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Abstract

We speculate on whether a certainp-adic stability phenomenon, observed by David Robb
empirically for Dodgson condensation, appears in other nonlinear recurrence relations th
expectedly” produce integer or nearly-integer sequences. We exhibit an example (number
where this phenomenon provably occurs.
 2004 Published by Elsevier Inc.

This note may be viewed as an addendum to Robbins’ note [5] in this volume. Its
pose is to speculate on whether thep-adic stability phenomenon that Robbins obser
empirically for Dodgson condensation appears in other nonlinear recurrence relatio
“unexpectedly” produce integer or nearly-integer sequences, and to provide an ex
where this provably occurs.

In order to carry out this speculation, we will phrase Robbins’ observation in a s
what more general framework. For us, arecurrence relation over a fieldK will consist of
a finite partially ordered setS plus, for eachs ∈ S, a rational functionfs = Ps/Qs overK
in the indeterminate vector(xt )t<s . (The restriction toS finite does not concede any ge
erality for our purposes: to consider an infinite recurrence, look instead at all of its
truncations.) We also assume (for simplicity) that the partial order onS is generated by th
relation in whicht is less thans if fs is nonconstant as a function ofxt alone. In this case
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s ∈ S is minimal for the partial order if and only iffs is a constant function; we thus u
the terminitial interchangeably with “minimal.”

Before proceeding further, it will be helpful to set up some more notation. ForI =
(is)s∈S , a tuple of nonnegative integers, we writexI for

∏
s∈S x

is
s ; for any function

g :S → K , we write gI for
∏

s∈S g(s)is . Write Ps = ∑
I as,I x

I and Qs = ∑
I bs,I x

I ,
whereas,I andbs,I are zero for all but finitely manyI , andPs andQs have no common
polynomial factor.

Suppose now thatK is equipped with a discrete (non-archimedean) valuationv, e.g.,
K = Q with thep-adic valuation for some primep. Suppose also that thePs andQs are
normalized so thatv(as,I ) � 0 andv(bs,I ) � 0 for all s andI , and so that for eachs,

min
I

{
min

{
v(as,I ), v(bs,I )

}} = 0.

Suppose further that there exists a functiong :S → K such thatg(s) = fs(g) for all s ∈ S;
note thatg is unique if it exists, and the only obstruction to its existence is the vanishi
Qs for somes. That is,g is the unique solution of the recurrence, and satisfies

g(s) =
∑

I as,I g
I∑

I bs,I gI

for all s ∈ S.
Now fix a positive integerN . We denote by∗ any element ofK with v(∗) � N ; here

we intend that two different occurrences of∗ may refer to two different numbers. With th
convention, we have the following simplification rules:

∗ + ∗ = ∗,

(1+ ∗)(1+ ∗) = 1+ ∗,

(1+ ∗)/(1+ ∗) = 1+ ∗.

We also havec∗ = ∗ wheneverv(c) � 0.
Define anN -perturbation of the recurrence as any functiong′ :S → K such that for

eachs ∈ S,

g′(s) =
∑

I (1+ ∗)as,I (g
′)I∑

I (1+ ∗)bs,I (g′)I
.

In cases is initial, this yieldsg′(s) = g(s)(1+ ∗); this is the same as saying thatv(g′(s) −
g(s)) � v(g(s)) + N .

The point of this definition is that, in the caseK = Qp , g′ is a possible result of compu
ing fs(g

′) usingp-adic floating point numbers withN -digit mantissas. Specifically, reca
from [5] that a “p-adic floating point number with anN -digit mantissa” consists of a pa
(a, e), where the “mantissa”a is an invertible element ofZ/pNZ and the “exponent”e is

any integer. This pair is used to represent anyp-adic number̃ape such that̃a is invertible
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in Zp and the image of̃a under the natural map fromZp to Z/pNZ is a. Hence two num-
bersr ands admit the same representation if and only ifr = s(1+ pNu) for someu ∈ Zp,
i.e., if v(s/r − 1) � N .

One can then reimaginep-adic floating point arithmetic as being carried out with act
p-adic numbers, except that at any point in an arithmetic operation, a gremlin may
along and multiply any value by a factor of the form 1+ ∗. In this interpretation,g′(s) is
then allowed to be any result of computingfs(g

′) in the presence of such gremlins. (No
that any “gremlin factor” applied after adding two numbers together can be absorbe
the gremlin factors by which each summand is multiplied. Also, the reciprocal of a gre
factor is itself a gremlin factor.)

