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If the firing of a transition in a Petri net is considered non instantaneous, it becomes 
possible to replace a transition in a net B by another net 8’. This allows to proceed the 
description and the analysis of a control structure by stepwise refinements. The necessar! 
and sufficient conditions on B and Y’, for the resulting net to be bounded and live, are 
given. 

1. INTRODUCTION 

Petri nets are being used by researchers in various domains where the notions of choice 
and concurrency are essential. Among these domains are the analysis of production 
schemata [3], the description and realization of digital systems [8], the finding of the 
computation rate of activities in asynchronous concurrent systems [l 11, the formal 
verification of parallel programs [6]. Many other applications can be imagined [IO]. 

Some interesting concepts such as boundedness, safeness and liveness have been defined 
on Petri nets [2], the analysis of a large Petri net is generally cumbersome or even im- 
practicable. 

Another problem results from the fact that the firing of a transition is generally sup- 
posed non divisible and instantaneous. In fact when a Petri net is used to represent the 
functioning of an actual system, actions or operations are associated with the firing of the 
transitions. These actions or operations not being instantaneous, it is thus necessary to 
decompose each of them into a sequence ‘beginning of operation,” “end of operation”. 
The system has then to be depicted directly in detail and such a method does not allow 
stepwise refinements. 

It seems more efficient to suppose that the firing of a transition is not instantaenous 
and that it is made up of two steps [I 11. It is then possible to associate with a transition a 
complex operation that can later be depicted in detail by means of another Petri net. 

The aim of this paper is to prove that such a methodology allows a description and an 
analysis of a system by stepwise refinements. That is to say, it is possible to build up 
complex Petri nets with desired properties (bounded and live for example). An informal 
proof has been given in [12] and a more detailed approach of this problem can be found 
in [13]. 
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In section 2 some definitions are given and section 3 considers the substitution of a 
transition by a Petri net verifying some properties and called a well-formed block. 
In Section 4, it is pointed out that it is possible to build up recursively safe and live Petri 
nets. 

2. THE PETRI NET 

The definition of the Petri net that we will use is essentially the same as that employed 
by M. Hack [4] and J. L. Peterson [9]. The notion of bag and the notations used will be 
mainly those of the appendix of the paper by J. L. Peterson. The set of all bags over a 
domain P will be noted Pw and the number of occurrences of an element p in a bag B 
will be noted B(p) = k 3 0. 

2.1. Dejinition of the Petri net 

A Petri net is a five-tuple defined by: 

9 = (P, T, Ma , I; 0) 

where 

- P = {p, 7 P, ,...> p,> is a non-empty finite set of places 

- T = {tl , t, ,..., tm> is a non-empty finite set of transitions 
- M,, is the initial marking. It is a bag and Ma E Pw 

- I and 0 are functions 

I: T+ Pw 

0: T-+ P” 

such that 
Ij = I(tj) is the bag of input places for ti 

Oj = O(tj) is the bag of output places for tj 

It must be noticed that I(tj) is a bag of Pw but that Ij(pk) is the number of occurrences 
of the place p, in the bag Ij = I($). Th is number corresponds to the weight of the arc 
connecting the place p, to the transition ti , or to the size of the arc bundle as defined by 
M. Hack [4]. 

2.2. Execution rules for a Petri net 

(a) A marking M is a bag M G P”. M(p) is the number of tokens contained by the 
place p for the marking M. 

(b) A transition t of B is said to be enabled by the marking M iff: 

I(t) C M 
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(c) A transition t of 3 is said to be two-enabled by a marking M iff: 

{I(t) + l(t)> C M 

(d) The firing of a transition ti , enabled by a marking Mj , is made up of two un- 
interruptible steps: 

. First I,($,) tokens are removed from each place p, of P, 

. Then Oi( pJ tokens are added to each place p, of P. 

