c t  ( - - )  and  com- 
p u t e d  (o) coefficient w i th  e = 0.01 and p u t e d  (o) hea t  flux at  t = 1 w i t h  e = 0.01 
A x  = A t  = 128• and  A x  = At  = 128. 
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Figure  3. E x a m p l e  1. E x a c t  ( - - )  and  com- 
pu ted  (o) hea t  flux a t  0c = 1 wi th  ¢ = 0.01 
and Ax  ---- A t  ---- 128. 

By Theorem 2.3, neglecting the effect of the 51 mollification on the already mollified solution qt, 
we have 

c (I/~Qj I + ,',t) + C~(At) ~. 

Consequently, (3.12) implies 

Ch AQ IAWj+ll <- IAW~I + -~2 J 51 + ChlAAjl + CehAt + 0 (h2) . (3.13) 

Set Aj = max{IAAjl , IAQjl, IAWjJ}. By (3.9), (3.11), and (3.13), we have 

A~+~ < 1 + ~ % + c h  \ - y ; - ]  + C~hAt + 0 (h~) , 

where ~mi~ = mini 5~. 
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Figure 4. Example 2. Exact (--)  and corn- Figure 5. Example 2. Exact (--)  and com- 
puted (o) heat flux at x = 1 with e = 0.01 puted (o) coefficient with e = 0.01 and 
and Ax = ~ t  = 1 2 8 .  A :  ~_/XL = 128. 
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Figure 6. Example 2. Exact (--)  and com- 
puted (o) heat flux at t = 1 with e = 0.01 
and Ax = A t  = 128. 

Therefore ,  

A M - - < e x p  ~ ( A ° + C ( e + h + A t ) ) "  

Since A0 < (C/&l)(e+•t) by Theo rem 2.2, we have proved the  following convergence theorem.  

THEOREM 3.2.  If  the initial condition is given by u=(x, O) = 17(x) (0 ~ x < 1), then max{IAAM ], 
IIkQMI, I/kWMI} converges to zero as At,  h, and e tend to zero. 

I f  t h e  in i t ia l  cond i t ion  is u(x, O) = v(x), then  the  leading  t e r m  for t he  er ror  II U~'-Vx= (jh, O)IIoo, 
accord ing  to  T h e o r e m  2.2, is given by  C((e/&3 + h/&s)/&~) = C(e  + h)/&3&~. In  prac t ice ,  th is  

e r ror  migh t  be more  difficult to  control .  
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Figure 7. Example 3. E x a c t  ( - - )  and  corn- F igure  8. E x a m p l e  3. E x a c t  ( - - )  and  com- 
p u t e d  (o) coefficient with e = 0.01 and  pu ted  (o) hea t  flux a t  t ---- 1 wi th  e --- 0.01 
/x= = A t  = 128. and  A x  = At  = 128. 
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Figure 9. Example 3. Exac t  ( - - )  and  com- 
pu ted  (o) hea t  flux a t  x = 1 w i t h  e = 0.01 
and/xx = / k t  = 128. 

4. I M P L E M E N T A T I O N  

4.1.  E x t e n s i o n  of  D a t a  

Computation of J6(g) and g6 throughout I = [0, 11, requires the extension of g to a slightly 
bigger interval I s = [-p~, 1 + p6]. We seek constant extensions g* of g to the intervals [-p~, 0] 
and [1, 1 + p~], satisfying the conditions 

I[J~ (g*) -- gllL2[0,p6] is minimum 

and 

IIJ6 (g*) -- gllL2(l_VS,1] is minimum. 
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Figure  10. E x a m p l e  4. Exac t  ( - - )  and  corn- Figure  11. E x a m p l e  4. Exac t  ( - - )  and  
p u t e d  (o) hea t  flux a t  x = 1 wi th  e = 0.01 c o m p u t e d  (o) coefficient wi th  e --  0.01 and  
and  A x  = ~ t  = 128. A x  = / X t  = 128. 
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Figure  12. E x a m p l e  4. Exac t  ( - - )  and  com- 
pu t ed  (o) hea t  flux a t  t = 1 wi th  e = 0.01 
and  A:c = A t  = 128. 

