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Abstract

We speculate on whether a certgiradic stability phenomenon, observed by David Robbins
empirically for Dodgson condensation, appears in other nonlinear recurrence relations that “un-
expectedly” produce integer or nearly-integer sequences. We exhibit an example (number friezes)
where this phenomenon provably occurs.

0 2004 Published by Elsevier Inc.

This note may be viewed as an addendum to Robbins’ note [5] in this volume. Its pur-
pose is to speculate on whether theadic stability phenomenon that Robbins observed
empirically for Dodgson condensation appears in other nonlinear recurrence relations that
“unexpectedly” produce integer or nearly-integer sequences, and to provide an example
where this provably occurs.

In order to carry out this speculation, we will phrase Robbins’ observation in a some-
what more general framework. For us;eaurrence relation over a fieldkK will consist of
a finite partially ordered sef plus, for eachy € S, a rational functionf; = P;/Q; overK
in the indeterminate vectdx;); .. (The restriction taS finite does not concede any gen-
erality for our purposes: to consider an infinite recurrence, look instead at all of its finite
truncations.) We also assume (for simplicity) that the partial ordef isrgenerated by the
relation in whichr is less than if f; is nonconstant as a function of alone. In this case,
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s € S is minimal for the partial order if and only if; is a constant function; we thus use
the terminitial interchangeably with “minimal.”

Before proceeding further, it will be helpful to set up some more notation./Fer
(is)ses, @ tuple of nonnegative integers, we writé for Hsesxés; for any function
g:S — K, we write g/ for [],csg(s)’s. Write Py =Y, a,x! and Q; = Y, by 1x?,
wherea, ; andb; ; are zero for all but finitely many, and P, and Q; have no common
polynomial factor.

Suppose now thak is equipped with a discrete (non-archimedean) valuatioe.g.,

K = Q with the p-adic valuation for some primg. Suppose also that th®, and Q, are
normalized so that(as, ;) > 0 andv(bs ;) > 0 for all s and/, and so that for each

mIin{min{v(as,/), v(bs.1)}} =0.

Suppose further that there exists a functiar§ — K such thatg(s) = f;(g) forall s € S;
note thatg is unique if it exists, and the only obstruction to its existence is the vanishing of
Q, for somes. That is,g is the unique solution of the recurrence, and satisfies

Zlas,lgl

®O==""
& Z]bs,lgl

foralls € S.

Now fix a positive integetv. We denote by any element oK with v(x) > N; here
we intend that two different occurrencessaiay refer to two different numbers. With this
convention, we have the following simplification rules:

* 4k = %k,
A4+%)A4+%) =1+,
L4+%)/1+%) =14 .
We also have*x = x« wheneven(c) > 0.

Define anN -perturbation of the recurrence as any functi@n: § — K such that for
eachs € S,

_ XA +wa @)
A+ 9bs ()

g'()

In cases is initial, this yieldsg’(s) = g(s)(1+ %); this is the same as saying thdg’(s) —
g(s)) = v(g(s)) + N.

The point of this definition is that, in the cake= Q,, g’ is a possible result of comput-
ing f;(g’) using p-adic floating point numbers witl-digit mantissas. Specifically, recall
from [5] that a “p-adic floating point number with aN-digit mantissa” consists of a pair
(a, e), where the “mantissal is an invertible element d&./p" Z and the “exponent? is
any integer. This pair is used to represent grgdic numbe# p¢ such that: is invertible
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in Z,, and the image af under the natural map froh, to Z/p" Z is a. Hence two num-
bersr ands admit the same representation if and only i s(1+ p" u) for someu € Z,,,
ie.,ifv(s/r—1)>N.

One can then reimaging-adic floating point arithmetic as being carried out with actual
p-adic numbers, except that at any point in an arithmetic operation, a gremlin may come
along and multiply any value by a factor of the formt2«. In this interpretationg’(s) is
then allowed to be any result of computirfg(g’) in the presence of such gremlins. (Note
that any “gremlin factor” applied after adding two numbers together can be absorbed into
the gremlin factors by which each summand is multiplied. Also, the reciprocal of a gremlin
factor is itself a gremlin factor.)

