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Abstract
This paper discusses a randomized nonautonomous logistic equation
dN(t) = N@)[(alt) = b)N (1)) dt + (1) dB(1)],

where B(t) is 1-dimensional standard Brownian motion. We show thgt/N(¢)] has a unique
positive T-periodic solutionE[1/N,(t)] provideda(z), b(t), anda(r) are continuous'-periodic
functions,a(r) > 0,b(1) > 0 and [y [a(s) — a?(s)]ds > 0.

0 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A simple nonautonomous logistic equation, lxhee ordinary differential equations, is
usually denoted by

N(t)=N@®[a@t) —b@)N@®)], (1.1)
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onz > 0 with initial valueN (0) = No > 0, and models the population densiyof a single
species whose members compete among themselves for a limited amount of food and living
space, where(r) is the rate of growth and(¢)/b(¢) the carrying capacity at time both

a(t) andb(t) are positive continuous functions. We refer the reader to May [1] for a detailed
model construction. For an autonomous systerh)(there is a stable equilibrium point of

the population. Many authorsafie obtained a lot of interésg results about the stability

of positive solutions for the above system (1.1) with its general case, for example, see
Globalism [2]. When parametesgr) andb(t) are positivel -periodic functions, Eq. (1.1)

has a stable positivE-periodic solutionV, (¢),

[ expl [ a(r)dr)b(s)ds

explfy a(v)dr)—1

The existence of a stable periodic solution is of fundamental importance biologically since

it concerns the long time survival of species. The study of such phenomena has become an
essential part of the qualitative theory of @iféntial equations. For historical background,

and the basic theory of periodicity, and discussions of applications of (1.1) to a variety
of dynamical models, we refer to the reader to, for example, the work of Burton [3] and
the references therein. In contrast, if we now let paramet@ys> 0 andb(r) < 0, then

Eq. (1.1) has only the local solution

expl o a(s) ds)
1/No— [y 1b(s)| expl [y a(v) dt}ds
which explodes to infinity at the finite timg,, whereT, is determined by the equation

Te K
1/N0=/\b(s)\exp{/a(r)dz}ds.
0 0

However, given that population systems are often subject to environmental noise (cf.
Mao et al. [4]), it is important to discover whether the presence of a such noise affects
these results. Suppose that parameter is stochastically perturbed, with

1/Np(t) =

N@) = 0<t < Ty,

a(t) = a@t) +a()B (@),

whereB(r) is white noise and2(r) represents the intensity of the noise. Then this envi-
ronmentally perturbed system may be described by the Ité equation

dN(t) = N@®)[(a(t) =b()N(@))dt +a(t)dB(1)], >0, (1.2)

where B(¢) is the 1-dimensional standard Brownian motion wif0) = 0, N(0) = Ng
and Np is a positive random variable. Hetst), b(t), andu(r) are bounded continuous
functions defined ofi0, c0), a(?) > 0 andb(¢) > 0. It is reasonable to assume théf is
independent oB(z).

Remark 1.1. Mao et al. [4] consider the environmentally perturbed system
dN(1)=N®[(a+bN@))dt +aN1)dB(1)], >0,
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wherea, b, a > 0 with N(0) = Np > 0. No matter how smalk > 0, they show that the
solution will not explode in a finite time. This result reveals the important property that the
environmental noise suppresses the explosion.

In order to for a stochastic differential equation to have a unique global (i.e., no ex-
plosion in a finite time) solution for any initial value, the coefficients of the equation are
generally required to satisfy the linear grttmeondition and local Lpschitz condition (cf.
Arnold [5] and Freedman [6]). However, the coefficients of Eqg. (1.2) do not satisfy the
linear growth condition, though they are local Lipschitz continuous, so the solution of
Eq. (2.1) may explode at a finite time.

