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The following theorem is discussed. Let X be a compact subset of the unit
sphere in C" whose polynomially convex hull, X, contains the origin, then the
sum of the areas of the n coordinate projections of X is bounded below by 7.
This applies, in particular, when X is a one-dimensional analytic subvariety I/
containing the origin, and in this case generalizes the fact that the “‘area’ of 17
is at least =; in fact, the area of 17 is the sum of the areas of the n coordinate
projections when these areas are counted with multiplicity. A convex analog
of the theorem is obtained. Hartog’s theorem that separate analyticity implies
analyticity, usually proved with the use of subharmonic functions (Hartog’s
lemma), will be derived as a consequence of the theorem, the proof of which
is based upon the elements of uniform algebras.

Let B denote the open unit ball in C", B = {ze C": | 2|l << 1};
GB = {ze C: 1 z] = 1} where|| 2]l = (31, %oy 3, — (50 | 2 ).
For § C C”, 2,(.S) will be the jth coordinate projection of S; A will be
planar Lebesgue measure in C. Our main result is the following
theorem.

THeoREM 1. Let X be a compact subset of OB and suppose that X,
the polynomially convex hull of X, contains the origin. Then

Nz(X)) = .

M

1

J

The constant 7 is best possible and is attained when X is a complex
line. In [2] Theorem 1 was obtained for the case when X is an analytic
subvariety of B. For a l-variety V through 0 in B, this generalizes
the fact that the area of V is at least =; in fact, the area of V is just
the sum of the areas of the n coordinate projections, when these
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areas are counted with multiplicity. In general, X need not contain
any subvarieties, and, moreover, by an example of Stolzenberg ([6],
cf. [8]), the sets z;(X) need not have interior. Stolzenberg’s hull is a
limit of one-dimensional varieties, and it is an open question whether
every hull is such. If this were so, Theorem 1 would follow from the
special case of a variety.

As an application we shall indicate a proof of a classical theorem
of Hartog’s (on the analyticity of a function analytic in each variable)
which avoids the use of subharmonic functions. Other applications
can be found in [2]. We shall be using the elements of uniform
algebras, with its standard terminology and notation as found in the
books of Gamelin [4] and Stout [7]; in particular, for X compact in
C», P(X) and R(X) will denote the uniform closure in C(X) of the
polynomials and the rational functions analytic on a neighborhood
of X, respectively.

2.

We shall need a quantitative version of the Hartog—Rosenthal
theorem. If (E,| -|]) is 2 normed linear space, x€ E, A C E, then
define dist(x, A) = inf{]|x — a || : a € 4}.

LemMa 2. Let K C C be compact. Then considering % as a function
in C(K) and R(K) as a subset of C(K), we have

dist(z, R(K)) < (\(K)Jm)2.

Proof. Let ¢ be a C* function with compact support in C such
that 4(2) = % on a neighborhood of K. By the generalized Cauchy
integral formula

i) ::_%fal/, dudo

L L—s

Restricting attention to points in K and using (24/60) = 1 on K we
get

eC, {=u+ iv.

_ du d o) dud
i e

{—z T
The second integral on the right represents a function in R(K), and,
therefore,

@.1)

dist(z, R(K)) < ||- du do “

kl— =
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By an elegant computation, Ahlfors and Beurling [1, pp. 106-107]
have found that the right side of (2.1) is dominated by (A(K)/m)!/2.
Q.E.D.