If Mjfl is the marking such that: 

Mj+l = Mj + O(tJ - I(t,), 

then Mj_l is the marking obtained from Mj by the filing of ti . We can write this: 

M, 21, Mj+l 

(e) Let a be a finite sequence of transitions ti , ti+l ,..., ti+,; u is a firing sequence 
from Mi iff there exists markings Mi+, , Mi+2 ,.. ., M,,, such that: 

ti+l Mi ‘- M,+l , M,,, - Mi+2 ,..., Mi+k ti+b Mi+k+l 

We can write then: 

Mi -% Mi+k+l 

(f) The forward marking class 2,, is the set of markings that are reachable from M,, 

M-EM~ o3a; MO&M 

2.3. Consequence of the introduction of a two-step transition firing 

Let us consider an alphabet Z and suppose that each transition of the Petri net 9 is 
labeled by a symbol of 2. With each firing sequence (T of transitions, a string over Z 
can be associated. The set of strings associated with all the firing sequences fireable 
between the initial marking M,, and the final marking Mf is the computation sequence set 
of 9 between M0 and M, [9]. 

If the firings of the transitions are supposed instantaneous, a computation sequence 
set represents the behavior of a Petri net between two markings M, and M, . If a firing 
time is associated with each transition, it is no longer true and there is no longer equival- 
ence between a labeled Petri net and its computation sequence set. 

2.4. Concepts dejined on Petri nets 

(a) Two transitions ti and ti of a Petri net .?p are in conjlict iff there exists a marking 
M of ii?,, and a place p of P such that: 

- ti and tj are enabled by M 

- Ii(P) 1. Ii(P) > M(P) 
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(b) Two transitions ti and tj of a Petri net B are parallel iff there exists a marking M 
of a,, such that: 

I(&) + I&) C M 

(c) A Petri net B is bounded iff there exists a positive integer n,, such that for 
every marking M of ii&, and for every place p of P, M(p) < nmax 

(d) A Petri net 9 is safe iff it is bounded with nmax = 1. 

(e) A Petri net 9’ is lzve iff for every transition ti of T and for every marking Mi 
of Go there exists a firing sequence uij that can be fired from n/r, and that contains ti . 

2.5. Concept of block 

(a) Let us consider a Petri net with one and only one transition named initial 
transition (tini) and one and only one transition named final transition (tfin). Such a Petri 
net is called a block. 

(b) Let us consider the Petri net @(p, p’, GO, 1, 8) obtained from a block 9 
(P, T, M,, , I, 0) by adding to it a place p, called the idle place, such that: 

- p, has one and only one output transition and this transition is the initial transition tini , 

- p, has one and only one input transition and this transition is the final transition tfin , 

-n;r=M,+{~,) 
(M,, is here considered as a bag defined over the domain P u (p,,}). 

The Petri net @ is called the associated Petrr net of the block 8. 
Let &i be a marking of the forward marking class of @ and Mi be the restriction of the 

bag i6fi to the places of P: 

vp E P M,(P) = J%(P) and %(~a) = 0 

The set of bags a0 will be the set of all the restrictions Mi of the markings ii%i of the 
forward marking class of @. 

(c) Then the following definitions can be given: 

- The block 9 is said to be bounded iff the associated Petri net @ is bounded. 
- The block B is said to be safe iff the associated Petri net @ is safe. 
- The block 9 is said to be live iff the associated Petri net @ is live. 

2.6. Well-formed block 

A block B is said to be well-formed iff the associated Petri net @ is such that: 

- B is live 
- ii?l,, is the only marking of the forward marking class of @ such that the idle place is not 

empty 
- The only transition enabled by A& is the initial transition. 
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PROPERTY. A we&formed block is necessarily a bounded block. 

Proof. The notion of “well-formed block” is essentially the same as the concept of 
“clean net” defined by M. Hack [Sj, therefore the proof is obvious. 

Remark. A well-formed block is such that once activated (the initial transition fired) 
there always exists a firing sequence that is fireable and that contains the final transition. 
Furthermore after the firing of the final transition the marking of a well-formed block 
is necessarily the initial marking. 

Intuitively it seems that such a block may be used to replace a transition in a Petri net. 
The following paragraph will give the necessary and sufficient condition for the resulting 
net to be bounded and live. 

