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The following theorem is discussed. Let X be a compact subset of the unit 
sphere in @” whose polynomially convex hull, 2, contains the origin, then the 
sum of the areas of the n coordinate projections of X is bounded below by x. 
This applies, in particular, when X is a one-dimensional analytic subvariety l’ 
containing the origin, and in this case generalizes the fact that the “area” of I’ 
is at least z; in fact, the area of f’ is the sum of the areas of the n coordinate 
projections when these areas are counted with multiplicity. A convex analog 
of the theorem is obtained. Hartog’s theorem that separate analyticity implies 
analyticity, usually proved with the use of subharmonic functions (Hartog’s 
lemma), will be derived as a consequence of the theorem, the proof of which 
is based upon the elements of uniform algebras. 

1. 

Let B denote the open unit ball in @)I, B = (z E C=” : /I z I/ <: I>; 
8B = fz E @,I: ii z I/ = I} where /I z 11 = /i(z,, ~a ,..., xn)~i = (Cl” 1 zi j2)l12. 
For S C C”, zj(S) will be the jth coordinate projection of S; h will be 
planar Lebesgue measure in C. Our main result is the following 
theorem. 

THEOREJ~ 1. Let X be a compact subset of aB and suppose that A?‘, 
the poi’ynomially convex hull of X, contains the origin. Then 

The constant 7~ is best possible and is attained when L!? is a complex 
line. In [2] Theorem 1 was obtained for the case when L!? is an analytic 
subvariety of B. For a l-variety V through 0 in B, this generalizes 
the fact that the area of V is at least T; in fact, the area of V is just 
the sum of the areas of the n coordinate projections, when these 
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areas are counted with multiplicity. In general, X need not contain 
any subvarieties, and, moreover, by an example of Stolzenberg ([6], 
cf. [S-j), the sets xi(X) need not have interior. Stolzenberg’s hull is a 
limit of one-dimensional varieties, and it is an open question whether 
every hull is such. If this were so, Theorem 1 would follow from the 
special case of a variety. 

As an application we shall indicate a proof of a classical theorem 
of Hartog’s (on the analyticity of a function analytic in each variable) 
which avoids the use of subharmonic functions. Other applications 
can be found in [2]. We shall be using the elements of uniform 
algebras, with its standard terminology and notation as found in the 
books of Gamelin [4] and Stout [7]; in particular, for X compact in 
Cn, P(X) and R(X) will denote the uniform closure in C(X) of the 
polynomials and the rational functions analytic on a neighborhood 
of X, respectively. 

2. 

We shall need a quantitative version of the Hartog-Rosenthal 
theorem. If (E, 1) * 11) is a normed linear space, x E E, A C E, then 
define dist(x, A) = inf{jI x - a )/ : a E A). 

LEMMA 2. Let K C C be compact. Then considering z as a function 
in C(K) and R(K) as a subset of C(K), we have 

dist(.%, R(K)) < (h(K)/rr)l@. 

Proof. Let # be a C” function with compact support in @ such 
that Q!J(Z) = 3 on a neighborhood of K. By the generalized Cauchy 
integral formula 

Restricting attention to points in K and using (+/a[) = 1 on K we 

get 
1 du dv 1 z=--- --- a# du dv 

--. 
77 s K4-Z s n C\K act-z 

The second integral on the right represents a function in R(K), and, 
therefore, 

dist(%, R(K)) < /I -$- JK z /lK . (2.1) 
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By an elegant computation, Ahlfors and Beurling [1, pp. 106-1071 
have found that the right side of (2.1) is dominated by (X(K)/T)~/~. 

Q.E.D. 

Proof of Theorem 1. Let E >O. For eachj, 1 <j<n, we can 
approximate z on zi(X) to within (X(xj(X)) + •)/7r)l/~ by a rational 
function ri with poles off ai( Definefj(x, , x2 ,..., zn) = rj(xi). Then 
fj is analytic on a neighborhood of X and, hence, is in P(z) by the 
Oka-Weil theorem. Also, 

Set f = Cy a& E P(X). S’ ince 0 E 8, evaluation at 0 is a continuous 
homomorphism q on P(g). As ~(a~) = 0 for 1 < j < n, it follows 
that v(f) = 0, and, hence, f is not invertible in the Banach algebra 
P(T). Consider for points z in X the expression 

(2.3) 

Because C 1 zj I2 = 1 on X, the expression of (2.3) equals 1 - f on X. 
Estimating (2.3) by Schwarz’s inequality and applying (2.2) gives 

II 1 -f IIX < ((i: ~(&Q + +y. 
1 

(2.4) 

Now as f is not invertible in P(z), 1 < 11 1 -f 11% = 11 1 -f/Ix. 
Hence, the right side of (2.4) is > 1. Letting E --f 0 gives the desired 
result. Q.E.D. 