The unique solution to this optimization problem at the boundary t = 1 is given by 

z z+pa ds] ~ dt f;_p~ [f; ps(t - s) 

A similar result holds at the end point t = 0. A proof of these statements can be found in [7]. 

For each ~ > 0, the extended function is defined on the interval I~ and the corresponding 
mollified function is computed on I -- [0, 1]. All the conclusions of the previous sections still hold 
in the subinterval Ia. 
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Table 1. Example 1. Errors of the recovered parameter a(x) and the recovered heat 
f luxaux a t x = l a n d t - - 1 .  

a(x) Heat Flux Heat Flux 
h 

x = l  t = l  

0.00 0.018 0.026 0.022 

1 
0.01 0.038 0.027 0.125 

64 

0.02 0.051 0.022 0.106 

0.00 0.009 0.013 0.010 

1 
0.01 0.041 0.019 0.108 

128 

0.02 0.044 0.015 0.094 

0.00 0.005 0.006 0.005 

1 
0.01 0.037 0.019 0.121 

0.02 0,034 0.019 0.112 

Table 2. Example 2. Errors of the recovered parameter a(x) and the recovered heat 
f luxaux at x----1 a n d t = l ,  

a(z) Heat Flux Heat Flux 
h e 

x=l t=l 

0.00 0.088 0.011 0.081 

1 
0.01 0.114 0.015 0.143 

64 

0.02 0.119 0.013 0.117 

0.00 0.044 0.005 0.041 

1 
0.01 0.077 0.014 0.118 

128 

0.02 0.076 0.013 0.113 

0.00 0.022 0.002 0.021 

1 
0.01 0.052 0.016 0.115 

256 

0.02 0.047 0.015 0.107 

4.2 .  S e l e c t i o n  o f  t h e  R a d i u s  o f  M o l l i f i c a t i o n  

Using matrix notation,  the computat ion of the discrete mollified data vector g} - [(g})l, 
. . . ,  (9})n] T from the noisy data vector G ~ - [g~ , . . . ,  g~]T can be viewed as follows. 

Given ~ and At,  the data extension discussed in the previous section requires the addition of 
r = INT (p~f/At) constant values, say (/~,}r__l, #~ ---- # and {~}~ :1 ,  ~i = ~, i = 1, 2 , . . . ,  r, to G e 
to  obtain 

Gexte = [ ~ _ r , ] / _ r + l ,  . .  ]j,_2,~_l,gl,g~, gn'--I e . . , ~ r _ l , ~ r ]  T • ' . . . . .  g n '  ~ 1 , ~ 2 , .  

Now define the n x (n + 2r) circulant matrix A8 where the first row is given by 

j_~ p ~ ( - s ) d s ,  j = l , 2 , . . . , n ,  

(A6) I j  = O, j = n + l , . . . , n  + 2r. 

Then 

A~G~,~t = g~. 



12 S. ZHAN AND D.  A.  MURIO 

Table 3. Example 3. Errors of the recovered parameter a(x) and the recovered heat 
fluxau= a t x =  1 a n d t = l .  

a(x) Heat Flux Heat Flux 
h e 

x = l  t=l 

0.00 0.001 0.005 0.006 
1 

0.01 0.043 0.018 0.094 
64 

0.02 0.038 0.018 0.081 

0.00 0.001 0.002 0.003 

1 0.01 0.040 0.020 0.097 
128 

0.02 0.044 0.018 0.091 

0.00 0.000 0.001 0.001 

1 0.01 0.039 0.020 0.099 
256 

0.02 0.034 0.018 0.084 

Table 4. Example 4. Errors of the recovered parameter a(x) and the recovered heat 
flux au~: at the boundaries x = 1 and t = 1. 

