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In this thesis we classify the conjugacy classes of involutions in Aut g, where g is 
an afline Kac-Moody Lie Algebra. We distinguish between two kinds of 
involutions, those which preserve the conjugacy class of a Bore1 subalgebra and 
those which don’t. 

We give a complete and non-redundant list of representatives of involutions of 
the first kind and we compute their fixed points sets. We prove that any involution 
of the first kind has a conjugate which leaves invariant the components of the 
Gauss decomposition g = n _ @ h @ n + We also give a complete list of represen- 
tatives of the conjugacy classes of involutions of the second kind. ‘?’ 1988 Academic 

Press, Inc. 
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Weyl groups. Parr II. 1. Kac-Moody Lie algebras. 2. The Tits system associated 
with a KaccMoody algebra. 3. Afine Lie algebras. Part III. 1. Existence of a 
c-invariant pair {h c b). 2. Involutive automorphisms of the first kind. 
3. Involutive automorphisms of the second kind. 4. Realizations of classical 
involutions. 5. Fixed points sets. Appendix A: Tits buildings. Appendix B: Fixed 
point lemma. 

INTRODUCTION 

In 1968 V. Kac and R. Moody introduced a new class of inlinite-dimen- 
sional Lie algebras that generalized the finite-dimensional semisimple Lie 
algebras. An important subclass of infinite-dimensional Lie algebras among 
Kac-Moody algebras is the so-called afline Lie algebras. In this thesis we 
consider the problem of classifying the automorphisms of’order two of an 
affine Lie algebra. 

In the finite-dimensional case this problem was solved by E. Cartan, who 
used it as a main tool for the classification of symmetric spaces. 

*This thesis was written with the guidance of Prof. V. Kac and support of the 
Massachussets Institute of Technology. 
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An important fact in the finite-dimensional case is that given an 
automorphism 0, there exist a Bore1 subalgebra b and a Cartan subalgebra 
b contained in b that are stable under Q [D, 21.18, Problem 31. In our case 
we have the concepts of Bore1 subalgebra and Cartan subalgebra but the 
claim above is not true in general. 

We say that o E Aut g is of the first or the second kind depending on 
whether o leaves stable the conjugacy class of a Bore1 subalgebra. 

Associating a Tits system to a Kac-Moody algebra g, we can use a result 
of Bruhat and Tits on the existence of a fixed point for any bounded group 
of isometries of a building to prove that when (T is of the first kind and of 
finite order we can find a a-invariant pair {b c b}. We can then use this 
result to elaborate a list of representatives of the conjugacy classes of 
involutive automorphisms of the first kind. Finally, looking at the fixed 
points sets for the different classes of automorphisms, we conclude that 
they are not conjugated under Aut g. 

In computing the fixed points set we use a realization of the 
automorphisms determined by a symmetry of the Dynkin diagram which 
shows that the restriction of o to n+ , (b + = n + @ h) can be considered as 
an automorphism over the polynomial algebra C[t]. 

Thanks to a result by Peterson and Kac on the conjugacy classes of 
Bore1 subalgebras we can find, for any involution o of the second kind, a 
conjugate of the Cartan subalgebra h which is invariant under 6. A com- 
plete list of involutions of the second kind is given, but because it was not 
possible to give a description of the fixed points sets, we could not check 
whether this list was redundant. 

In Part I we give the definitions of Coxeter systems, Tits systems, and 
affine Weyl groups. 

Part II contains the elements of the theory of Kac-Moody algebras, the 
connection between them and Tits systems, and a realization of the affine 
Lie algebras. 

In Part III we prove the theorem on the existence of an invariant pair 
{h c b}, and we proceed to classify the involutions of the first kind and list 
a set of representatives together with their fixed points sets in Table V. We 
also classify the involutions of the second kind and list them in Table VI. 

Finally, for the convenience of the reader, we added appendixes with the 
necessary background on the theory of buildings. 

PART I 

1. COXETER SYSTEMS AND TITS SYSTEMS 

We will recall some facts about Coxeter and Tits systems. The proofs can 
be found in [B, Chap. IV] (denoted in this chapter by [B] ). 
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1.1. DEFINITION. A Coxeter system is a pair ( W, S) where W is a group 
and S is a part of W satisfying the following axioms [B, Sect. 1, # 31: 

(i) S generates W and the elements of S have order two; 
(ii) let m(s, s’) be the order of the element ss’ E Wand let Z be the set 

of pairs (s, s’) such that m(s, s’) is finite, then the set of generators S and 
the relations SS”“(‘,~“) = 1 for every (s, s’) in Z form a presentation of W. 

1.2. For every subset Xc S we denote by W, the subgroup of W 
generated by X. We have W, n S = X and W, n W, = W,Y, y for all 
X, Y c S [B, Sect. 1, # 8, Theorem 21. 

1.3. DEFINITION. The Coxeter graph, Cox( W, S), of the Coxeter system 
( W, S) is the pair (G, f) obtained as follows: G is the graph whose vertices 
are the elements of S, two different vertices being joined by a lace, if and 
only if the corresponding elements do not commute; f is the map 
{s, s’} + m(s, s’) from the set of laces to the set formed by 00 and the 
integers >2 [B, Sect. 1, #9]. 

1.4. DEFINITION. A Tits system is a quadruplet (G, B, N, S) where G 
is a group, B and N are subgroups of G, and S is a subset of N/(B n N), 
satisfying the following axioms [B, Sect. 2, # 11: 

(Tl ) the set B u N generates G and B A N is a normal subgroup 
of N; 

(T2) the set S generates the group W= N/( B n N) and it consists of 
elements of order two; 

(T3) we have sBwBc BwBu BswB, for all s in S, IV in W; 

(T4) for every s in S we have SBS # B. 

The group W is called the Weyl group of the Tits system. The pair ( W, S) is 
a Coxeter system [B, Sect. 2, #4, Theorem 21. 

In the sequel we will denote by (G, B, N, S) a Tits system, by W its Weyl 
group, and by V: N + W the canonical homomorphism. 