Remark 1. The conclusion can be slightly improved to read 

In fact, if 0 < Y < 1, let X, = X n {a : 11 z 11 = r}. By Rossi’s local 
maximum modulus principle, X,, = 8 n {z : 11 x II < r}. Hence, by 
applying the theorem (with a scale change) to X, , we get 

Now letting r f 1 gives (2.5). 
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Remark 2. For our application we need the following form of 
Theorem 1. Let V be an analytic subvariety of B which contains 0 as a 
nonisolated point. Then C A(zi( V)) > z-. To see this, observe that we 
may assume that V extends to be analytic in a neighborhood of B. In 
this case, take X = V n aB and it follows that 0 E X and X n B = V. 
Now we apply Remark I. 

Remark 3. Theorems in several complex variables often have 
convexity analogs [3]; Shields suggested that this may be the case for 
Theorem 1 and indeed we have the following. 

THEOREM 3. Let X be a subset of the unit sphere SrL-l = Cp E W: 
lip (1 = I> in W. Supp ose that Ch X, the convex hull of X, contains 0. 
Let lj = the length of the interval x,(Ch X) C [w (where xi is the jth 
coordinate projection). Then 

(2.6) 

The proof of Theorem 3 is directly analogous to that of Theorem 1 
and begins with a real analog of Lemma 2. 

LEMMA 4. Let J be a finite interval in Iw of length 1. Then there is a 
real constant c such that 

Proof. Choose c to be the midpoint of J. Q.E.D. 

Proof of Theorem 3. Let Jj be x,(Ch X) and cj the corresponding 
constant from Lemma 4. Note 11 xi - cj llchX ,< gli . Let 
f (A!) = 1 - g cixi . s ince f is an affine function and 0 E Ch X, it 
follows that I = If(O)( ,(jlfljx. For XEX, Cxj2= 1 and so 
f(x) = x xj(xi - q). Hence, 

I f(x)1 e (c xjy2 (1 (Xj - cg2 < (c &y2 

for x E X. That is 1 < 11 f IIx ,( i(C Zj2)1/2. Q.E.D. 

Remark. Examination of the proof shows that equality holds in 
(2.6) if and only if there is 01 = (al, a2 ,..., a,) E 9-l such that X 
is a subset of {(EIal , E2a2 ,..., E,a,): q = -&l}. 
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3. 

Our proof of Hartog’s theorem will depend upon the following 
proposition. The open unit disc, {.zz E C: ) x j < l} will be denoted 
by U; its n-fold product in C”, the unit polydisc, by U”; (7.x: z E U} 
by r U; and the jth coordinate projection in @” by zj . Hence, if 
N E c, zyl(a) = ((Cl ) 5, ). ..) c&J E C”: cj = a}. 

PROPOSITION 5. Let (V,J be a family of analytic subvarieties 
of .!I" without isolated points. Let 0 < r < I be such that 
V,. n (U+l x (rU)) = m f or all k. Suppose that for cy. E U and 
1 6 s < n - 1, the farnib {V, n z;‘(u)) qf subsets of ?I” is locally 

jinite. Then {V,) is locally jinite. 

Remark. A special case of this result was obtained by Nishino [5]. 

Proof. By shrinking the polydisc we may assume, for every a. E U 
and 1 < s < n - I, that V, n z;~(oL) is empty for large enough k. 
We argue by contradiction and assume that there is x,, E Un and points 
xk E V,. , k = 1, 2 ,..., converging to x0 . Let L, , k = 0, 1, 2 ,..., be a 
biholomorphism of Un which takes X~ to 0 and which is of the form 
L(% , &2 >..., x,,) = (Lkl(zl), Lk2(z2),..., Lk”(zn)) where L,” is the linear 
fractional transformation given by L,“(x) = (.z - xks)/(l - G$z) 
where xlC = (xkl, xk2,..., xlin). Let IV, = Lk( V,), an analytic subvariety 
of Un containing 0. Therefore, as B C U”, we get 

gl h(zj(W7c)) 2 T, (3.1) 

for each k. For 1 < j < n - 1, the sets {zj( V,)} C U eventually 
omit every point of U as k + co. Hence, X(zj( IV,)) -+ 0 as k + co. 
It follows from (3.1) that 

(3.2) 

On the other hand, as L, + L, uniformly on compact subsets of U” 
and as L,n(rU) is a neighborhood of --xon E U, it follows (after 
possibly omitting a finite number of Vk’s) that there is a nonempty 
open subset Sz of U which contains -x,,~ and is such that L,<“(r U) 2 Sz 
for all k. Therefore, z,(WJ n 9 = @ for all k. This implies that 
h(n,( IV,)) < 7r - X(sZ), in contradiction to (3.2). Q.E.D. 

