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1. I N T R O D U C T I O N  

The notion of an essential :nap introduced by Granas in [1], is more general than the notion of 
degree. In [1], he showed that  if F is essential and F g G, then G is essential. However, to be 
essential is quite general and as a result Granas was only able to show this homotopy property for 
particular classes of maps (usually condensing). The notion was extended by many authors (see, 
for example, [2]) to other classes of maps. However, from an application viewpoint the authors 
in [1,2] were asking too much (and therefore, they could only establish their continuation ttmory 
for particular classes of maps). What  one needs usually in applications is tile following question 
to be answered: if F is essential and F ~ G, does G have a fixed point'? In this paper, we discuss 
this question in detail. To illustrate the ideas involved, we discuss in particular approximable 
and acyclic closed maps and we show in Section 2 and in Section 3 that  the above property holds 
for these classes of maps. (Indeed this property also holds for many other classes of maps in the 
literature, see for example those maps in [2,3].) In [3,4], nonlinear alternatives of Leray-Schauder 
type were presented for general classes of maps (of course the results in this paper automatically 
include those in [3,4]). This paper should be viewed as a stepping stone towards obtaining a 
general continuation theory (i.e., if F is essential and F =~ G, then G is essential) for general 
classes of maps. These continuation type results are currently under investigation by the authors. 

To conclude the introduction, we present some concepts which will be needed in Secl;ion 2 
and in Section 3. Let X and Y be subsets of Hausdorff topological vector spaces El and Eg, 
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respectively, and F : X --~ 2 Y (here 2 v denotes the family of all nonempty subsets of Y) is a 
multifunction. Given two open neighborhoods U and V of the origins in E1 and E2, respectively, 

a (U, V)-approximate  continuous selection of F is a continuous function s : X --* Y satisfying 

s(x) E (F[(z  + U) A X] + V) (3 Y, for every x E X. 

F is said to be approximable if its restriction F[K to any compact  subset K of X admits  a 

(U, V)-approximate  continuous selection for any open neighborhoods U and V of the origins in 

E1 and E2, respectively. 
Let (Z, d) be a metric space and let ~ z  be the family of all bounded subsets of Z. The 

Kuratowski measure of noncompactness is the map a : f tz  ~ [0, 0¢] defined by (here B E f tz) ,  

a ( B )  = inf {r > 0:  B C_ U~=IBi and diam (Bi) < r} .  

Let S be a n o n e m p t y  subset of Z and suppose G : S- -*  2 X. Then (i). G : S - -*  2 X is k-set 
contractive (here k > 0) if a(G(A)) < ka(A) for all nonempty, bounded sets A of S, and (ii). 
G : S --* 2 x is condensing if G is 1-set contractive and a(G(A)) < a(A) for all bounded sets A 

of S with a(A) # O. 

2. A P P R O X I M A B L E  C L O S E D  M A P S  

Let E be a Fr~chet space and U an open subset of E with 0 E U. 

DEFINITION 2.1. We say F E APCG(U, E) if F:  U ~ Cc(E) is a dosed (i.e., has dosed graph), 
approximable, condensing, bounded (i.e., F(U) is bounded) map; here Cc( E) denotes the family 
of nonempty, dosed subsets o r e  and U denotes the closure of U in E. 

DEFINITION 2.2. We let APMou(U,E)  denote the set of a11 maps F E APCG(U,E)  with 
0 ~ (I - F)(x) for x E aU; here I is the identity map and 0U denotes the boundary of U in E. 

DEFINITION 2.3. A map F E APMou(U,E)  is essential if for every G E APMou(U,E)  with 
GIou = F[ou there exists x E U with 0 E (I -- G)(x). 

THEOREM 2.1. Let E be a Frdchet space and U an open subset of E and 0 E U. Suppose 
F E APMou(U, E) is essential Let H : U x [0, 1] -~ Cc(E) be a dosed map with the following 
properties: 

H(x, O) = F(z),  for x E U, 

0 q~ (I - Ht)(x) for anyx  E OU and t E (0, 1] (here g t (x)  = H(z , t ) )  

(2.1) 

(2.2) 

and 
for any continuous It : U --+ [0, 1] with #(OU) = 0, the map 

(2.3) 
R.  :-~ ~ Cc(E) de~ned by n . ( x )  = H(z, ~(z)) is in APCG (g ,  E ) .  

Then H1 has a fixed point in U. 

PROOF. Let 
B = {x E -U: 0 E ( I -  Ht)(x) for some t E [0, 1]}. 