1.5. The map MI + BwB is a bijection between W and the set B\GJB of 
double classes of G modulo B [B, Sect. 2, # 3, Theorem 11. 

1.6. For any part X of S let B, = BW,B = Uw, wX BwB. The map 
X+ B, is a bijection between the set of subsets of S and the set of sub- 
groups of G containing B, and we have 

BxnBy=Bx,,, for all X, Y c S [B, Sect. 2, # 5, Theorem 31. 
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1.7. DEFINITION. A subgroup P of G is called parabolic if it contains a 
conjugate of E. 

For such a P there exists a well-defined subset Xc S such that P is 
conjugated to B, [B, Sect. 2, #6, Proposition 41. We call X the type of P. 

1.8. DEFINITION. A homomorphism cp: G + G (G a group) is called 
B-adapted if it satisfies the following two conditions [BT, (1.2.13)]: 

(i) the kernel of cp is contained in B; 

(ii) for every g E G, there exists h E G such that cp(hBK ‘) = 
&P(B) g -. ‘. 

1.9. Let cp denote a B-adapted homomorphism cp: G + G. For every 
parabolic subgroup PC G and for every gE G the preimage 
cp ~ ‘( gcp(P) g- ‘) is a parabolic subgroup of G denoted by “P [BT, 
(1.2.15)]. 

1.10. For every g in G there exists a permutation t(g) of W such that 
cp(Br(g) wB) = cp(h- ‘) gcp(BwB) g-Iv(h), for all w in W, h in G satisfying 
1.8(ii). In fact t(g) is an automorphism of the Coxeter system ( W, S) and is 
a homomorphism from G into the group of automorphisms of ( W, S) 
acting on the Coxeter graph of (W, S) [BT, (1.2.16)]. 

If P is a parabolic subgroup of type Xc S, the subgroup “P is of type 
i(g)X W-3 (1.2.18)1. 

2. AFFINE WEYL GROUPS 

2.1. DEFINITIONS AND NOTATIONS. Let A be an affne space, together 
with a distance that comes from a positive definite scalar product on the 
space of translations of A. 

Let W be a discrete subgroup of the group of affme transformations of A 
generated by orthogonal reflections with respect to affine hyperplanes of A. 
We will assume that W acts irreducibly on A. 

If L is an afline hyperplane of A we denote by sL the orthogonal reflec- 
tion that leaves fixed each point of L. Reciprocally, if s is an orthogonal 
reflection of A we denote its fixed point set by L,. 

A wall in A, with respect to W, will be a hyperplane L such that sL 
belongs to W. 

An affine root of A is any closed half-space of A bounded by a wall 
which is called the root’s wall. The set of affine roots will be denoted by .Z. 

If a EC we write r, = saor, where &Y is the wall of do. 
A facet F of A is an equivalence class in A for the relation .Y - y if and 
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only if x and y are contained in the same afftne roots. A facet F is then a 
convex set, open in the affine subspace that it generates, called the support 
of F. 

The set of facets 9 has the order relation F < F’ if F c F were F is the 
closure of F in A. 

The chambers of A are the connected components of the complement in 
A of the union of walls, and we call faces of A the facets of A whose 
support is an afline hyperplane of A [BT, (1.3.3)]. 

2.2. Fix a chamber C of A, and c is a fundamental domain for the 
action of W on A [B, Chap. V, Sect. 3, #3, Theorem 21. Furthermore, W 
is generated by the set S of reflections corresponding to the walls that are 
the support of the faces of C. 

2.3. The pair ( W, S) is a Coxeter system [B, Chap. V, Sect. 3, #2, 
Theorem 11. 

2.4. We will assume that the Coxeter graph (G, f) of ( W, S) is con- 
nected. 

2.5. If W is infinite we say that W is an affine Weyl group. 

2.6. A, together with 9, the order relation, and the canonical affine 
structure on each of the sets F, is a simplicial complex. 

2.7. For each facet F there is exactly one facet C transformed to F by 
an element of W [BT, (1.3.5)]. 

2.8. For each proper subset X of S, the set 

C,={a~C:X={~~S:a~L,}}isafacetofC. 

Furthermore, the map X+ C, is a bijection of the set 

T={XcS:X#S}=(XcS: W,islinite) 

onto the set of facets of C (0 + C). 
We say that a facet F has type X, for Xc T, if F is a W-translate of C,. 

Then T is the set of types of facets [BT, (1.3.5)]. 

2.9. The stabilizer of C, in W, i.e., {w in W: w(C,) c C,}, is the 
subgroup W, [B, Chap. V, Sect. 3, #3, Proposition 11. 

In the sequel W will denote an afhne Weyl group acting irreducibly on 
the affine space A. 
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PART II 

1. KAC-MOODY LIE ALGEBRAS 

1.1. Let A = (Us),. je, be an integral n x n matrix of rank P indexed by 
the finite set I. We will associate with it a Lie algebra g(A). The matrix A is 
called a generalized Cartan matrix if it satisfies the following: 

(Cl) aii = 2 for i= 1, . . . . n; 
(C2) ali are non-positive integers for i # j; 

(C3) a, =0 implies u,~ =O. 

A realization of A is a triple (h, rc, 71” ), where h is a finite-dimensional 
complex vector space and r~={a,}~~,ch* and rc”={~i”}i~,~h are 
indexed subsets in h* and h, respectively, and satisfy 

1.1.1. both sets rr and ‘it ” are linearly independent; 
1.1.2. (cri, aj” ) =a,;, i, j= 1, , n; 
1.1.3. n-rank A=dim h-n. 

1.2. For any n x n matrix A there exists a unique, up to isomorphism, 
realization [K, 11. 

1.2.1. Given two matrices A and A’ and their realizations (h, n, 7~” ) 
and (h’, rc’, rc ” ‘), we obtain a realization of the direct sum of two matrices 
(h@h’, n x (0) u (0) x d, n” x (0) u (0) x rc ” ‘), which is called the direct 
sum of the realizations. 

A matrix A is called decomposable if after reordering the indices, A 
decomposes into a non-trivial direct sum. We can always decompose a 
matrix A into a direct sum of indecomposable matrices and the 
corresponding realization into a direct sum of the corresponding 
realizations. 