a(x) Heat Flux Heat Flux 
h e 

x = l  t=l 

0.00 0.027 0.015 0.022 
1 

0.01 0.025 0.014 0.015 
64 

0.02 0.026 0.015 0.022 

0.00 0.020 0.008 0.011 
1 

0.01 0.020 0.007 0.005 
128 

0.02 0.025 0.006 0.004 

0.00 0.015 0.004 0.006 
1 

0.01 0.018 0.003 0.002 
256 

0.02 0.020 0.003 0.002 

We observe t h a t  the mollified da t a  vector requires the compu ta t i on  of n inner  products .  Since 

the  noise in  the  d a t a  is no t  known, an appropr ia te  mollification parameter ,  in t roduc ing  the  

correct degree of smoothing,  should be selected. Such a paramete r  is de te rmined  by the  Pr inciple  

of General ized Cross Val idat ion as the value of ~f t ha t  minimizes  the  funct ional  

(G~xt) T ( I  T - A [ )  ( I  - A , )  G~x t 

 ace [(IT - ( I -  A6)] ' 

where the  n x (n  + 2r) ma t r ix  I has entries 

S 1, i = j ,  i = l , 2 , . . . n ,  

l 0, otherwise. 

The  desired 6-minimizer  is ob ta ined  by a Golden Section Search Procedure.  We observe t ha t  

for fixed At ,  the  da ta  extension procedure dynamica l ly  upda tes  the  6-depending d imens ions  of 

all the  vectors involved and  also t ha t  the  denomina to r  of the  G C V  funct ional  can be evaluated 

explici t ly for each 6 > 0. Basic references on the subject  are [9,10]. 
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1 °. • . 

Figure 13. Example I. Errors of reconstructed temperature in [0, i] x [0, i]. 

Figure 14. Exm'nple 2. Errors of reconstructed temperature  in [0, 1] x [0, 1]. 

4.3. Numerical Examples 

The algorithm of the previous section has been thoroughly tested. In this section, we present 
numerical results from four examples. In all cases, the discretization parameters  are as follows: 
the number  of space divisions is M and A x  = h = 1 / M ;  the number of t ime divisions is N 
and At  = k --- l / N ;  the maximum level of noise in the da ta  function is ~; and we set p --- 3. 
The  value 3 is appropriate  because the difference between p~ for p = 3 and P6 for p > 3 is not 

significant. 
The  use of average per turbat ion values c is only necessary for the purpose of preparing the 

simulations. The  filtering procedure introduced in Sections 4.1 and 4.2 automatical ly adapts  the 

regularization parameters  to the quality of the data. 
Discretized measured approximations of the initial and boundary da ta  are modeled by adding 

random errors to the exact da ta  functions. Specifically, for a boundary da ta  function g(t), its 

discrete noisy version is 
g~ = g ( t . )  + ~ ,  n = 0 , 1  . . . .  , N ,  

where the (e~)'s are Gaussian random variables with variance a 2 = e2. 
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Figure 15. Example 3. Errors of reconstructed temperature in [0,11 x [o, 11. 

~ 0,01 

~ "0.01 

~" , ~ , ~  . ~  "to ~ 

Figure 16. Example 4. Errors of reconstructed temperature in [0, 1] x [0, 1]. 

The errors of the recovered coefficients and the recovered heat flux at x = 1 and t = 1 are 
measured by weighted/2-norms defined as follows. 

Error  in coefficient: 

la(J h) - Ajl 2 
j=0 

Error in heat flux at x = 1: 

I N  N ]1/2 ~_, ]a(1)ux(1,nk) - Q~j2 
n=O 

Error in heat flux at t = 1: 

1/2 

~_, la(jh)ux(jh, 1) - QN 12 
j=O 
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All the tables were prepared with At = k = 1/128. No significant changes occur if we consider 
values of the time discretization parameter in the (tested) interval [1/32, 1/256]. 

EXAMPLE 1. This example is designed to stress the behavior of the method when attempting to 
reconstruct a smooth parameter with strong concavity. We consider the following problem. 

Find a(x), u(x,t),  ux(x,t) satisfying 

ut = ( ~ ( x ) ~ x ) x  - ( 4 (x  - 0 .5)  5 + 8 ( ~  - 0 .5)  + 2) e x - t ,  

u (0 ,  t)  = e - t ,  

u~ (0 ,  t) = e - t ,  

a(0) = 2, 

ux (x, O) = e ~. 