Given anN -perturbationg′, define itsprojected precision loss rs(g
′) at s ∈ S as

rs(g
′) = max

t�s

{
v
(
Qt(g

′)
)};

this generalizes the notion of “condensation error” introduced by Robbins. Note th
projected precision loss is determined by thecomputed denominators rather than theactual
denominators, which would be thev(Qt(g)); these often but do not always coincide. No
also thatrs(g′) = 0 whens is initial (because the only term in the maximum isv(Qs(g

′)) =
v(1) = 0), and thatrs(g′) � rt (g

′) whenevert � s, i.e., the bound gets larger (i.e., wors
as you go along.

We say that the recurrenceexhibits Robbins stability if for any positive integerN , any
N -perturbationg′, and anys ∈ S, if rs(g

′) < N , then

v
(
g′(s) − g(s)

)
� N − rs(g

′) + min
{
0, v

(
g(s)

)}
.

Robbins’ conjecture in [5], made on the basis of copious numerical evidence, then
tially (but see the next paragraph) amounts to the statement that the recurrence o
from Dodgson condensation of a matrix of indeterminates (indexed by the conn
minors) exhibits Robbins stability. (Note that the term min{0, v(g(s))} drops out in the
Robbins’ case becausev(g(s)) is always nonnegative; this seems to be warranted by
perimental evidence, as we note at the very end.)

It may be more accurate to speak here of “weak Robbins stability,” as we are ac
generalizing a slightly restricted version of Robbins’ conjecture. That is because Ro
permits the “borderline” casers(g′) = N ; indeed, the comment in [5] that “a quantity c
be accurate to zero places” suggests that this permission was deliberate. However
not entirely sure whether to believe the conjecture in the borderline case, and our p
Robbins stability in the one nontrivial case we can prove (see the Theorem below) do
handle the borderline case; a future clarification of this issue would be welcome.

It may be helpful to recall (or rather, to attempt to reconstruct) some of Robbins
tivation for making his original conjecture. The quantityN − rs(g

′) measures the exten
to which we can distinguish the denominators we have divided by so far from zer
the extent that we can make this distinction, we expect that Dodgson condensation
continue to work; this expectation is formalized in the inequality defining the stab

property.
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However, the assertion thatN − rs(g
′) measures our ability to distinguish denominat

from zeroes is only really meaningful if those denominators are integral. This sug
that it may not be wise to expect stability for recurrences in which denominators
in an unsystematic fashion; this caution is borne out by a simple example, which w
give.

TakeS = {0,1,2,3,4,5,6,7}, equipped with the ordering that agrees with the us
ordering except that 0 and 1 are not comparable, and consider the recurrence overQ given
by

x0 = 5, x1 = −5, xn = xn−1 − 1

xn−2
(n = 2, . . . ,7).

The functiong in this case takes the values

5, −5, −6

5
,

11

25
,

7

15
, −40

33
, −365

77
,

663

140
.

Let v denote the 2-adic valuation; then the functiong′ taking the values

5, −5, −6

5
,

11

25
, −793

15
, −4040

33
,

20365

8723
, − 17463

1601860

is anN -perturbation forN = 6, because

g′(4) = 11/25− (1− 26)

−6/5

andg′(n) = fn(g
′) for n = 5,6,7. The projected precision loss is

r7(g
′) = max

{
v(5), v(−5), v(−6/5), v(11/25), v(7/15), v(−40/33)

} = 3,

andv(663/140) = −2, so Robbins stability would predict that

v
(−17463/1601860− 663/140

)
� N − r7(g

′) + min
{
0, v(663/140)

} = 6− 3− 2= 1.

However,−17463/1601860− 663/140= −2661195/560651 has valuation 0, so the r
currence does not exhibit Robbins stability.

As noted before, it is unclear whether one should expect Robbins stability to b
hibited by recurrences with “unpredictable” denominators. However, there is a wide
of recurrences in which denominators either do not occur, or occur in a limited and
tematic fashion; these are the recurrences which exhibit the “Laurent phenomenon,
parlance of Fomin and Zelevinsky [2]. That paper establishes that a number of in
ing recurrences (like Dodgson condensation) have the following property: if one view
initial constants as distinct indeterminates, the noninitial terms turn out to be polyn
als in these indeterminates and their inverses. (See [3] for an online discussion o

recurrences and related topics.)
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Among recurrences admitting the Laurent phenomenon, Dodgson condensation
one example, and it seems (to us, anyway) that the unexpected cancellations that co
to the Laurent phenomenon may in the condensation case must have something to
the unexpectedly strong bound on the precision loss predicted by Robbins stabili
thus pose the question: do other Laurent recurrences exhibit Robbins stability?