1.2.2. rr is called the root basis, Z” the dual root basis, and elements 
from rr (resp. n ” ) are called simple roots (resp. simple co-roots). We also set 

Q= @ ZC(i, Q+=@z+ai, Q”=@Za,. 
icl iel rel 

The lattice Q is called the root lattice. 
For a=Ck,tl,~Q+, the number ht c1= C ki is called the height of LX 

1.3.1. Let A = (au) be a generalized Cartan matrix and let (h, 71, ti” ) 
be a realization of A. Let g(A) be a Lie algebra with generators ei, fi 
(i= 1, . . . . n), and h and the following defining relations: 
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Ce~,fjl=bi,j”Y3 i, j = 1, . ..) n 

[h, h’] = 0, h, h’ in h 

[h, eil = (ai, h) e;, i = 1, . . . . n, h in h 

Ck fil = - <a;, h > fi, i = 1, . . . . n, h in h 

(ad e,)’ ~ Llg (e,) = 0, i#j 

(adh.)‘PUy(fl)=O, i # j. 

1.4. DEFINITION. The Lie algebra g(A) is called a Kac-Moody algebra. 
The subalgebra h of g(A) is called the Cartan subalgebra. The matrix A is 
called the Cartan matrix of the Lie algebra g(A). n is called the rank of 
&A ). 

The elements e;, fi (i = 1, . . . . n) are called Chevalley generators, and they 
generate the subalgebra g’(A) = [g(A), g(A)]. One has g(A) = g’(A) + h, 
g(A)=g’(A) iff det AZO. 

We set h’ = @ iG I Ccr,. One has 

g’(A) n h = h’, g’(A)ng,=g, if cc#O. 

With respect to h, we have the root space decomposition 

(1.4.1) g(A)= 0 g,. 
as8 

g, is the root space attached to CC. The number mult o! = dim g, is the 
multiplicity of a. An element a in Q is called a root if a # 0 and mult a > 0. 

A root a in Q + (resp. -a in Q +) is called positive (resp. negative). 
Denote by A, A+, A- the set of all roots, positive roots, and negative 
roots, respectively, and then A = A + u A_, A + n A ~ = 0. 

Let n + (resp. n _ ) be the subalgebra of g(A) generated by e,, . . . . e, (resp. 
f,, . . . . f,,) and then we have the Gauss decomposition 

(1.4.2) g(A)=n- OhOn,. 

The map e, --+ -f,, f, -+ -e, (i = 1, . . . . n), h ---f -h, h in h, can be uniquely 
extended to an involution w of the Lie algebra g(A). o is called the Cartan 
involution of g(A). 

1.4.3. Let Aut(A) be the group of all permutations 0 of I satisfying 
aa(i),a(j) = OS. 1’ We regard Aut(A) as a subgroup of Aut(g’) by requiring 
o(e,) = e,(,,, o(fi) = fotiJ. We define the outer automorphism group Out(A) 
of g’ to be Aut(A) if dim g’< cc and {id, o} x Aut(A) otherwise. 

MI:1 I4 2-16 
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1.5. The Symmetric Bilinear Form 

An n x n matrix A = (a,) is called symmetricable if there exists a non- 
degenerate diagonal matrix D = diag(e,, . . . . E,,) and a symmetric matrix 
B= (h,) such that A = DB. 

Let A be symmetrizable and let (h, rc, 7~” ) be a realization of A. Fix a 
complementary subspace h” to h’ = GIEl C’cry in h, then 

(1.51) 
(a,V, h)= (ait h) E,, h in h, i = 1, . . . . n 

(h’, h”) = 0, h’, /I” in h” 

defines a non-degenerate bilinear @ valued form ( , ) on h. 
This gives an isomorphism v: h + h* defined by (v(h), h,) = (A, hi), h, hi 

in h. as well as the induced bilinear form on h. 

1.6. The Weyl Group qf a Kac-Moody Algebra 

For each i= 1, . . . . n we define a fundamental reflection r, of the space h* 
by 

(1.6.1) r;(a) = u - (a, cri” ) cx, VciEh”. 

The subgroup WC GL(h*) generated by ri, i= 1, . . . . II, is called the Weyl 
group of g(A). 

1.6.2. The bilinear form in 1.5.1 is W invariant [K, Proposition 3.93. 

1.6.3. We define the set of real roots as A” = {x E A: a = + M’(B), w in 
W, /3 in rt ) and the set of imaginary roots as A’” = A\A’“. 

Let (hR, rr, rr ” ) be a realization of the matrix A over R, i.e., h*, is a real 
vector space of dimension 2n - rank A, so that h = a3 0 h,, then Q ” c h R 
and therefore W actos on h& 

1.6.4. The set C= jh in h,: (cri, h) 30, i= 1, . . . . n} is called a 
fundamental chamber. The sets w(C) (w in W) are called chambers and the 
set X= U ,~ t ,+, M’(C) is called the Tits cone. We have the dual notions of C ” 
and X” in h*,. 

1.6.5. The group W is a Coxeter group [K, Proposition 3.131. 

2. THE TITS SYSTEM ASSOCIATED WITH A KAC-MOODY ALGEBRA 

Here we will construct the adjoint group G associated to a Kac-Moody 
algebra g(A), and we will associate to it a Tits system (G, B, N, S). 

2.1. Let (g(A), ad) be the adjoint representation of g(A). Because of 
the defining relations of g(A) (1.3.1) we have that the expressions 
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expad(te,)v=~n~o(l/n!)t”(ade,)nu and, expad(rf,)u=C,.,(lln!) 
[“(ad f,)” u are well-defined automorphisms for any t in C, i in Z, u in g(A). 
This implies that exp(ad x) v = C,I 3 ,, (l/n!)(ad x)” u is well defined for all o 
in g(A), x in g,, u in d’“. 

2.2. Let G be the subgroup of Aut(g(A)) generated by 

(exp ad(te,), exp ad(ffi), in I, t E C}. 