When t = 0, we have I - H0 = I - F,  and since F E APMou(U, E) is essential, there exists 
x E U with 0 E (I -- F)(x). Thus, B # 0. In addition, B is closed since H : U x [0, 1] --~ Ce(E) 
is a closed map. Also (2.2) (together with F E APMou(U, E)) implies B A OU = O. Thus, there 
exists a continuous # : U :-~ [0, 1] with #(OU) = 0 and #(B)  = 1. Define a map R : U -* Cc(E)  
by 

R(x) = H(x, It(x)). 
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F rom (2.3), we have R E APCG(-U,E). Moreover,  for x E OU, (I - R)(x) = (I - Ho)(X) = 

( I  - F)(x) and so R E APMou(U,E) .  Also notice 

RIou = HoI0u = F[ou 

and since F E APMou(-U,E) is essential,  there  exists x c U with 0 E (I - R)(x) (i.e., 0 E 

([ - H~(x)(x)). Thus ,  x E B and so #(x)  = 1. Consequently,  0 E ( I  - H 1 ) ( x ) .  I 

We now use T h e o r e m  2.1 to obta in  a nonlinear a l te rnat ive  of Leray-Schauder  t ype  for approx-  
imable  maps .  To prove our  result  we need the  following well-known result  f rom the l i tera ture  

!5, pp. 192-193]. 

THEOREM 2.2. Let E be a Fr4c_het space, Q a nonempty, dosed, convex subset of E and J E 

APCG(Q, Q). Then J has a fixed point in Q. 

THEOREM 2.3. Let E be a F~dchet space, U an open subset of E and 0 E U. Suppose G E 

APCG(U, E) with 
x ~ t G ( x ) ,  f o r x E O U  and r E ( 0 , 1 ) .  (2.4) 

Then G has a fixed point in U. 

PROOF. We assume x ~ G(x) for x E OU (otherwise, we are finished). T h e n  

x ~ t G ( x ) ,  f o r x E O U  and t E [ 0 , 1 ] .  ,:2.5) 

Let  H(x, t )  = tG(x) for (x , t )  E U x  [0,1] and F(x) = {0} for x E U. First,_ we show H : 

U x [0,1] --+ Cc(E) is a closed map.  To see this, let (x~,t~,ya) be a net in U × [0,1] × E with  
ya E H(xa, ta) = taG(xa) and (xa,  ta ,  Ya) --+ (x, t, y). We must  show y ~ H(x, t). W i t h o u t  loss 

of genera l i ty  assume t E (0, 1]. Since y~ E taG(x~), there  exists z~ E G(xa) with  y~ = t~z~. Now 
y~ --+ y, za --+ (1/t)y toge ther  wi th  the  closedness of G implies (1/t)y E G(x), i.e., y E tG(x). 
Thus ,  y E H(x, t )  and so H : U x [0,1] -+ C c ( E )  is a closed map.  In  addition,_ (2.1) and (2.2) 

hold. Also, notice Ru(x) = #(x)G(x) and we will now show tha t  _R E APCG(U, E). Notice t ha t  
an a r g u m e n t  similar to  the  one above shows Ru is a closed map.  In addit ion,  for any bounded  

set A C_ U we have 
Ru(A) C_ co(G(A)  U {0}), 

so it is i m m e d i a t e  t h a t  R t, is a bounded,  condensing map.  I t  remains  to show R ,  is approx imable .  
Let K be a compac t  subset  of U. Let  U1 and V1 be two neighborhoods  of the  origin. We 

m a y  assume wi thou t  loss of general i ty  t ha t  U1 is symmetr ic .  Let  V2 C V1 be a ba lanced open 

ne ighborhood  of the  origin wi th  V2 + 1/2 C V1. Now K is compact ,  G is a closed map ,  G(K) is 
bounded ,  and p is continuous,  so for any x E K there  exists a ne ighborhood 1/~ c UI of the  

origin wi th  

(Ix + wx] n K) C (Ix + W~] n K) c , (~)G( . )  + V2 = R.(x) + V2 

Let  Zx C_ Wx be a ne ighborhood of the  origin wi th  Zx + Zx c Wx. Now let {x, + Z:,:, }~ (here 
x, E K )  be  an open covering of K and let [/2 = N~Zx,.  Also let s : K ~ E be the  (/-72,V.e)- 
a p p r o x i m a t e  cont inuous selection of GIg. Let  Sl : K --+ E be defined by sl(x) = p(x)s(x). We 
now check t h a t  s l  : K --+ E is a (U1, V1)-approximate  cont inuous selec[ion of R ,  IK. Fix x E K .  

T h e n  x E x ,  + Zx~ for some i E {1, 2 , . . .  }. Now since 

s(x) c c(:,: + u~) + v~, 

we have 
t,(x)s(x) E t*(x~ + Wx,)C(x + U2) + V2 
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a n d  SO 

Thus,  

and so 

.(x)s(z) c .(x~ + Wxi)a(x~ + wx,) + v2. 

~(x)s(x) E R . ( zd  + Yt 

s~(~) • n.([~ + u~] nK)  + v~. 

Consequently,  sl : K --* E is a (U1, V1)-approximate continuous selection of R ,  IK. Thus,  (2.3) is 

satisfied. We can apply  Theorem 2.1 if we show F is essential. To see this let 0 E APMou(U, E) 
with OIou = FIou = {0}. We must  show tha t  there exists x E U with x E O(x). Let Q = vd(O(U)) 
and let J : Q ~ Q be defined by 

f0(~) ,  x e U ,  
J(x) I {0}, xCu.  