One can trivially construct many recurrences exhibiting Robbins stability, by co
ering those for whichQs = 1 for all s, so that no divisions are ever performed in
calculation and hencers(g′) = 0 for all s ∈ S. In fact, these recurrences have a mu
stronger property.

Proposition. If Qs = 1 for all s then, for any N -perturbation g′, v(g′(s)−g(s)) � N (and
hence v(g′(s)) � 0) for all s ∈ S.

Proof. We proceed by induction ons; for s minimal, the desired inequality is given direct
by the definition of anN -perturbation, so we assume thats is nonminimal and that

g′(t) = g(t) + ∗ for all t < s.

In particular,v(g′(t)) � 0 for all t < s.
We now begin a second induction to show that(g′)I = gI + ∗ for all tuplesI of non-

negative integers indexed by the set oft ∈ S with t < s; this induction will be on the sum o
the entries ofI . If this sum is zero, then the desired equality is the trivially true 1= 1+ ∗.
Otherwise, given a tupleI for which the claim is known for all tuples of smaller su
choose somet at whichI has a nonzero component, and letJ be the tuple obtained b
decreasing this component by 1. ThengI = gJ g(t) and likewise forg′, (g′)J = gJ + ∗
by the inner induction hypothesis, andg′(t) = g(t) + ∗ by the outer induction hypothesi
These imply thatg′(t) and(g′)J have nonnegative valuation, and so

(g′)I = (g′)J g′(t) = (
gJ + ∗)(

g(t) + ∗) = gJ g(t) + g(t) ∗ +gJ ∗ + ∗
= gJ g(t) + ∗ = gI + ∗.

This completes the inner induction, so we may conclude that(g′)I = gI + ∗ for all I .
To complete the outer induction, note that

g′(s) − g(s) =
∑
I

(as,I + ∗)(g′)I − as,I g
I =

∑
I

(g′)I ∗ −
∑
I

as,I

(
(g′)I − gI

)

=
∑
I

∗ −
∑
I

as,I∗ = ∗

sincev(as,I ) � 0 by hypothesis. �
On the other hand, it seems not so easy to establish that Robbins stability is ex

by any recurrences, even ones exhibiting the Laurent phenomenon, in which non

divisions take place. However, we have succeeded in doing so in one case, which we now
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describe; it is a form of a recurrence of Conway and Coxeter [1], which we will ref
here as the “number frieze” recurrence.

Fix a positive integern, and set

S = {(a, b) ∈ Z × Z: 0� a � n, 0 � b � n − a},
with the partial order given by

(a′, b′) < (a, b) ⇐⇒ a′ < a and b � b′ � b + a − a′.

Choosec0, . . . , cn−1 ∈ K of nonnegative valuation, and define a recurrence onS by

f(0,b) = 1 (0 � b � n),

f(1,b) = cb (0� b � n − 1),

f(a,b) = xa−1,bxa−1,b+1 − 1

xa−2,b+1
(2 � a � n, 0� b � n − a);

theng exists and takes values with nonnegative valuations. Indeed, as noted in [4],
basically a special case of Dodgson condensation: thef(a,b) are connected minors of th
tridiagonal matrix




c0 1 0 0 0
1 c1 1 · · · 0 0
0 1 c2 0 0

...
. . .

...

0 0 0 cn−2 1
0 0 0 · · · 1 cn−1




,

and while one cannot condense this matrix (as some of the other connected minors v
one can recover the number frieze recurrence by instead condensing the matrix

Aij =
{

ci−1, i = j,

t(|i−j |)(|i−j |+1)/2, i �= j,

wheret is an indeterminate, then settingt = 0 in the resulting polynomials.

Theorem. The number frieze recurrence f(a,b) exhibits Robbins stability.

Note that the proof will actually yield a stronger result, as in the trivial case (Qs = 1 for
all s): it effectively shows that as long as the projected precision loss is strictly less thN ,
Robbins stability holds even using fixed point arithmetic (i.e., working modulopN ) instead
of floating point arithmetic.