2.3. DEFINITION. G is called the adjoin? group associated to the 
KaccMoody Lie algebra g(A). 

2.4. The subgroup U, = exp g, c G is an additive one-parameter sub- 
group of G. The U,, LY E f n, generate G, and G is its own derived subgroup 
CPK, 21. 

Denote by U, (resp. U ) the subgroup of G generated by U, (resp. 
CL,), ZE A:“. 

2.5. For each i in I we have a unique homomorphism 

satisfying 

0i((k i))=exp(re,l. 0;((: (f))=explrf,b ~EC. 
2.6. Let Gi==@,(SL(@)), Hi=@,({diag(t,t-‘): ~EC’}) and let N, be 

the normalizer of Hi in G. Let H (resp. N) be the subgroup of G generated 
by the Hi (resp. Ni) H is an abelian normal subgroup of N, and it is the 
direct product of the Hi, itzZ [PK, 21. There is an isomorphism a: 
W + N/H such that @(ri) = N,H/H. We identify W and N/H by @ and 
put B, = HU,, B- = HU_, S= {@(Y~)},~,. 

Remark. In [PK] the simple connected group associated to g(A) is 
defined, and its quotient by the center gives our group. It follows that all 
the results listed below are an immediate consequence of the corresponding 
results from [PK]. 

2.7. The quadruple (G, B, , N, S) is a Tits system. 

G= u B,wB+ (Bruhat decomposition) 
WE w 

G= u B+wBp (Birkhoff decomposition) [ PK, Corollary 21. 
WE&v 
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2.8. A= Hom(Q, C) can be viewed as a subgroup of Aut (g) in the 
following way: h. u = h(cr)v, h in fi, u in g,, CI E A. Therefore A acts on G 
and determines the group /? cc G. 

2.9. Aut(g’(A)/c) = Out(g’(A)) cc (A a G) [PK, Theorem 21. 

3. AFFINE LIE ALGEBRAS 

3.1. We consider the case of a Kac-Moody algebra g(A), where A is a 
generalized Cartan matrix with all its proper principal minors positive and 
det A = 0. They are called affine Lie algebras and Tables I, II, and III list 
the corresponding Dynkin diagrams [K, Theorem 4.81. 

3.2. We will proceed to construct a realization of them: 
Let L = C[t, t -‘] be the algebra of Laurent polynomials in t. Recall that 

the residue of a Laurent polynomial P = XV, i, s tit i is defined as 
Res P=c-,. 

Let g be a finite-dimensional simple Lie algebra, then L(g) = L 0 i is an 
infinite-dimensional Lie algebra with the bracket 

CPO~~QC3~l=~Q@~J’, Yl, P,QinL,X, Yin& 

Fix a non-degenerate, invariant, symmetric bilinear form in e ( ., S ), and we 
extend this form to an L valued form on L(i), ( ., . ), by 

(POX, Q@ Y), = f’Q(X Y), P,QinL,X, Yin& 

The derivation t’(d/dt) of L extends to L(i) by 

tj; (POX)= t++-, P in L, X in g. 

Therefore +(a, b) = (da/dt, b) a, b in L(h) defines a cocycle on L(i) [K, 7, 
Corollaries 1 and 23. 

Denote by z(k) the central extension of the Lie algebra L(i) associated 
to the cocycle $. That is, z(i) = L(i)@ Cc with the bracket [a + ;Ic, 
b + pc] = [a, b] + $(a, b)c a, b in L(g), 1, p in C. 

Finally, denote by 2(g) the Lie algebra which is obtained by adjoining to 
z(g) a derivation d which acts on L(g) as t(d/dt) and kills c. 

Explicitly we have 2(g) = L(i)@ @CO @d with the bracket defined by 
(X, Yin e; 2, p, A,, ,u,, in C, k,j in Z) [K, (7.2.1)]: 

[t“OX+IZc+pd, t’@ Y+l,c+,u,d] 

=tk+‘@[X, Y]+pjt’@Y-p,ktk@X+k6j.~k(X, Y)c. 
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TABLE I 

AlTine 

Algebra Dynkin Diagram Vertices Numeration 

&) is an afline Lie algebra and every Kac-Moody algebra from Table I is 
obtained in this way [K, Theorem 7.41. 

3.3. Twisted Affine Lie Algebras 

An affme Lie algebra from Tables II and III is realized as the fixed point 
set of the automorphism PO of L(g) determined by the conditions 
po(tk 0 Y) = ( - t)k @ p( Y), p,, ( cc + cd = id, where p is in Aut(X) and X is 
the Cartan matrix of i [K, Theorem 8.33. The Lie algebra thus obtained is 
denoted by L(g, p) and it is called a twisted afline Lie algebra. 

The bilinear form from Section 1.5 gives a positive semidelinite sym- 
metric bilinear form ( , ), on the real vector space E generated by the 
roots in A c h*. We know that the subspace E, = {x in E: (x, y) = 0 for all 
JJ in E} is generated by an imaginary root 6. Consider the spaces in E*, 

A={xin E*: (x,6)=1} and T= {x in E*: (x, S) =O}, 
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TABLE II 

Alhe 

Algebra Dynkin Diagrams Numeration 

then T acts on A by translations and the induced bilinear form on E/E,, is 
non-degenerate, hence it gives a positive definite symmetric bilinear form 
on (E/E,)* N T and this gives A the structure of an aff’me Euclidean space. 

The Weyl group W fixes 6 and therefore its action on E induces an 
action on A by afline transformations; as W is infinite, it is an afline Weyl 
group. This is why the Kac-Moody algebras described above are called 
afftne Lie algebras. 

We can generalize the construction of L(g, p) to the cases where g = 
g, + g, + . . + g, + c is a direct sum of simple Lie algebras gi, and c, the 
center of g, is at most one dimensional, c = Cc, and p = p, + p2 + + ps 
is in Aut(M), where M is the Cartan matrix of g’. Indeed, L(g) and d are 
defined as before and we use a bilinear form for which the g;s are pairwise 
orthogonal to define $, if c = {0}, then L(g) = L(g). The bracket on z(g) is 
still defined as 

[tk@X, t’@ Y] = tk+j 0 [X, Y-j + $(tk 0 x, t’0 Y)c, 

j, k E L, X, YE i. 