Given anN-perturbationg’, define itsprojected precision lossry(g’) ats € S as

rs(g) = T<%X{U(Qt(g/))};

B

this generalizes the notion of “condensation error” introduced by Robbins. Note that the
projected precision loss is determined by ¢thmputed denominators rather than thetual
denominators, which would be th&€Q,(g)); these often but do not always coincide. Note
also that;(g") = 0 whens is initial (because the only term in the maximum{g;(g)) =
v(1) = 0), and that(g") > r;(g’) whenever < s, i.e., the bound gets larger (i.e., worse)
as you go along.

We say that the recurreneghibits Robbins stability if for any positive integev, any
N-perturbationg’, and anys € S, if ry(g’) < N, then

v(g'(s) — 8(8)) = N —rs(g) +min{0, v(g(5))}.

Robbins’ conjecture in [5], made on the basis of copious numerical evidence, then essen-
tially (but see the next paragraph) amounts to the statement that the recurrence obtained
from Dodgson condensation of a matrix of indeterminates (indexed by the connected
minors) exhibits Robbins stability. (Note that the term (0irv(g(s))} drops out in the
Robbins’ case becauség(s)) is always nonnegative; this seems to be warranted by ex-
perimental evidence, as we note at the very end.)

It may be more accurate to speak here of “weak Robbins stability,” as we are actually
generalizing a slightly restricted version of Robbins’ conjecture. That is because Robbins
permits the “borderline” case (g’) = N; indeed, the comment in [5] that “a quantity can
be accurate to zero places” suggests that this permission was deliberate. However, we are
not entirely sure whether to believe the conjecture in the borderline case, and our proof of
Robbins stability in the one nontrivial case we can prove (see the Theorem below) does not
handle the borderline case; a future clarification of this issue would be welcome.

It may be helpful to recall (or rather, to attempt to reconstruct) some of Robbins’ mo-
tivation for making his original conjecture. The quanti¥y— r;(g’) measures the extent
to which we can distinguish the denominators we have divided by so far from zero. To
the extent that we can make this distinction, we expect that Dodgson condensation should
continue to work; this expectation is formalized in the inequality defining the stability

property.
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However, the assertion that — r;(g") measures our ability to distinguish denominators
from zeroes is only really meaningful if those denominators are integral. This suggests
that it may not be wise to expect stability for recurrences in which denominators occur
in an unsystematic fashion; this caution is borne out by a simple example, which we now
give.

TakeS =1{0,1,2,3,4,5, 6, 7}, equipped with the ordering that agrees with the usual
ordering except that 0 and 1 are not comparable, and consider the recurren@egbwen

by
x0=05, x1=-b5, Xp=—-— m=2,...,7).

The functiong in this case takes the values

5 _5 6 11 7 40 365 663
7 5725 15 33 77 140
Let v denote the 2-adic valuation; then the functigniaking the values

6 11 793 4040 20365 17463
5 25 15° 33 7 8723 1601860

5, -5,
is an N -perturbation forN = 6, because

, o 11/25—(1-25
g = T

andg’(n) = f,(¢g") forn =5, 6, 7. The projected precision loss is
r1(g) = max{v(5), v(=5), v(—6/5), v(11/25), v(7/15), v(—40/33)} = 3,
andv(663/140 = —2, so Robbins stability would predict that
v(—174631601860- 663/140) > N — r7(g’) + min{0, v(663/140} =6 —-3-2=1.

However,—174631601860- 663/140= —2661195560651 has valuation 0, so the re-
currence does not exhibit Robbins stability.

As noted before, it is unclear whether one should expect Robbins stability to be ex-
hibited by recurrences with “unpredictable” denominators. However, there is a wide class
of recurrences in which denominators either do not occur, or occur in a limited and sys-
tematic fashion; these are the recurrences which exhibit the “Laurent phenomenon,” in the
parlance of Fomin and Zelevinsky [2]. That paper establishes that a number of interest-
ing recurrences (like Dodgson condensation) have the following property: if one views the
initial constants as distinct indeterminates, the noninitial terms turn out to be polynomi-
als in these indeterminates and their inverses. (See [3] for an online discussion of such
recurrences and related topics.)
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Among recurrences admitting the Laurent phenomenon, Dodgson condensation is but
one example, and it seems (to us, anyway) that the unexpected cancellations that contribute
to the Laurent phenomenon may in the condensation case must have something to do with
the unexpectedly strong bound on the precision loss predicted by Robbins stability. We
thus pose the question: do other Laurent recurrences exhibit Robbins stability?