3. SUBSTITUTION OF A TRANSITION BY A BLOCK 

3.1. DEFINITION. Let 9 be a Petri net (P, T, MO , I, 0) and fi be a transition of T. 
Let 8’ be a block (P’, T’, Mi , I’, 0’) with an initial transition t& and a final transition 
tin, . It is supposed that @ and 8’ are disjoint (P n P’ = u and T n T’ = m). The 
result of the substztution of the transition ti by the block 9’ is a Petri net 9” (P”, T”, jVIi , 
I”, 0”) such that: 

(a) P” = P V P’ 

(b) T” = (T - {ti}) u T’ 

(c) M,J = MO + M; 

(d) The functions I” and 0” are defined in the following way: 

. If t, E T and t, # ti then 
I 

W!J = Wk) 
O”(Q = O(t,) 

. If t; E T’ and if tt + tini and t; + t{in then 
qt;) = F(t;e) 

oytg = O’(tL) 

. Wni) = I(q) + Iy&) 

OWni) = O’(&*) 

. m(h) = I’(&) 

OYhJ = O(Q) + O’(&,) 

Remark. The bags concerning the net 9 are elements of Pa and those concerning 
the net 8’ are elements of P’o. As P” = P u P’ all these bags can be considered as ele- 
ments of P”W that allows to write the parts (c) and (d) of the Definition 3.1. 

EXAMPLE. In Figure 1 an example of substitution is given. The transition t, of the 
net 9 is substituted by the block 8’. The result of this substitution is the net 9”. 
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FIG. 1. Example of substitution. (a) Petri net 9. (b) Well-formed block 9”. (c) Petri net 9”. 

The purpose of the substitution of transitions by blocks is to build up Petri nets that 
are bounded (or safe) and live. Thus only the case of the substitution by a well-formed 
block will be considered. 

3.2. Properties of the substitution of a transition by a well-formed block 

The markings of the Petri net B” are of the form: 

where MS is a bag of PO but is not necessarily an element of &&, , and A4; is a bag of Plw 
but is not necessarily an element of mi . 

The following lemmas can then be given: 

LEMMA 1. &wry marking M, + Mi where Mj is an element of a0 and Mi is the 
initial marking of 8’ is an element of @G (they are markings of the forward marking class 
of Y”). 
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Proof. As 9” is a well-formed block there exists at least one firing sequence u’ of 
transitions of 8’ beginning with tini and finishing with t& such that: Mi 2 Mi . 

Thus any firing sequence a of 9’ can be transformed into a firing sequence u” of 3 
by replacing ti by C’ whenever it appears in C. It follows immediately that for any bag Mj 
of a, , l~j 7 Mi is a marking of @?I. 

LEiUnr.4 2, If the transition ti is two-enabled in 9 by no marking of &ii, then the initial 
transitio?z t& of .Y, once fired in 8” from a marking of the form M, + Mi where M, E ii?0 , 
cannot beJired again as long as the final transition tiin of 9’ has not also been fired. 

Proof. Let M1 be the set of the markings of G,, enabling ti , and MJ be the set of the 
bags of PC-, obtained from the markings of MI by subtracting from them the bag I(ti). 

By construction of 9” the firing of tini will produce a marking of the form Mj -t ML 
where Mj is a bag of MJ and ML a bag of g;. The only transitions enabled by these 
markings will be either transitions parallel to ti in 9’ or transitions of 9’. Thus as long as 
neither tm, nor fiDi has been fired the markings of 8” will be of the form Mj + Mk . 

Let’s assume that such a marking enables tini . This would imply that there exists a 
marking ;zrl, which enables ti in 9 and thus that there exists at least one marking of a,, 
such that ti is two-enabled, which is inconsistent with the hypothesis. 

LEblhr.\ 3. Let MJ be the set of all the bags of PW obtained from the markings of a,, which 
enables ti in b, bv subtracting from them the bag I(t& If ti LS not two-enabled by any markin<? 
of &ii, in .?7 the?1 the.forward marking class Ii?,” of 3” is made up of the following bags: 

(a) (dl, - _Wi) E i9: VM, , M, E tiO 

(b) (AI> L _%I;, E a; VMj , Mj E Mj 

VM; , M; E M; and M; # M; 

(c) no other bag belongs to ai. 