We extend t(g) to L(g) by adding the derivation d. 
Finally, we denote by &, p) the fixed point set in e(e) of the 

automorphism p defined as p(t“ 0 X) = ( - tk) 0 p(X), p ( cr-+ cd = id. 

TABLE III 

Afline 
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PART III 

1. EXISTENCE OF A O-INVARIANT PAIR (hchj 

We will distinguish two kinds of automorphisms, those 0 for which [b, : 
u(b+)nb+]<co and those for which [b,: o(bh)nb+]<oO. From the 
description of Aut(g’(A)) in 2.9, it follows that any automorphism of g falls 
into one of these classes. In the following they will be referred to as 
automorphisms of the first kind and second kind, respectively. 

We will use the results from the previous chapters to prove the following: 

1.1. THEOREM. Let g be an affine Lie algebra. Let u E Aut g be a finite 
order automorphism of the first kind, then there is a Bore1 subalgebra b c g 
and a Cartan subalgebra h c b that are stable under o. 

Proof: o induces an automorphism 6 = Ad o of Aut g leaving stable G. 
Consider the Tits system (G, B, , N, S) and its building 3 (see Appen- 
dix A). 

The hypothesis [b,: o(b+)nb+]<oo means a(b+)=Adg(b+) for 
some g in G. Then 6 E Aut,+ G (Appendix AS.1 ) and it is of order m. 
Indeed, we have 

6(b)(o(b+))=aAdbc+(o(b+))=oAdb(b+)=a(b+) VbEB+, 

therefore 6(b) E Stab, a(b+ ) = Stab, Ad g(b+ ) = gB+ g--l, proving the 
claim. 

So 6 determines an isometry 6 of g (Appendix AS.1 ) and has the same 
order as 0. Therefore 6 has a fixed point (P, x) E $9, PEP’, XE Cr,p,. 
d( P, X) = (P, X) implies Ad(P) = d Ad(P) 5.. I, hence P is the normalizer of 
6(P) in G, so P c 5(P) and vice versa. Thus 6(P) = P. 

But P = Stab, p, where p is a parabolic subalgebra in g and 5(P) = 
Stab, a(p), hence o(p) = p. 

CJ leaves the radical R of p stable, therefore it induces 0: p/R ---f p/R, a 
finite order automorphism of p/R which is a finite-dimensional semisimple 
Lie algebra, and we know in this case there is a Bore1 6 c p/R stable under 
6, therefore ~‘(6) is a Bore1 invariant under (T (rr is the canonical 
homomorphism). 

Doing this with BP instead of B + we would get another Bore1 b’ 
invariant under 0 and conjugated to b_ Therefore b n b’ is a finite-dimen- 
sional solvable subalgebra stable under D and contains a conjugate of h. 
Indeed, it follows from the fact that given any pair of elements x, y in G 
there exists a z in G such that xB+x--’ n yB_ y-’ ZZHZF’; to see this we 
can reduce to the case x = 1, and by 11.2.7 we can write y = b+wb-, 
b+EB+, WEN, thus B, nyBy-‘=b+(B+ nwBw-‘)b+-‘zb+Hb+-‘. 
So to complete the proof of the theorem we only need to prove the following: 
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1.2. LEMMA. Let S be a complex solvable Lie algebra of finite dimension. 
Let G be an automorphism of S of order m. Then there exists a Cartan 
subalgebra h c S stable under a. 

Proof: By induction on dim S. 
dim S= 1 is obvious. 
dim S > 1. If z = center of S is non-trivial then we apply the inductive 

hypothesis on S/z to get h stable under 0: S/z + S/z, then zP l(h) c S is a 
Cartan subalgebra a-invariant. 

If z = 0 then I= { y = C xi, in S: [S, x,] c Cx,} is a a-invariant ideal, 
hence 0 induces 0: S/I + S/I. I is non-trivial so we can apply the inductive 
hypothesis to get fi = {xESIZ: [x, x0] =0} stable under rr. Thus 
rc- ‘(fi) = {x E S: [x, x0] E Z} is stable under e and contains a Cartan sub- 
algebra of S. If dim n-‘(h) <dim S we can apply again the inductive 
hypothesis and we are done. 

If 7c ~ ‘(fi) = S then we have to consider the case where S = h @ Z, where h 
is any CSA of S. Using the fact that all the CSA of S are conjugate [W, 
Theorem 4.4.1.11, we have o(h) =exp ad x(h) and we want to find YE I 
such that a(exp(ad y)(h)) = exp(ad y)(h), that is, 

ew(ad(y - 4.~) -x))(h) = h (I is abelian) 

or 
(*) y-a(y)=x. 

If we write .Y = ~~z-ol xj xj E Z,, I= @y=PoO’ I,, I, eigenspaces of cr, 

m-l 
Y= c Y,, 

j=O 

then y-a(y) = ~J’!!F,,’ (1 -&)yi, E =exp(27ci/m). Thus Eq. (*) has a 
solution if and only if x0 = 0. But using the relation h = c?(h) = 
exp ad C;c,’ o”(x)(h) we have CT:,’ a”(x) E h n Z= {0), hence, mx, = 0. 
Therefore e leaves exp(ad c,“=;’ x,/( 1 - &j))(h) stable. 

2. INVOLUTIVE AUTOMORPHISMS OF THE FIRST KIND 

We are now able to compute a list of representatives of involutive 
automorphisms. 

To give the list we will use a list of representatives of involutions for the 
l&rite-dimensional Lie algebras, which is, shown in Tables IV and V. The 
elements {p,} c e that appear on the expression of the automorphisms 
correspond to a basis of h dual to ti = { ai} iE I c k*; t denotes a one-dimen- 
sional center. 
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2.1. Let g”’ be a Kac-Moody algebra from Table I or II and r an 
automorphism of g. We denote by 1 x r: g”’ + g(j), i= 1,2,3, the 
automorphism defined by 1 x r( tk @ X) = tk @ r(X) and it is the identity on 
cc @ Cd. 