Proof. Let g′ be anN -perturbation. (To simplify notation, we writeg(a, b) andg′(a, b)
instead of g((a, b)) and g′((a, b)).) We prove by induction ona that as long as
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r(a,b)(g
′) < N , we havev(g′(a, b) − g(a, b)) � N − r(a,b)(g

′) (and hencev(g′(a, b)) � 0,
sinceg(a, b) is known to have nonnegative valuation); this gives precisely the Rob
stability bound.

Before continuing, we introduce another notational convention. Putr = r(a,b)(g
′), and

write Y ≡ Z to meanv(Y − Z) � N − r (so in particular any star is congruent to 0). No
that the congruencesY ≡ Z andY ′ ≡ Z′ imply thatY +Z ≡ Y ′ +Z′ always; ifY,Z,Y ′,Z′
have nonnegative valuation, the congruences also imply thatYY ′ ≡ ZZ′. Moreover, if
Y ≡ Z andY,Z both have valuation 0, thenY−1 ≡ Z−1.

We now return to the induction. Fora = 0,1, the desired inequality holds by defa
because(a, b) is initial. Fora = 2, the denominator off(a,b) is x(0,b+1), andg′(0, b +1) =
g(0, b + 1) + ∗ = 1+ ∗ has valuation 0, so again the desired inequality follows. Fora = 3
and 0� b � n − 3, we have

g(3, b) = g(2, b)g(2, b + 1) − 1

g(1, b + 1)
,

g′(3, b) = (1+ ∗)g′(2, b)g′(2, b + 1) − (1+ ∗)

(1+ ∗)g′(1, b + 1)
;

by the induction hypothesis,g′(2, b) = g(2, b) + ∗, g′(2, b + 1) = g(2, b + 1) + ∗, and
g′(1, b + 1) = g(1, b + 1) + ∗, so

g′(3, b) = g(2, b)g(2, b + 1) − 1+ ∗
g(1, b + 1) + ∗ .

SinceQ(a′,b′)(g′) = 1 for a′ = 0,1, and since fora′ = 2 we have as aboveQ(a′,b′)(g′) =
1+ ∗, we have

r = max
(a′,b′)�(a,b)

{
v
(
Q(a′,b′)(g

′)
)} = v

(
Q(a,b)(g

′)
) = v

(
g′(1, b + 1)

)
.

Hence (sincer < N by assumption)g′(1, b + 1) < N , yielding v(g′(1, b + 1) + ∗) =
v(g′(1, b + 1)); in particular,v(g(1, b + 1)) = v(g′(1, b + 1)) = r . We can now write

g′(3, b) = g(2, b)g(2, b + 1) − 1+ ∗
g(1, b + 1) + ∗

= ((g(2, b)g(2, b + 1) − 1)/g(1, b + 1)) + (∗/g(1, b + 1))

1+ ∗/g(1, b + 1)

= g(3, b) + (∗/g(1, b + 1))

1+ (∗/g(1, b + 1))
≡ g(3, b),

as desired.
Suppose now thata � 4, r(a,b)(g

′) < N , and the induction hypothesis holds for all pa
(a′, b′) < (a, b); in particular, we havev(g′(a′, b′)) � 0 whenever(a′, b′) < (a, b). To

eliminate some indices, put
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A = g(a − 4, b + 2),

B = g(a − 3, b + 1), C = g(a − 3, b + 2),

D = g(a − 2, b), E = g(a − 2, b + 1), F = g(a − 2, b + 2),

G = g(a − 1, b), H = g(a − 1, b + 1),

I = g(a, b)

and likewise with primes; note thatA, . . . , I all have nonnegative valuation, as
A′, . . . ,H ′ by the induction hypothesis. We then have

E′ = B ′C′ − 1+ ∗
A′ + ∗ ,

G′ = D′E′ − 1+ ∗
B ′ + ∗ , H ′ = E′F ′ − 1+ ∗

C′ + ∗ ,

I ′ = G′H ′ − 1+ ∗
E′ + ∗ ,

becauseg′ is an N -perturbation andv(g′(a′, b′)) � 0 for a′ < a. (More explicitly, the
definition of anN -perturbation implies thatE′ = (B ′C′(1+∗)− (1+∗))/(A′(1+∗)) and
the like, but the product of each lettered quantity with a star is again a star.) We als
four analogous equations without the primes and stars. Moreover, if(a′, b′) < (a, b), we
haver � r(a′,b′)(g′) by the way the projected precision loss is defined, so the indu
hypothesis implies in particular thatg′(a′, b′) ≡ g(a, b); in particular, we have