One can trivially construct many recurrences exhibiting Robbins stability, by consid-
ering those for whichQ, = 1 for all s, so that no divisions are ever performed in the
calculation and hence(g’) = 0 for all s € S. In fact, these recurrences have a much
stronger property.

Proposition. If O, =1 for all s then, for any N -perturbation g, v(g’(s) —g(s)) > N (and
hence v(g’(s)) > 0)for all s € S.

Proof. We proceed by induction an for s minimal, the desired inequality is given directly
by the definition of anV-perturbation, so we assume thas nonminimal and that

g)y=gt)+x* forallr<s.

In particular,v(g’(¢)) >0 forallz <.

We now begin a second induction to show thelt! = g’ + x for all tuples! of non-
negative integers indexed by the set &f S with ¢ < s; this induction will be on the sum of
the entries of . If this sum is zero, then the desired equality is the trivially true 1+ .
Otherwise, given a tuplé for which the claim is known for all tuples of smaller sum,
choose some at which I has a nonzero component, and Jebe the tuple obtained by
decreasing this component by 1. Theh= g’ g(r) and likewise forg’, (g')’ = g’ +
by the inner induction hypothesis, agtlr) = g(r) + x by the outer induction hypothesis.
These imply thag’(r) and(g’)’ have nonnegative valuation, and so

@) =@ gt = (g +%)(g) ++) =g g(t) + () x +&” * + *
=g'eW+x=g' +x

This completes the inner induction, so we may conclude(iiat = g/ + « for all 1.
To complete the outer induction, note that

g©)—g®) =Y (a1 +9E) —aug’ =) (e *=) a,1() —¢')
1 1 1

=S D=
1 1

sincev(as, ;) > 0 by hypothesis. O

On the other hand, it seems not so easy to establish that Robbins stability is exhibited
by any recurrences, even ones exhibiting the Laurent phenomenon, in which nontrivial
divisions take place. However, we have succeeded in doing so in one case, which we now



664 K.S Kedlaya, J.G. Propp / Advances in Applied Mathematics 34 (2005) 659-668

describe; it is a form of a recurrence of Conway and Coxeter [1], which we will refer to
here as the “number frieze” recurrence.
Fix a positive integen, and set

S={(a,b)eZxZ:0<a<n, 0<b<n—al,
with the partial order given by
@,b)y<(@a,b) < d <a and b<b <b+a—ad.
Choosery, . .., ¢,—1 € K of nonnegative valuation, and define a recurrencé by
forn=1 (O<b<n),

fan=c OLb<n-1),

Xa—1bXa—1,p+1—1
flapy = ~=rbma— bt @2<a<n, 0<b<n—ay;

Xa—2,b+1

theng exists and takes values with nonnegative valuations. Indeed, as noted in [4], this is
basically a special case of Dodgson condensationfthg are connected minors of the
tridiagonal matrix

c 1 O 0 0
1 ¢¢2 12 --- O 0
0 1 e 0 0
0O 0 O cr—2 1
0O 0 O 1 cpa

and while one cannot condense this matrix (as some of the other connected minors vanish),
one can recover the number frieze recurrence by instead condensing the matrix

U bt i=J
U7 pi=iDi-iDr2) o

wherer is an indeterminate, then setting- O in the resulting polynomials.
Theorem. The number frieze recurrence f, ») exhibits Robbins stability.
Note that the proof will actually yield a stronger result, as in the trivial cage 1 for
all s): it effectively shows that as long as the projected precision loss is strictly lesa/than

Robbins stability holds even using fixed point arithmetic (i.e., working mog{ipinstead
of floating point arithmetic.

Proof. Let g’ be anN-perturbation. (To simplify notation, we writg(a, b) andg’(a, b)
instead of g((a, b)) and g’((a,b)).) We prove by induction orz that as long as
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rab)(8) < N, we have(g'(a, b) — g(a. b)) > N — r(a.(g") (and hence(g'(a. b)) >0,
sinceg(a, b) is known to have nonnegative valuation); this gives precisely the Robbins
stability bound.