2.2. We also define tO: g’” -+ g(j) by ro(tk@X)=(-l)k tk@Xand it is 
the identity on Cc @ Cd. 

2.3. We will denote by {pi} a basis of fr 0 Cd dual to rc. 

2.4. We list in Table VI a complete and non-redundant set of represen- 
tatives of involutive automorphisms of the first kind of all afline 
Kac-Moody algebras gCi), i= 1, 2, 3, together with their fixed points sets. 

2.5. THEOREM. Any involutive automorphism of an affine Kac-Moody 
Lie algebra is conjugated to an automorphism from Table VI. 

Proof: We start by proving the following 

2.6. LEMMA. If an automorphism (T of g fixes h pointwise then it is of the 
form exp ad x, ,for some element x in h. 

TABLE IV 

Inner Automorphisms of finite-dimensional Kac-Moody Algebras 

Algebra Automorphism Fixed Point Set 

T, = exp ad(nip,), O<j<l+n/2. ‘+a,+% ,+1 

T, = exp ad( nip, ), 1 < j < 12. d, +bn-, 
*, =expad(xip,) i+b,-, 

7, = exp ad( nip,). 0 < j < 1 + 42, c, +c,-, 
~~ = exp ad(nip,) l+U”-, 

T, = exp ad( nip,). I < ,j < 1 + n/2. d, + 4 , 
7n = exp ad(nip,) t+d,m, 
*, =expad(Q,) t+a,-, 

~~ =expad(nip,) t + d, 
~~ = exp ad(nip,) t + a5 

T, =exp ad(nip,) UI +4 
76 = exp ad(nip,) t + eh 
z, = exp ad(nip,) a7 

T, = exp ad(nip,) 4 
1, = exp ad(nip,) aI +e7 

T, =expad(xip,) aI +c3 
r4 = exp ad(nip,) b, 

t, =exp ad(sip,) aI +a1 
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Proof. 0 leaves stable the root spaces g,, tl E A, and it is determined by 
the action on the generators a(e,) = c;e,, i in Z, hence we can choose x in h 
such that exp rxi(.y) = ci, therefore (r = exp ad X, proving the lemma. 

We consider first the case of an automorphism in R cc G, which will be 
referred to as an inner automorphism. 

r~ is of the first kind so we can assume that CJ leaves stable h and h, = 
n + oh. Therefore 0 is in fi cc (B n N) = fi cc H, it leaves h, pointwise 
fixed, and it is of the form exp ad(h), for some h in h, and we can write 0 = 
exp ad(h) exp ad(s . d), h in &c i, s in C. Using the fact that 0 is an 
involution we have z = exp ad(h) is an inner involution of e and s E zi.Z, 
hence we can write c = (I x 7). T;, s E { 0, 1 }. Conjugating by 1 x y for a cer- 
tain automorphism 11 of % we can assume that z is one of the involutions 
from Table IV. 

The only thing that remains to prove is that when s = 1 we have (T - TV. 
We will show this by actually giving the automorphism that conjugates g 
to zO. Recall the definition of i, = exp ad f, exp ad - ej exp ad fi. We have 
the following: 

a’l’ 
n To =P, ‘7, 4” .p,-‘, where p, is determined by ~,(a,) = a,+, 

b”’ n T,T”=g’s,+, .r,.g-‘, j>l,whereg=p.i,.i, , ...fz.i, 
and p is determined by Q(Q) = LX, 

-I T” = r ‘*z .5” r” ‘0 

T” ‘P.5, “I” .p-’ 

clll n r,s,=g.r,+, .T”.‘? I, j<n-1 whereg=i, .i,ml . ..i. .i, 

T” =p.*, ‘T” .p-1, p is determined by p(cc,) = LX, ( 

d”’ n Z,.T”=g.r,+,T”.g-‘, 1 <j-c [n/2] where g is as for bb” 

7”=p;T,.T”.p,-‘, i~(l.n),p,satisfiesp,(cl,)=a, 

,I, e6 I” = g.72 ‘T” .g -1 . g=p.i, ‘i, .i, ‘f, ‘f”, p(ao)=a, 

-1 5,=p.z,.r,.p , P(ao)=a, 

(11 e7 r,=i,.r, .S”.f” 

7” =p.s, .T” .p -I , P(@J=a,-, 

r,.T”=g.t,.T”.g-‘. g = i, ?, i, fJ iz i, i” 

II) es r,=f,.r, .*“.i,’ 

r”=g.~.R~‘.~7.~“.g.i~‘.g-~~, g=i, .f, .i, .f, .f, .t,,t=i, .f, 

(1, f4 ‘-1 r”=?” ‘5, ‘T” ‘r” 

T”=g-‘. i, .g.z4 ‘*” ‘g. ‘.i,‘.g. g=i, .t, .f> 

$7:’ ’ .-I r,=f,.r, .T”.i-,) 
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TABLE V 

Outer Automorphisms of Finite-Dimensional Kac-Moody Algebras 

Algebra Automorphism Fixed Point Set 

The verification for the algebras from Table II is based on the identity 
ti.expad(h).K’ =expad(w(h))for+in WcIntGandhEh. 

When (T in an outer automorphism of the first kind, i.e., is an element of 
(Aut(A ) cc (R cc G))\(i?- oc G), we still can assume that 0 leaves {h c b + } 
stable, that is, we can write B as D .exp ad(h), h in h, and D in Aut(A). 
rs2 = id implies D2 = id. Conjugating by an element of Aut(A) we can 
assume that D is one of the following: 

Ill 
‘2k-I D=p,, pCJ(ai)=a2k-,, iin 1 

D=p,, p1(ar)=@2k-,-Ir iin 

D=p,, p2(q)=q+kr iinz 

uyk’ D=Al 
b”’ ,, D=P,, Pl(%)=a, 

&I) n D=P,, Pl(%)=q-; 

d(l) 
” D=P,, ~,(a,) = ~1, ~, , and fixes the rest 

D=P,, PI(cIi)=clm-t 

(1) 
eb D = pa, pa(q) =ubPi, O< i< 6, and fixes the rest 

(1) e7 D=P,, p,(~,)=a,_~,O<i<7,andfixesol, 

(2) aZnpl D=P,, ~,(a,) = GL~, and fixes the rest 

di2i 1 D=P,, P1tCLiJcC(npi. 