SinceB(t) is not periodic, we cannot expect the solutiiir) to Eq. (1.2) is periodic
even ifa(t), b(t) anda(¢) are continuoud -periodic functions. In fact, as far as authors
know, there are few work on periodic solutions of stochastic differential equations. In this
paper, we show thak[1/N(z)] has a unique positiv& -periodic solutionE[1/N, ()]
provideda (), b(¢) anda(z) are continuoud -periodic functionsa(r) > 0, b(t) > 0 and
[OT[a(s) — a?(s)]ds > 0. Here, and in the sequelET f1” will mean the mathematical
expectation off .

The remain part of this paper is as follows.Section 2, we represent the unique solution
of Eq. (1.2) and show that the solution will not explode in a finite time. In Section 3, we
represent the unique positiZe-periodic solutionE[1/N,(¢)] and in Section 4, similar to
the arguments for dealing with Eq. (1.2), we consider a general randomized model with
intensitya?(7),

dN(t) = N@)[(a(t) —b(O)N? (1)) dt +a(t)dB()].

2. Representation of global solution

Let (£2, F,P) be a probability space on which ancreasing and right continuous
family {F;}:cr0,77 of complete subz-algebras ofF is defined. LetB(r) be a given
1-dimensional standard Brownian motion defined on the probability space. In this sec-
tion, we shall represent the unique solution of Eq. (1.2) and show that the solution will not
explode in a finite time.

Lemma 2.1.
t 1 t
E[exp{/a(s)dB(s)}:| :exp:E/az(s)ds}, 0<0<t.
to fo
Proof. Let

t

y(t) = exp{ /a(s)dB(s),

fo
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and apply Ité’s formula
13 t

dy(t):exp{/a(s) dB(s)}a(t) dB(t) + %exp{ /a(s)dB(s),az(t) drt.
fo fo

Thus

t s
y(t)=y(t0)+/exp{/Oé(f)dB(f)}Ot(S)dB(S)

fo to

t Ky
+ %/exp{/a(r)dB(r),az(s)ds.

10 o
So we get

t

1
E[y0)] = ] + 5 [ Do) ds.

fo

d 1
TE0]= SPOE[®], E[yw]=1.

t
E[y®)] =exp{ %/az(s)ds}.
fo

The proof of Lemma 2.1 is completedO

So,

We have the following main result in this section.

Theorem 2.2. Assume that (), b(r) anda(z) are bounded continuous functions defined

on [0, 00), a(tr) > 0 andb(¢) > 0. Then there exists a unique continuous positive solution

N(¢) to Eq.(1.2)for any initial valueN (0) = Ng > 0, which is global and represented by
expl fila(s) — C) ds + a(s) d B(s))

1/No+ [y b(s) exp(fyla(z) — Lz(”] dt +a(t)dB(1)}ds

N(t) = , t=20 (2.1

Proof. Since the coefficients of the equation &eal Lipschitz continuous for any initial
valueNg > 0, there is a unique local solutiawi(z) ont € [0, ), wherer, is the explosion
time (cf. Arnold [5] and Freedman [6]).

To show this solution is global, we will represent the solution. Let
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{ [[e?(s)
x(t) :=exp /[ > —a(s)] ds —a(s)dB(s)
0
' s
(1)
X |:1/N0+/b(s)exp{/|:a(t)— > i|dt+ot(t)dB(r)}dsi|; (2.2)
0

0
thenx(¢) satisfies the equation

dx(t) =[(®(t) —a(®)) dt —a(t)dB(t)|x(t) + b(¢) dt. (2.3)
Let N(¢) := 1/x(), thenN(¢) > 0 andN(¢) is continuous and global ane [0, o0). By
Itd’s formula
dx(1) = (dx(1))?
20 X
= —[(«?(t) —a(®)) dt — a(t) dB(t)]|N (1) — b(t)N?(t) dt + N (t)a?(t) dt
=N®)[(alt) —b()N@))dt +a(t)dB(1)].