Proof of Theorem 1. Let € > 0. For each j, 1 <j <n, we can
approximate £ on z,(X) to within (A(2(X)) -+ €)/=)'/2 by a rational
function r; with poles off z,(X). Define f,(z, , %5 ,---, n) = 7(%;). Then
fiis analytlc on a neighborhood of X and, hence is in P(X) by the
Oka-Welil theorem. Also,

18 — £l < (MAX)) + e)fm)2. (2.2)

Set f = Y71 2;f; € P(X). Since 0 € X, evaluation at 0 is a continuous
homomorphism ¢ on P(X). As ¢(z;) = 0 for 1 <j <n, it follows
that ¢( f) = 0, and, hence, f is not invertible in the Banach algebra
P(X). Consider for points = in X the expression

2. %% — fy). (23)
1
Because ¥ | 2; |2 = 1 on X, the expression of (2.3) equals 1 — fon X.
Estimating (2.3) by Schwarz’s inequality and applying (2.2) gives

11 =1 < ((Z AR+ ne) ) 24)

Now as f is not invertible in P(X), 1 <|[1 —fllg=11—flx-
Hence, the right side of (2.4) is > 1. Letting ¢ — 0 gives the desired
result. Q.E.D.

Remark 1. The conclusion can be slightly improved to read
Y Az/(X N B)) > m. (2.5)
1

In fact, if 0 <r <1, let X, = Xm{z | || = r}. By Rossi’s local
maximum modulus principle, X, = X N {z:| 2| <7}. Hence, by
applying the theorem (with a scale change) to X, , we get

S XX O (a2 2| < 7)) > e,

Now letting r 7 1 gives (2.5).

580/13/1-2
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Remark 2. For our application we need the following form of
Theorem 1. Let ¥ be an analytic subvariety of B which contains 0 as a
nonisolated point. Then Y A(z;(V)) = . To see this, observe that we
may assume that V' extends to be analytic in a neighborhood of B. In
this case, take X = V' N 0B and it follows that 0 e X and X " B = V.
Now we apply Remark 1.

Remark 3. Theorems in several complex variables often have
convexity analogs [3]; Shields suggested that this may be the case for
Theorem 1 and indeed we have the following.

'THEOREM 3. Let X be a subset of the unit sphere S*1 = {p € R™:
(| pll = 1} in R™. Suppose that Ch X, the convex hull of X, contains 0.
Let I, = the length of the interval x,(Ch X)C R (where x; is the jth
coordinate projection). Then

n 1/2
(Z 1,.2) > 2. (2.6)
j=1

The proof of Theorem 3 is directly analogous to that of Theorem |
and begins with a real analog of Lemma 2.

LemMMA 4. Let ] be a finite interval in R of length I. Then there is a

real constant ¢ such that

x—cll; <3

Proof. Choose ¢ to be the midpoint of . Q.E.D.

Proof of Theorem 3. Let J; be x,(Ch X) and ¢; the corresponding
constant from Lemma 4. Note [ % — ¢ licuy < 3. Let
f(x) =1 — X7 ¢;x; . Since f is an affine function and 0 e Ch X, it
follows that 1 = |f(0)] <|/fllx. For xeX, Yx?=1 and so
f(x) = X x(x; — ¢;). Hence,

< (D) (D —er) < (Di)

for xe X. Thatis | < || fllx < 4(Z )"~ Q.E.D.

Remark. Examination of the proof shows that equality holds in
(2.6) if and only if there is « = (ay, a5 ,..., a,) € S*! such that X
is a subset of {(e;ay, €4, ,..., €,4,): ¢, = £ 1}.



PROJECTIONS OF POLYNOMIAL HULLS 17
3.

Our proof of Hartog’s theorem will depend upon the following
proposition. The open unit disc, {z e C:] 2| < 1} will be denoted
by U; its n-fold product in C*, the unit polydisc, by U*; {rz: z € U}
by rU; and the jth coordinate projection in C" by z;. Hence, if
aeC, 27 (o) ={(L, Ly L) EC™ L = af.

ProposITION 5. Let {V,} be a family of analytic subvarieties
of U™ without isolated points. Let 0 < v < | be such that
V., (Ut x (¢U)) = @ for all k. Suppose that for ac U and
1 <s<n— 1, the family {V, N z7Y(a)} of subsets of U" is locally
finite. Then {V,} is locally finite.

Remark. A special case of this result was obtained by Nishino [5].