HARTOG'S THEOREM. A complex valued function f which is defined 
on an open subset I2 of Cn and which is analytic in each variable 
separately, is analytic. 
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Remark. We recall the usual reductions: First, by induction, 
we may assume the theorem for functions of n - 1 variables. We 
note that it is enough to show that f is locally bounded; for this 
implies continuity by a simple l-variable Cauchy integral argument 
and continuity implies analyticity by expanding the kernel in the 
iterated Cauchy integral. Next observe that, as analyticity is a local 
property, it suffices to show that f is locally bounded in a polydisc d 
such that d _C JJ. Without loss of generality we may take d to be Un. 
Setting M(z,) = sup{1 f (z’, z,)(: ( a’, .a%) E V-r x 17) for z, E U and 
applying the Baire category argument, it follows that M(z,) is uni- 
formly bounded on some nonempty open subset of (x,,: j z, j < I>. 
By making a change of variable in x, , we may assume that 
there exists Y with 0 < r < $ and A > 0 such that ) f (x’, z,Jl < A 
if a’ E V-1 and / x, 1 < 2~. It follows that f is analytic on 
Q = U-I x (2rU). F or xe a’ E U-r, a +f(Z’, x) is analytic on U fi d 
and so there is a Taylor series, 

As f is analytic on Q, the ak’s are analytic on U-i. 

Proof. In order to show that f is locally bounded on Un we argue 
by contradiction; i.e., we suppose that there is x,, E U” and (xk} C UT” 
such that xp -+ x,, and f(~~) 4 co. Let fN(d, z,) = Cr ai ,znj. 
The fN are analytic on Un and converge pointwise to f there. As 

f (Xk) + a, there are Nk + co such that ck = fNk(xk) + co. Let 
V, = (.a E Un: fN,(z) - cli = 0}, a subvariety of U”. Since the fN’s 
are uniformly bounded on 47-l x (rU> and since cli + co, it follows 
that V, n (.?Y-l x (r U)) is empty for large k and by passing to a 
subsequence it is no loss of generality to assume that these sets are 
empty for all k. For fixed 01 E U, z’ +f(a, x’) is, by induction, 
analytic on Un-l. It follows that {fN(a, a’)} is uniformly bounded on 
compact subsets of U-l and, consequently, that {VJG n zyl(or)} is 
locally finite. In the same way, for 1 < s < n - 1, {V, n .~;‘(a)) 
is locally finite. By Proposition 5, {VJ is locally finite. But xlc E V, 
and xk + x0 E Un, a contradiction. Q.E.D. 

REFERENCES 

1. L. AHLFORS AND A. BEURLING, Conformal invariants and function-theoretic 
null-sets, Acta Math. 83 (1950), 101-129. 



PROJECTIONS OF POLYNOMIAL HULLS 19 

2. H. ALEXANDER, B. A. TAYLOR, AND J. ULLMAN, Areas of projections of analytic 
sets, lnwentiones Math. 16 f1972), 335-341. 

3. H. BREMERMANN, Complex convexity, Trans. Amer. Math. Sot. 82 (1956), 17-51. 
4. T. GAMELIN, “Uniform Algebras,” Prentice Hall, Englewood Cliffs, NJ, 1969. 
5. T. NISHINO, Sur une propriete des familles de fonctions analytiques de deux 

variables complexes, J. IMath. Kyoto Univ. 4-2 (1965), 255-282. 
6. G. STOLZENBERG, A hull with no analytic structure, J. Math. Mech. 12 (1963), 

103-112. 
7. E. L. STOUT, “The Theory of Uniform Algebras,” Bogden and Quigley, Belmont, 

CA, 1971. 
8. J. WERMER, On an example of Stolzenberg, in “Symposium on Several Complex 

Variables,” Park City, Utah, 1970, Lecture Notes in Mathematics, vol. 184, 
pp. 79-84, Springer-Verlag, New York, 1971. 