Thus N(¢) is a continuous positive solution of Eq. (1.2) and globalran[0, co) (i.e.,
7, = 00). This completes the proof of Theorem 2.10

AN(t) = —

Remark 2.3. If b(r) <0, Eqg. (1.2) has only the local solution

expl fia(s) — L2 ds + a(s) d B(s))

1/No— fé |b(s)| exp{fg la(z) — @]dr +a(r)dB(t)}ds
o<t <t (2.4)

N(t) =

which explodes to infinity at the time:
te=inf{z: f(r) =1/No},

where
te

[ o2(1)
f(t)=/|b(5)|eXP f[a(r)— 5 j|dr+a(r)dB(t) ds
0 0

For each fixed > 0, sinceNp is independent oB(r) then I/ Ny is independent off (¢),
thus f (¢)(w) # 1/ No(w) for somew € £2. It follows by Lemma 2.1 that

t

t s
E[f(1)] =/|b(s)|exp{/a(r)dt}ds, E[f'(]= |b(t)|exp{/a(t)dr}
0 0

0
and

t
E[f)f' ] = \b(t)|E|:/|b(s)|exp{/ [2a(1) — &?(2) dt+2a(t)dB(r)}
0

0
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p{ \ o2(1)
X ex /[a(r)— 5 i|dr+ot(t)dB(r) ds

N

t t
= |b(t)|/|b(s)|exp:/[Za(t)+oc2(t)]dr}exp{/a(t)dr}ds
0 0

N

t t s
= ‘b(t)|exp{/a(r)dr}/‘b(s)‘exp{/[a(r)—i—az(r)]dt}ds.
0 0

0

Let
gt)=1/No— f(t), t=0.
Then we have

%E[gzm] =2(E[f0) f ()] — E[1/NolE[ f'(1)])

t

= 2[b(1)| exp{/a(t)dr}

0

t s
x [/\b(s)\exp{/[a(z) +a2(r)]dt}ds —~ E[l/No]}.
0 0
Let 0 < 71 < oo satisfy
Ty K}
/|b(s)| exp{/a(r)dt}ds = E[1/Ng].
0 0

(Notice thatTy = T, provided Ng = constant.) TherE[g(T1)] =0, E[g(t)] > 0 for 0<
t <TiandE[g(t)] < Ofort > Ty. We can seg(r)(w) < 0 ont € [T, co) for somew € £2.
Let 0 < 7> < Ty satisfy

T> K
/\b(s)\ exp{/[a(r) +a?(1)] dt} ds = E[1/Nol.
0 0
Then L E[g%(1)] <0 for 0< ¢ < T» and 4 E[g2(1)] > O for t > To. ThusE[g%(1)] is de-

creasing ori0, 7] and increasing ofiT2, co), and E[g%(T2)] = Min;¢[0,o0) E[g%(1)] > 0.
Sinceg(¢) is decreasing for > 0 andg(0) > 0, we can seg(¢) may be positive o0, 75).

3. Positive periodic solution of E[1/N (¢)]

In this section, we assume thatt), b(t) anda(¢) are continuou§ -periodic functions,
a(r) > 0,b(t) > 0 and ;) [a(s) — «?(s)]ds > 0.
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By Lemma 2.1, we obtain from (2.3) that

t

E[x()]=E[1/N@®)]= exp{/[az(s) —a(s)] ds}E[l/No]

0
t t
+/b(s)exp{/[a2(r)—a(t)]dr}ds, >0, (3.1)
0 K
In fact, E[1/N(¢)] = E[x(¢t)] satisfies the following equation:

%E[x(t)] =[a?(t) —a(O]E[x()] +b(t), t>0. (3.2)

We can see that Eq. (3.2) has a unique posifiveeriodic solution

ftH_T exp( [’la(r) — o?(1)]dt}b(s)ds
expl [y [a(v) — ¢2(1)]d7) — 1

E[1/N,(1)] = E[x,(1)] = , t>0. (3.3

Thus we have the following result.