Before continuing, we introduce another notational conventionrRut, ) (g’), and
write Y = Z to mearmw(Y — Z) > N — r (S0 in particular any star is congruent to 0). Note
that the congruencés= Z andY’ = Z' imply thatY + Z =Y’ + Z’ always; ifY, Z,Y’, Z’
have nonnegative valuation, the congruences also implyXfiat= ZZ’. Moreover, if
Y = Z andY, Z both have valuation 0, then 1= z~1.

We now return to the induction. Fer= 0, 1, the desired inequality holds by default
becauséa, b) is initial. Fora = 2, the denominator of(, ) IS x(0,»+1), andg’(0, b+ 1) =
£(0,b+1) + % =1+ x has valuation 0, so again the desired inequality follows.d~er3
and 0< b < n — 3, we have

8@, b)g2,b+1) -1
sGD =" ey
1+08 2. b)g' 2. b+1) — (1+%)

A+%g' L b+1) ’

g'@B b=

by the induction hypothesig/(2,b) = g(2,b) + *, ¢ 2,b+1) =g(2,b + 1) + %, and
gLb+1)=g@Q,b+1)+=%5s0

g2,b)g(2,b+1) — 1+

'(3,b) =
¢35 g, b+1)+x

Since Q' 1»)(g') =1 fora’ =0, 1, and since for’ = 2 we have as abov@ ) (g') =
1+ %, we have

r= (a,’brjggé’b){v(Q(a/,b’)(g N} =v(Qunp(g)) =v(g' (1, b+1)).

Hence (since- < N by assumption)’(1,b + 1) < N, yielding v(g’(1,b + 1) + %) =
v(g’(1, b+ 1)); in particular,v(g(1, b+ 1)) = v(g’'(1, b + 1)) = r. We can now write

g2,b)g(2,b+1) — 1+ %

g3 b=
glb+1) +x
_ ((g2,b)g2,b+1) -1)/g(1,b+1)+ (x/g(1, b+ 1))
1+x%/g(1,b+1)
_8B.H) + (x/gL b+ 1) _
1+ (x/g(Lb+1)) =g(@3.b),
as desired.

Suppose now that > 4, r, 1) (g") < N, and the induction hypothesis holds for all pairs
(@',b) < (a,b); in particular, we have(g’(a’, b")) > 0 whenever(a’,b’) < (a,b). To
eliminate some indices, put
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A=gla—4,b+2),
B=gla—3b+1), C=g(a—-3,b+2),
D=ga—2b), E=gla—2b+1), F=gla—20b+2),
G=ga-1D), H=ga—-1b+1),

I =g(a,b)

and likewise with primes; note thad, ..., all have nonnegative valuation, as do
A’, ..., H' by the induction hypothesis. We then have

£ B'C'— 1+«

)

A+ %
G/_D/E/—l—i—* H/_E/F/—l—i—*
T B 4+x T Cl4x
1,_G’H’—1+>|<
T E 4%

becauseg’ is an N-perturbation and)(g’(a’, b)) > 0 for ' < a. (More explicitly, the
definition of anN -perturbation implies that’ = (B’'C’(1+ %) — (1+x*))/(A’(1+ %)) and

the like, but the product of each lettered quantity with a star is again a star.) We also have
four analogous equations without the primes and stars. Moreover, i) < (a, b), we

haver > r 1y(g") by the way the projected precision loss is defined, so the induction
hypothesis implies in particular that(a’, b") = g(a, b); in particular, we have

A=A, ..., H =H,

and we wish to show that = 1.

By the induction hypothesis, we havéE’) > 0. If v(E’) =0, thenG' =G, H' = H,
E'=Eimply GH' —1+%=GH —1andE’+x* = E. SinceN > r, the congruenceé’ =
E and the assumption(E’) = 0 imply v(E) =0, and sdE’ + %) 1 = E~. Consequently

I G'H -1+« GH-1 /
-~ E'+x  E 7
as desired.