Proof. Part (a) derives from Lemma 1 and part (b) from Lemma 2. Part (c) derives 
from the fact that the only transitions enabled by the markings of the form Mj + Mk are 
either transitions parallel to ti in 9 or transitions of 9’. 

THEOREM 1. Let ti be a transition of a Petri net B and assume that this transition is not 
two-enabled by any marking of the forward marking class of 8. Let 9’ be a well-formed block 
and 9” the result of the substitution of ti by 9’. The pairs of parallel transitions of 9’” are the 
following exclusively: 

(a) ecu-v pair of parallel transitions of B that does not contain t, , 

(b) every pair of parallel transitions of the Petri net associated with the block 8’, 

(c) every pair made up of a transition of 9’ and a transition of B that is parallel to t, 
in the Petri net 3. 

This theorem derives straightforwardly from the preceding Lemma. 
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THEOREM 2. Let ti ,8,9’ and 8” be as de$ned in the Theorem 1. Thepairs of transitions 
of B” which are in conflict are the following exclusively: 

(a) every pair of transitions of B that are in conflict, the transition ti being replaced 
by the initial transition tini of 9’, 

(b) every pair of transitions of 9’ that are in conjict in the Petri net associated with 9’. 

The proof is derived directly from the Lemma 3. 

EXAMPLE. Consider again the example of the Figure 1 and let D be the empty bag. 
The forward marking class i@,, of 9 is made up of the following bags: 

The set of bags &?L is: 

(11, {2,31, {3,4), {2,5), (475) 

@, (1’1, (2% (3’) 

The transition ti is the transition t, . It is enabled by the markings (2, 3} and {3,4} 
in the Petri net 9. Thus the set MI is made up of the bags {2,3} and {3,4) and the set MJ 
is made up of the bags (2) and (4). 

The forward marking class %?i of 9” will be formed of the following sets of bags: 

- on one hand the set: 

(11, (2,317 (3,419 (2751, (495) 

corresponding to the part (a) of the Lemma 3, 
- on the other hand the sets: 

(2, 1’1, 0,2’j, (2, 3’1 (4, 1’1, (4,2’), {4,3’) 

corresponding to the part (b) of Lemma 3. 

The only pair of parallel transitions of B is the pair (tz , t3) (enabled by the marking 
(2, 3)). No pair of parallel transition exists in 9”, thus the pairs of parallel transitions of 9” 
are: 

(ta , 61, (tz , CJ, (tz , ti), (h , G) and (tz , GJ. 

There are no pairs of transitions in conflict in 9’ and the only pair in conflict in 9’ is 
(t; , t;). Thus the only pair of transitions in conflict in B” is (ti , ti). 

THEOREM 3. Let ti be a transition of a Petri net B that is not two-enabled by any marking 
of the forward marking class of 8. Let 9” be a well-formed block and 8” the result of the 
substitution of ti by 9’. The three following results can be given: 

(a) The Petri net 8” is bounded ;ff the Petri net 9’ is bounded. 

(b) The Petri net 9”’ is safe isf the Petri net 9 and the block 9’ are safe. 
(c) The Petri net 9” is live 23 the Petri net 9 is live. 
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Prooj. Parts (a) and (b) of Theorem 3 are derived directly from the Lemma 3 taking 
into account that a necessary and sufficient condition for a Petri net to be bounded is 
that its forward marking class is finite. In the case of part (a) it is also necessary to utilize 
Lemma 1. 

The sufficient condition of part (c) is derived from the fact that any firing sequence o 
fireable in the Petri net B can be transformed into a firing sequence in 9” by replacing, 
each time it appears, the transition ti by a sequence U’ of transitions of 9’ fireable in 9 
from the marking Mi and finishing by tiin . 