We now show J E APCG(Q, Q). It  is clear tha t  J is a closed map.  In addition, for any bounded  

set f~ C Q we have 
J(a) < co (0 (~ n ~) u {0}), 

so it is immedia te  t ha t  J is a bounded,  condensing map.  I t  remains to show J is approximable.  

Let  K be a compac t  subset  of  Q. Let U, and V1 be two neighborhoods  of the origin and let 

r : K f l U - - ~  E be the (U1, V1)-approximate continuous selection of 0[KnV. Let r l  : K --~ E be 

defined by 
r(x) ,  x E K O U ,  

r t  (x) = 0, otherwise. 

I t  is immedia te  tha t  r l  : K --* E is a (U1,V1)-approximate continuous selection of  J .  Thus,  

J E APCG(Q, Q). Theorem 2.2 implies t ha t  there exists x E Q with x c J(x). Now if x ¢~ U, 

we have x E J(x) = {0}, which is a contradict ion since 0 E U. Thus,  x E U so x E J(x) = O(x). 
Hence, F is essential and we may  apply  Theorem 2.1 to deduce the result. I 

3. A C Y C L I C  CLOSED M A P S  

Let E be a Fr4chet space and U an open subset of  E with 0 E U. 

DEFINITION 3.1. We say F E ACG(U,E),  if F :  U ~ CD(E) is dosed, condensing, and 
bounded; here CD(E) denotes the family of nonempty, dosed, acyclic subsets of E. 

DEFINITION 3.2. We let AMou(U,E) denote the set o f  a11 maps  F E ACG(U,E) with 0 
( I  - F ) ( x )  for x E 0 g .  

DEFINITION 3.3. A m a p  F E AMou(U,E) is essential i f  for every G E AMog(U,E)  with 
GIou = F[ou there exists x E U with 0 E (I -- G)(x). 

THEOREM 3.1. Let E be a Frdchet space and U an open subset of E and 0 E U. Suppose 
F E AMou(U, E) is essential Let H : U x [0, 1] --* Cc(E) be a closed m a p  with the following 
properties: 

H(x, O) = F(x), for x E U, (3.1) 

O ~ ( I - H t ) ( x ) ,  for a n y x E O U  and t E  (0,1] ( h e r e H t ( x ) = H ( x , t ) )  (3.2) 

and 
for any continuous # : U --~ [0, 1] with #(OU)= 0, the  ,nap 

R• : -U --~ CD(E) defined by R,(x )  = H(x, p(x)) is in ACG (-U, E) . 

Then H 1 has a fixed point in U. 

PROOF. Essentially, the  same reasoning as in Theorem 2.1 establishes the  result. 

Next,  we recall the following well-known result from the l i terature [5, pp. 193]. 

(3.3) 
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THEOREM 3.2. Let E be a Frdchet space, Q a nonempLv, closed, convex subset of E and ,J • 

A C G ( Q ,  Q). Then  J has  a fixed point in Q. 

THEOREM 3.3. Let E be a Frdchet space, U an open subset of  E and 0 • U. Suppose G • 

ACG(U,  E)  with 

z q~ ta (~) ,  for x • OU and t • (0, 1). (3.4) 

Then G has a fixed point in U. 

PROOF. We assume x q~ G(x)  for x • OU and  so 

x ~ t G ( x )  f o r x • 0 U  and  t •  [0,1]. ,13.5) 

- -  m 

Let  H ( x ,  t) = tG(x)  for (x, t) • U x [0, 1] and  F(x)  = {0} for x • U. As in T h e o r e m  2.3 it is easy  

to see t ha t  H : U x [0, 1] --* Cc(E) is a closed map. I t  is also immedia te  t ha t  (3.1),  (3.2),  and (3.3) 
hold.  We can a p p l y  T h e o r e m  3.1 if we show F is essential .  To see th is  let  0 • A M o u ( U ,  E) with  

O]ou = Flog = {0}. Let Q = E6(O(U)) and let J : Q -~ Q be defined by 

f0(~), x • u ,  
J(x)  I {0}, x~U. 

Now it  is i m m e d i a t e  t h a t  J E ACG(Q,  Q), so T h e o r e m  3.2 implies t h a t  the re  exis ts  x E Q wi th  

.r E J ( x ) .  Also,  if x • U we have x E J(x )  = {0}, which is a con t rad ic t ion  since 0 • U. Thus ,  

x • U, so x • Y(x) = O(x). Hence,  F is essent ia l  and  we may  app ly  T h e o r e m  3.1 to  deduce  the  

result .  I 

REMARK. T h e  ideas  in th is  pape r  could be ex t ended  to many  o ther  classes of maps  (for example ,  

the  ideas  ex tend  to  the  weakly  inward  app rox ima b le  maps  in [3]). 
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