Proof. By shrinking the polydisc we may assume, for every « € U
and 1 <<s <n — 1, that V; N 2;'(a) is empty for large enough k.
We argue by contradiction and assume that there is x, € U™ and points
xp,eV,, k=1, 2,.., converging to x,. Let L., k=0, 1,2,..., be a
biholomorphism of U™ which takes x; to 0 and which is of the form
Li(21, 35 yoey 2,) = (Lp}(21), LiA(Rs),---, L;™(2,,)) where L;# is the linear
fractional transformation given by L,%2) = (2 — %*)/(1 — &°%)
where x,. = (%}, 8;%,..., 0,%). Let W, = L,(V}), an analytic subvariety
of U™ containing . Therefore, as B C U, we get

il Mz (W) = =, 3.1)

for each k. For 1 <j<n— 1, the sets {z;(V;)} C U eventually
omit every point of U as k— co. Hence, A(z;(W,)) —0 as k — oo.
It follows from (3.1) that

lim inf A(s,(W3)) = . (3.2)

On the other hand, as L, — L, uniformly on compact subsets of U"
and as LyrU) is a neighborhood of —xy®e U, it follows (after
possibly omitting a finite number of V,’s) that there is a nonempty
open subset 2 of U which contains —x," and is such that L,*(rU) 2 2
for all k. Therefore, z,(W;) N2 = @ for all k. This implies that
Az, (W) < 7 — X&), in contradiction to (3.2). Q.E.D.

HarTtoc’s THEOREM. A complex valued function f which is defined
on an open subset Q of C" and which is analytic in each variable
separately, is analytic.
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Remark. We recall the usual reductions: First, by induction,
we may assume the theorem for functions of # — 1 variables. We
note that it is enough to show that f is locally bounded; for this
implies continuity by a simple I-variable Cauchy integral argument
and continuity implies analyticity by expanding the kernel in the
iterated Cauchy integral. Next observe that, as analyticity is a local
property, it suffices to show that f is locally bounded in a polydisc 4
such that 4 C Q. Without loss of generality we may take 4 to be U=,
Setting M(z,) = sup{| f(#, 2,)I: (¢, 2,) € U* x U} for z, € U and
applying the Baire category argument, it follows that M(z,) is uni-
formly bounded on some nonempty open subset of {z,: |z, | < 1}
By making a change of variable in z,, we may assume that
there exists 7 with 0 << 7 << 1 and 4 > 0 such that | f(3, 3,)| < 4
if 2elUr? and |z,| <2r. It follows that f is analytic on
0 = U x (2rU). For fixed 2’ € U, x — f(2/, z) is analytic on U
and so there is a Taylor series,

o0

[ 2) = ) a3) 2.

7=0

As fis analytic on Q, the g,’s are analytic on U1,

Proof. In order to show that f is locally bounded on U™ we argue
by contradiction; i.e., we suppose that there is x, € U™ and {x;} C U"
such that a;, — x, and f(x;) — co0. Let fi(2', 2,) = o a;(2") z,7.
The fy are analytic on U™ and converge pointwise to f there. As
S (%) = oo, there are N;— oo such that ¢, = fy (x;) —> 0. Let
Vi ={3€ U fxn(2) — ¢, = 0}, a subvariety of U Since the fu’s
are uniformly bounded on U*~! X (rU) and since ¢, — o, it follows
that 7, N (U™1 x (rU)) is empty for large & and by passing to a
subsequence it is no loss of generality to assume that these sets are
empty for all k. For fixed a e U, 2’ —f(«, 2') is, by induction,
analytic on U1, It follows that {fy(«, 2')} is uniformly bounded on
compact subsets of U*! and, consequently, that {V, N 27 (a)} is
locally finite. In the same way, for | <s <n — 1, {V, N 27 (a)}
is locally finite. By Proposition 5, {V,} is locally finite. But x, e ¥,
and x;, — x, € U", a contradiction. Q.E.D.
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