A′ ≡ A, . . . , H ′ ≡ H,

and we wish to show thatI ′ ≡ I .
By the induction hypothesis, we havev(E′) � 0. If v(E′) = 0, thenG′ ≡ G, H ′ ≡ H ,

E′ ≡ E imply G′H ′ −1+∗ ≡ GH −1 andE′ +∗ ≡ E. SinceN > r , the congruenceE′ ≡
E and the assumptionv(E′) = 0 imply v(E) = 0, and so(E′ +∗)−1 ≡ E−1. Consequently

I ′ = G′H ′ − 1+ ∗
E′ + ∗ ≡ GH − 1

E
= I,

as desired.
Since the casev(E) = 0 is okay, we assume hereafter thatv(E′) > 0; thenv(B ′C′ −

1 + ∗) > 0, and hencev(B ′C′ − 1) > 0. Sincev(B ′) � 0, v(C′) � 0, and 0= v(1) �
min{v(B ′C′), v(1− B ′C′)}, this is only possible ifv(B ′) = v(C′) = 0.

We now compute:

I ′ = G′H ′ − 1+ ∗
E′ + ∗ = (D′E′ − 1+ ∗)(E′F ′ − 1+ ∗) − (B ′ + ∗)(C′ + ∗)(1+ ∗)

(B ′ + ∗)(C′ + ∗)(E′ + ∗)

D′E′E′F ′ − D′E′ − E′F ′ + 1− B ′C′ + ∗
=
B ′C′E′ + ∗
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= D′E′E′F ′ − D′E′ − E′F ′ − A′E′ + ∗
B ′C′E′ + ∗ = D′E′F ′ − D′ − F ′ − A′ + (∗/E′)

B ′C′ + (∗/E′)
.

As before, we haveD′E′F ′ ≡ DEF , D′ ≡ D, F ′ ≡ F , A′ ≡ A, andB ′C′ ≡ BC. More-
over, from the definition of the projected precision loss, we have

r = max
(a′,b′)�(a,b)

{
v
(
Q(a′,b′)(g

′)
)}

� v
(
Q(a,b)(g

′)
) = v(E′),

and so∗/E′ ≡ 0.
Sincer < N , the facts thatv(B ′C′) = 0 andB ′C′ ≡ BC together imply thatv(BC) = 0;

then the congruenceBC ≡ B ′C′ + (∗/E′) implies (B ′C′ + (∗/E′))−1 ≡ (BC)−1. This
together with the previous mentioned congruences and the equation

I = DEF − D − F − A

BC

yieldsI ′ ≡ I , as desired. �
Note that in this example, the precision bound given by Robbins stability is not al

sharp if one fixes(a, b) and varies over allN -perturbations. For instance, forK = Q with
the 3-adic valuation, take

(c0, . . . , c5) = (1,3m − 1,−1,1,−11,22).

For m and N sufficiently large (saym > 5 andN � 2m), the projected precision los
is m (achieved byg(1,1) = −3m), but experiments suggest thatv(g′(5,0) − g(5,0)) �
N − m + 5 always. It would be interesting to find a more precise version of the proje
precision loss that detects such “localized disruptions,” specifically by relaxing the re
tion that the bound can only get worse with each successive term. Such a formula
the stability phenomenon may even suggest progress towards Robbins’ original con
or generalizations.

Although all our examples have been recurrences overQ, with v equal to ap-adic
valuation, we have taken care to make our setup more general. In particular, one co
our framework to look at Robbins stability inQ(x), with v thex-adic valuation. This migh
serve as a bridge between the Laurent phenomenon and Robbins stability.

We conclude by mentioning some further experiments the first author has cond
with Punyashloka Biswal. Namely, we have been applying Robbins’ testing reg
to other recurrences exhibiting the “Laurent phenomenon” of [2]: compute pai
N -perturbations usingN -digit p-adic floating point arithmetic (generating the unde
mined p-adic digits at random), and compare their difference to the projected p
sion loss predicted by Robbins stability. (This is somewhat easier than comparin
N -perturbation to the exact solution.) Two families of examples we have considered,
both appear to exhibit Robbins stability, are the Somos sequences

∑
1�i�	k/2
 aixn+ixn+k−i
x0 = x1 = · · · = xk−1 = 1, xn+k =
xn
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about-

8, this
for k = 4,5,6,7, and the sequences

xn+2 = x2
n+1 + cxn+1 + d

xn

given in [2, Example 5.4]. Notably, the latter example seems to require the correction
min{0, v(g(s))} that we introduced into the definition of Robbins stability.
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