We can write h=h+ +h-, so that D(h+)=h+ and D(k)= -hp. Con- 
jugating by exp ad(h-/2) we can assume D(h) = h. The fact that 0 is an 



TABLE VI 

Involutions of the First Kind of Afline Lie Algebras 

Algebra Automorphism Fixed Point Set 

b;’ ’ 

d::‘- , 0=1X5, 

O=T,, 

a=lxp 
a=1xp; 

“=PI 
Cr=pz 

k>2 CT=&?? .(I XT2) 

k>3 o=pz ,(I XT,,). j>2 

d::‘+ z a=lxr, 
(r = To 

cr=lxp 
fJ=1xp; 

c=Pl 
cT=p, .(I XT,) 

o=P2 
krl Cr=p,.(1XT2) 

k>2 o=p, .(I xr,x j22 
k=l O=p, .(I XT2) 

a=lxr, 
IJ = To 

a=P2 
a=lxp 

a=Pl 
a=lx(p.rk) 
o=I” .(l xp) 

u=lxr, 
cT=To 

o=lxp 
o=zo .(l xp) 

o=lxr, 
4 = r. 

c=PI 
c=P, .(I XT,)> 3-cjcn 

o=pi .(l XT*) 
rJ=pl .(l XT,) 
O=p, .(I XT,) 

cr=lxT, 
0 = TU 

o=Pl 

U=lXT, 

0 = To 

fJ=p1 
“=p, .(I XT,) 

&f;X+J 
d$’ 

h-1) 
e(b, f&k-,+,) 
b2k ~I + c3 P) 

hd‘ + c) 
&&km, +C:P) 

t(a, +d,-,, 1 xp) 
E(d,+d*k-,.pxp) 

QQ, + 0,) 

Table continued 
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TABLE VI (continued) 

cr=lxr, 

* = To 
fJ=lxp 

0 = 1 x (p Tb) 

u=(l xp).r, 

u=lxT, .Qe9) 
u = 7(J (11 

‘8 

o = exp ad(nip,) E(a, +c) 
u = T” a\” 

o = exp ad(rip,) al2) 2k- I 
u = exp ad(nip,), j>l Qa2,- I + a?& ,I + c. PT, x P x (- 1)) 

u = 5” b:’ ’ 

u = exp ad(nip,) d:’ ’ 
u = exp ad(nip, - ,) L(a, +aZkm3 fc. 1 xpX(-1)) 

u=expad(xip,), liji[(k+l)/2] ~(az,~l+az,k~,i-,+c,pxpx(-l)) 
u = exp ad(ni(p, + po)) i((a,-, +akml)+c,px 1) 

U = T,, (II Ck 
o=Pl a$$‘- 2 

u=p, .expad(nip,) L(a,,,-,,+a,l,-,,,PxP) 

u = exp ad(rri(p, + p,)), lCj<n 
u = exp ad( nip,) 

a=expad(ai(p,+p,)) 
a=expad(ni(p,+p,)) 

U = To 

o=Pl 
o=p, .expad(rrip,) 

a=Pl 

a=expad(nip,) 
CT = exp ad(nip,) 
CT = exp ad(nip,) 

u = T,J 

CJ = exp ad(nip,) 
u = to 

i(d,+d,m,m,. 1 xp) 
.hb, +b,- ,) 

L(d,+c,pxl) 
L(d,+c,lx(-1)) 

/)‘I’ n 

al2l 
bfi’, 

d”l 
n 

E(d,+c,px(--1)) 
E(a, +a,. 1 xp) 

(II c4 
Ill f, 

-Qa, +a,) 
da, 
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involution implies D(h) + h+z 2xiL, where L is the lattice generated by 
{@j};=o. Th ere ore f h is in 7ciL and we can write h = ni C aid,, where 
a, = a I, a,E 1% 1). SO h=nj(C,,,aid,+D(C,.~ajlij)+C,=o(,,aiBj), 

where Jn D( J) # 0 and 

Ju D(J) = (s E I: s # D(s)} (D(e,) = e,,,,). 

Conjugating by exp ad(7ci &t J aid,) we have 

D.expad(h)-D.expad 7ci c aidi . 
I = 01 i) > 

We further have the following equivalences: 

11) 
a2k- I p. .exp ad(rrCibk) = pz .pa .exp ad(rci$O) .pz ‘. 

b:” Using ((r,);=, ) c W we can reduce to the cases shown in the 
list as if we were in the finite-dimensional case. 

d(i) Again we use ({ii)~:~) for p2 and ( {rj>:!=,) for pO. 

e(i) Here we use (i,, i, , ix) as in a3. 

e$‘) We use (i,, ii). 

3. INVOLUTIVE AUTOMORPHISMS OF THE SECOND KIND 

3.1. In this case, a(b+)=g(b-) for some g in G, writing g=h+u’h-, 
h’ in B,, we have a(b+)nb+ =h+(b+ n,c(bk))Ib+(b), then 
@+)nb+ is a finite-dimensional solvable Lie algebra stable under G, 
which contains a conjugate of b. By Lemma 111.1.2 we can assume that b is 
stable under e. 

So 0 induces an automorphism of the root system and, using the fact 
that it is an involution on h, we have ql,, = 0. Dy . r, q = 0, 1; Y E W, D is 
determined by a symmetry of the Dynkin diagram of g and o = -id; Dy. r 
is of order two and we have the following: 

3.2. LEMMA. Given D, Y, and q as above and ( Dy . r)’ = id, there exist an 
element s in W and orthogonal simple roots a,,, txi,, . . . . ai_ fi.xed by (D”)* 
such that s.D.r.s- ‘=D.r%,, .r,+...r,, . m 

Proqf: We consider the case q = 1. When q = 0, the proof is similar. 
We know that I(w)= #(w(d+)nd_)= #(D.rt’(A+)nA-} for all M 

in W. Assume that ai E 7~ is such that D r(ai) is in A Then r, . D. r . ri = 
D.r,,(,, .r.ri and 

l(r D,r, .r.r;)=f(r)-2 if r(ai) # -D(a,) 

= f(r) if r(ai) = - D(ai). 