In order to prove the necessary condition it should be noticed that if two transitions t, 
and t, are parallel for a marking Mi , then the two sequences t,; t, and t,; t, will both be 
fireable from 111i and if: 

Let a” be a sequence of transitions fireable in the Petri net 9” and containing tfni and 

4in . Every transition of 9’ appearing in a” between tini and tiin is necessarily parallel to 
every transition of 9’;’ in 8” (according to Lemma 3). By commutations of pairs of parallel 
transitions in Y, it is always possible to transform a” in such a way that no transition of .Y 
appears between tini and t& . By replacing the sequence of transitions of 9’ beginning 
with tini and finishing with t& it is then possible to obtain a sequence u fireable in the 
net 9. It follows that if the Petri net 9”’ is live, then the Petri net 9 is necessarily live. 

Remark. It may be asked whether the restriction concerning the transition ti (It cannot 
be two-enabled by any marking of the forward marking class of 9’) is necessary. The 
example given by Figure 2, where the transition t, is substituted by the well-formed block 
Y’, shows that this restriction is necessary for the case (c) of the Theorem 3. In fact the 
transition t, is two-enabled by the marking (2, 21, and the Petri net 9” is not live because 
the sequence: 

t, ; &Ii ; tS ; tlni ; ti ; Gin 

fireable from the initial marking {1} of g” produces the marking 
transition of 9”’ is enabled. 

3.3. Description and analysis of a Petri net by stepwise refinements 

{2’, S, 3) for which no 

Theorems 1, 2 and 3 show that if the detailed description of the operation symbolized 
by the transition t, is a well-formed block, and if the transition ti is two-enabled by no 
marking of 9, then it is not necessary to do the analysis of the global Petri net 8” because 
all its properties can be deduced directly from those of the Petri nets 9’ and 9”. This 
proves that it is possible to describe a system with a Petri net and to analize it by stepwise 
refinements. In the case of a parallel system such a procedure is not possible if the repre- 
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FIG. 2. Example of the substitution of a transition that can be two-enabled. (a) Petri net 9. 

(b) Well-formed block 8’. (c) Resulting Petri net 8”. 

sentation model utilized is a state machine, In fact the state machine model requires the 
knowledge of the global state of the system when in the case of a Petri net only partial or 
local states are utilized. 

4. D-PETRI NETS 

Theorems 1,2 and 3 form, in a certain sense, a generalization of the results of J. Bruno 
and S. M. Altman [l]. For example consider the Petri nets of Figure 3. They can be called 
“sequence block”, “if-then-else block”, “do-while block”, “fork-join block”. Although 
they are not minimal and they introduce the parallelism, they are similar to the “D-chart 
constructs” [7]. They can thus be called the D-blocks and it can be easily proved that they 
are safe well-formed blocks. 
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FIG. 3. D-blocks. (a) “Sequence” block; (b) “if-then-else” block; (c) “do-while” block; 
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FIG. 4. Elementary Petri net. 

Consider now the Petri-net of Figure 4. This Petri net, called the elementary Petri net, 
is safe and live. 

The D-Petri nets can then be defined recursively the following way: 

DEFINITION, (1) The elementary Petri net is a D-Petri net. 

(2) Any Petri net, obtained from a D-Petri net by substitution of a transition by a 
D-block, is a D-Petri net. 

As in a safe Petri net no transition can be two-enabled, the following property can be 
given : 

PROPERTY. Any D-Petri net is live and safe, 

5. CONCLUSION 

The analysis of a Petri net is currently quite cumbersome. When pratical applications 
are concerned it is necessary to avoid the analysis of large complex Petri nets and thus it 
seems convenient to proceed by stepwise refinements. It has been shown in this paper that 
such procedures are possible when it is assumed that the firings of the transitions are not 
instantaneous. Then complex operations can be associated with the transitions of a Petri 
net. A gross abstract description of the system can be done. The level of representation can 
thus be modified progressively by replacing transitions by blocks. If the initial Petri net 
has the desired properties and if only well-formed blocks are utilized, the correct behavior 
of the final, complex Petri net is ensured and it is not necessary to analyze it. Such a 
procedure is an extension of some of the principles of the structured programming to the 
description and the validation-oriented analysis of parallel systems. 
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