Since the case(E) = 0 is okay, we assume hereafter thdf’) > 0; thenv(B'C’ —
1+ %) > 0, and hencey(B’'C’ — 1) > 0. Sincev(B’) > 0, v(C’) > 0, and 0= v(1) >
min{v(B’'C"), v(1 — B’C")}, this is only possible it(B’) = v(C’) = 0.

We now compute:

J_GH —1tx  (DE 14 0(EF —14%) = (B +9)(C +x)(1+)
E’ + % (B 4+ #)(C' + %) (E’ + %)
D'E'E'F —DE —E'F +1—B'C' +x
- B'C'E ++
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_DE'E'F'—D'E'—E'F —A'E'+x DEF —D —F — A + (x/E')
B B'C'E' + N B'C' + (x/E’)

As before, we havdd’'E'F'= DEF,D'=D, F'=F, A= A, andB'C’' = BC. More-
over, from the definition of the projected precision loss, we have

= max N ! 2 4 / = E/ y
r <u/,b/)<(a,b){v(Q(“ (&)} = v(Qu.p(g)) =v(E)
and sox/E’' =0.
Sincer < N, the facts that(B'C") = 0 andB’C’ = BC together imply that (BC) = 0;

then the congruenc8C = B'C’ + (x/E’) implies (B'C’ + (x/E’))~1 = (BC)~L. This
together with the previous mentioned congruences and the equation

I_DEF—D—F—A
o BC

yields I’ = I, as desired. O

Note that in this example, the precision bound given by Robbins stability is not always
sharp if one fixega, b) and varies over alN -perturbations. For instance, f& = Q with
the 3-adic valuation, take

(co,...,c5)=(1,3"—1,-1,1, —11 22).

Form and N sufficiently large (sayn > 5 and N > 2m), the projected precision loss

is m (achieved byg(1, 1) = —3™), but experiments suggest thatg’'(5,0) — g(5,0)) >

N —m + 5 always. It would be interesting to find a more precise version of the projected
precision loss that detects such “localized disruptions,” specifically by relaxing the restric-
tion that the bound can only get worse with each successive term. Such a formulation of
the stability phenomenon may even suggest progress towards Robbins’ original conjecture
or generalizations.

Although all our examples have been recurrences @uewith v equal to ap-adic
valuation, we have taken care to make our setup more general. In particular, one could use
our framework to look at Robbins stability @(x), with v thex-adic valuation. This might
serve as a bridge between the Laurent phenomenon and Robbins stability.

We conclude by mentioning some further experiments the first author has conducted
with Punyashloka Biswal. Namely, we have been applying Robbins’ testing regimen
to other recurrences exhibiting the “Laurent phenomenon” of [2]: compute pairs of
N-perturbations usingv-digit p-adic floating point arithmetic (generating the undeter-
mined p-adic digits at random), and compare their difference to the projected preci-
sion loss predicted by Robbins stability. (This is somewhat easier than comparing one
N-perturbation to the exact solution.) Two families of examples we have considered, which
both appear to exhibit Robbins stability, are the Somos sequences

ZlgingJ Qi Xn+iXn+k—i
Xn

xo=x1=---=x-1=1 Xntk =
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fork=4,5, 6,7, and the sequences

2
X1 +CxXnt1+ d

Xn+2 =
Xn
given in [2, Example 5.4]. Notably, the latter example seems to require the correction term
min{0, v(g(s))} that we introduced into the definition of Robbins stability.

Acknowledgments

Thanks to Joe Bubhler for referring us to the formulation of Robbins’ conjecture appear-
ing here. The first author is supported by NSF grant DMS-0400727, and the second author
is supported by NSA grant H92830-04-1-0054.

References

[1] J.H. Conway, H.S.M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973) 87-94.

[2] S. Fomin, A. Zelevinsky, The Laurent phenomenon, Adv. in Appl. Math. 28 (2002) 119-144.

[3] J.G. Propp (moderator), “Robbins” online forum, accessible via http://www.math.wisc.edu/~propp/about-
robbins.

[4] J.G. Propp, notes available at http://www.math.wisc.edu/~propp/somos/dodgson.

[5] D.P. Robbins, A conjecture about Dodgson condensation, Adv. in Appl. Math. 34 (4) (2005) 654-658, this
issue.