Theorem 3.1. Suppose (t), b(t) andu(t) are continuoud -periodic functionsg(¢) > 0,
b()>0 andfOT[a(s) — a?(s)]ds > 0. ThenE[1/N(1)] of Eq.(1.2) has a unique positive
T-periodic solutionE[1/N,(¢)] which is defined by3.3). In addition,

tﬂrpoo{E[l/N(t)] —E[1/N,(1]} =0,
whereN (¢) is the solution of Eq(1.2)for any initial valueN (0) = Ng > O.

Proof. We only need to show that every solution of Eq. (3.1) tends to Eq. (3.3);as
+o00. In Eq. (3.1),

t

E[xo0] exp{/(az(s) — a(s)) ds} — 0. (3.4)
0
So it is only necessary to verify that
t+T 13

t t
/b(s) exp{—/r(r)dr,ds— A—]—-l exp{—/r(r)dt}b(s)dsao (3.5)
0 s t

ast — +o0, wherer(r) =a(t) — a?(1), A= exp{fOT r(t)dt}. We can rewrite (3.5) as

t+T

¢ t ¢
/b(s)exp{—/r(r)dr,ds—A—il / b(s)exp{—/r(r)dt}ds
0 K} t K
t ¢ s
:exp:—/r(f)dr}(/b(s)exp{/r(r)dt}ds
0 0 0
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(+T
b(s) exp{/ r(t) dr} ds)

13
= eXp{—/r(‘l:)dT}F(t), (3.6)
0
where
13

F'(t) =b(t) exp{/ r(7) dr}

0
t+T

_ﬁ(b(t+t)exp{/r(t)dr} b(t)exp{/r(r)dt})

! (+T _
=b() exp{/r(r)dr}(l— exp{ft r(@dry 1) =0,

A-1
0

sincer(t) is periodic with periodicT . HenceF (t) = constant. So (3.4) and (3.6) imply
(3.5) and the proof is completed O

4. Related results

A general nonautonomous logistic equation, lblese ordinary differential equations, is
usually denoted by

N =N@®[a@) —b@)N?®)] (6 >0). (4.1)

Some detailed studies about the model may be found in Gilpin and Ayala [7,8]. Similarly,
we can consider a randomized model based on (4.1) with intewty,

dN (1) = N@®)[(a(t) —b()N? (1)) dt +a(t)dB(1)], >0, (4.2)

whered > 0 is an odd numbeB(z) is the 1-dimensional standard Brownian motion with
B(0) =0, N(0) = Ng and Ny is a positive random variable. Hear), b(¢) anda(t) are
bounded continuous functions defined0noco), a(t) > 0,b(¢) > 0 andNg is independent
of B(z).

Let N(¢) be a solution of Eq. (4.2), by Ité's formula

&z_l)az(t) - Gb(t)NH(t)> dt +0a(r) dB(f)]

(4.3)

Similarly to the proof of Theorems 2.1 and 3.1, we have the following results.

dN? () = N (t)[(@a(t) +
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Theorem 4.1. Assume thai(r), b(t) anda(z) are bounded continuous functions defined
on [0, c0), a(t) > 0 andb(r) > 0. Then there exists a unique continuous solutio@) to
Eq.(4.2)for any initial valueN (0) = Np > 0, which is global and represented by

explo( [ia(s) — C21ds + a(s) d B(s)))

N (1) = ,
/NG +6 [3b(s) expl( fila(r) — L2 dr +a(t)dB(r))}ds

t>0.

Theorem 4.2. Suppose (t), b(t) and«(t) are continuoud -periodic functionsg(¢) > 0,

b(t) > 0 and fOT[a(s) — 9—'510[2(5)]ds > 0. ThenE[1/N?(1)] of Eq.(4.2) has a unique

positiveT -periodic solutionE[l/Nf’7 (t)] which is represented by

o [T expl [ [0a(r) — LD a2(t)] dT)b(s) ds
expl [y [0a(r) — L0 a2(1)]dr) — 1

E[1/NS1)] =

In addition,
m {E[YN"0)] - E[4/Nj 0]} =0

whereN (¢) is the solution of Eq(4.2)for any initial valueN (0) = Ng > 0.
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