The exact solution for a(x) is 
a ( z )  = 1 + 4 ( z  - 0.5) 2 

Figures 1-3 and 13 give a clear qualitative indication of the approximate solutions obtained by 
this method. Further verifications of stability and accuracy are provided by the data  in Table 1. 

EXAMPLE 2. If a(x) is smooth but changes concavity frequently, the results obtained by the 
scheme are very competitive. To illustrate this, we use the algorithm to solve the following 
problem. 

Find a(x), u(x,t), ux(x,t) satisfying 

ut = ((1.5 + sin 20x)u~)x - (2.5 + 20 cos 20x + sin 20x) e ~-t, 

u(0 ,  t) = e - t ,  

u~(O, t )  = e - t ,  

~(o) = 1.5, 

ux ( z ,  o) = e ~. 

The exact solution for a(x) is 
a(x) = 1.5 + sin20x. 

The results are plotted in Figures 4-6 and 14, which show the excellent agreement between the 
computed and the exact solutions. Table 2 further illustrates the stability properties and the 
practical accuracy of the method. 

EXAMPLE 3. This example shows the numerical results obtained when attempting to reconstruct 
a nonsmooth coefficient associated with the following problem. 

Find a(x), u(x,t),  ux(x,t) satisfying 

~t = ( a ( z ) ~ ) ~  + f ( z , t ) ,  

u(O, t) = e - t ,  

uz(O,t) = e -t, 

~(o) = 1, 

u x ( z ,  O) = e ~, 

where 
-2e x-t, 0 < x < 0.25, 

- ( 5 + 4 x ) e  x-t, 0 .25<_x<0 .5 ,  

f (x,  t) = ( -2  + 2x)e z-t, 0.5 < x < 0.75, 

-2.5e ~-t, 0.75 < x < 1. 
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The exact solution for the parameter a(x) is 
I, 0 _ < x < 0 . 2 5 ,  

a(x)  = 4x, 0.25 _< x < 0.5, 

3 - 2 x ,  0 . 5 < x < 0 . 7 5 ,  

1.5, 0.75 < x < 1. 

F igu re s  7-9,  15, and  Table  3 i l lus t ra te  the  s t ab i l i t y  and  accuracy  of  the  m e t h o d  in th is  case. 

EXAMPLE 4. In  prac t ice ,  i t  is poss ible  to  encounte r  compos i t e  ma te r i a l s  and  a(x)  is usua l ly  

d i scon t inuous  in th is  case. Assuming  t h a t  there  is no con tac t  res is tance  a t  t he  in ter face  loca t ion  

x0 (i.e., a t  x0, we have q(xo - O, t) = q(xo ÷ O, t) for all  t and  u(xo - O) = U(Xo ÷ 0)), cons ider  

the  following ident i f ica t ion  problem.  

F i n d  a(x) ,  u ( x , t ) ,  u x ( x , t )  satisfying 

= ( a ( x ) u x L  + f ( x ,  t), 

u(O, t) = e - z - t ,  

ux(0,  t) = 4e - 2 - t ,  

a ( 0 )  = 1,  

~" 4e 4(x-°'5), 0 <_ x < 0.5, 
Ux(X, O) 

3e 3(x-0"5), 0.5 < x <~ 1, 

l im u ( x , t )  = l im u ( x , t ) ,  
x-*0.5- x--*0.5+ 

l im a ( x ) u x ( x , t ) =  l im a ( x ) u ~ ( x , t ) ,  
x- .0 .5-  x--~0.5+ 

where  
- (32x 2 + 16x + 17) e 4(x-° '5) - t ,  0 _< x < 0.5, 

f ( x ,  t) = (18x 2 - 6x - 20.5) e 3 (x - ° ' s ) - t ,  0.5 < x < 1. 

T h e  exac t  so lu t ion  for a(x)  is 

1 + 2x 2, 0 < x < 0.5, 
= 

2-2(x-0.5) 2 , 0 . 5 < x < 1 .  

T h e  numer ica l  resu l t s  o b t a i n e d  by  the  scheme are  p lo t t ed  in F igures  10-12, 16, and  also desc r ibed  

in Table  4. 
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