Now we will prove the lemma by induction on I(r): 
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If I(r)=0 it is clear. Suppose re-(D.s.D.r.s-‘: HEW) has minimal 
length I(r) > 0, then there is c(~ E z such that r(ai) E A- and we have 
r D,i, . r = r. ri because r ri(aj) = r(a;) + 2((ct,, aj)/(ai, a,)) D(ai), 

r,(,) . r(q) = r(q) - 2((D(a,), r(a,))/(D(a,), D(a,))) D(a,), 

and (zi, CC,) = -(&a,), r((x,)), (z;, LY,) = (D(cc;), D(a,)). Therefore D . r com- 
mutes with ri, D. r. ri satisfies the inductive hypothesis, and I(r .r,) = 
I(r)- 1. Thus D.r.r, =D .r,, .riz “‘rim. 

We only need to show that r, commutes with D and rl, for all j. We know 
rD,,, . ri, . . r,m = r,, . . r,, . r,, and applying both sides to aj, we find 
(LY,, xi) = 0, therefore r, commutes with r,, for all j and this in turn implies 
that r, commutes with D. 

3.3. Using the lemma we have an automorphism w . D i,, . .. f, of g, 
whose restriction to h coincides with B. Therefore the composition 
CJ w . D i,, . i, is an automorphism leaving h pointwise fixed, hence it 
has to be of the form exp ad( -A) for some h in h, that is, CJ = 
cu . D . ii, . . g,“, . exp ad(h). Writing h = h + + h with a(h+)=h+, 
o( It ~ ) = - h , and conjugating by exp ad( h -/2), we can assume a(h) = h. 

The condition 0’ = id reads exp ad(2h). i;l, ... if- = id and we know that 
if = exp ad(niajv ). Hence we have 

2h = xi C a; + hi C bibi, 
i= I j= 1 

bj E (0, 1 

or 

h=(rci/2) ‘f a,: +-xi i h,@,. 
/=l ,=l 

The condition o(h) = h means 

h=xi ‘$ (1 +h+)d,, +ni c (b,(,, - b,)(@D( j) - dj)/23 

i= I X/EM 

MnD(M)=@,MuD(M)=rc. 

If b,, = 0 then a(e,,) = --e,, and 

dim(expad(-~;/2).o-expad(~,/2)(b+)nb+)<dim(a(b+)nbb,). 

Hence if we assume dim(a(b +) n b, ) minimal for c in its conjugacy class 
we have 6, = 1, 1 < j < m, that is, h = 7ci xjE M (b,(,, - bj)(p,,j, - pj)/2. 

The condition 2h + xi c/m=, a{ EL leaves us with the following cases; 



TABLE VII 

Involutions of the Second Kind of Afline Lie Algebras 

Algebra Automorphism 

n=2k+ 1 

n = 2k 

n = 2k 

n=2k+ 1 

n=2k 

u, =w 
0, =w.p, 

6) = CO .pO .+, .exp ad(ni(a, - b,)/2) 
a,=o~.p,.i,.~,+,.expad(xi(~,-/i,+p,+,-~,)/2) 
CT5 =w.p, 
U6 =UJ.pz 

fJ, =w 
u2 =w.p, 
(r3 =w.p, .i, .expad(ni(j,-, -pk+, ” J/2) 

u1 =w 
cr‘z =w.p, 

CT3 =o.p, 

u4 =w.p2 
OS =o‘$ .i2 .t, . ..i.-, .f,_, .expad(ri(j&-b, +p,,-ji,m1)/2) 
ub =u3 .fk ‘exp ad(ni($,-, -bk+,)/2) 
u7 =u2 .?, .f, ...f,-, .t,_, .expad(rri($, -,1?.~~)/2) 

0, =w 
02 =w.p, 
(r3 = w pO i, i, exp ad(k( fi2 - p4)/2) 

6, =w 
02 =0.p, 

61 =w 

IJ] =w 

6, =w 

0, =w 

u, =w 

0, =w 
u2 =o.p, 
u3 =o.p, .iz .f, ...i2[.,2~-2 .i2Cn,21 .expad(ni(p, -8,)/2) 

01 =w 
62 =w.pl 
o3 =w’pl .ik .expad(ni($,-, -j&+,)/2) 

01 =w 

u, =w 
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besides w and o. D, the notation is the same as in the preceding section 
(see Table VII): 

UQ = co. p(J . i, 

u$‘+ , = w.p, .i, 

=w.p, .f, 

c(1) - 
2k -W.Pl .fk 

d$’ = co . p? . i, 

=w.p, .?, 

d(L) 
2k+ I =o.p, .i, 

ek’)=w.p, .i, 

exp ad(Wj, - p2k)/2) 

exp ad(Nb, - d2k,- ,P) 

rk+l .ewad(~i(P, -b2k+l -(pk-$k+2))/2) 

exP ad(ni(ik ~ I - ik + 1 J/2) 

“I2k-4 ‘r2kp2 .exP a4Wo - b1 + $2k - i2k- ,)/2) 

exp ad(ni(bk -, - bk + 1 J/2) 

. . 
r3 “‘r2k-3 .rZkpl .exP ad(7’di2k - 62k+ ,)/2) 

r3 . . =o.p, -@‘J/2). 

4. REALIZATIONS OF CLASSICAL INVOLUTIONS 

We consider the case when f is a classical Lie algebra viewed as a sub- 
algebra of M(n, @), n E N. Then we can realize the automorphisms of L(g) 
in Aut(A), in one of the following ways: 

A ’ ) CAC’+cp(A)c 

or 

A ’ + -CATC?+cp(A)c, 

where A is in L(g); C is a certain element of gZ(C[t, t-l]) and q(A)= 
,J Res(tr(C(dC/dr)A)), for A in L(k), (X, Y) = I tr(XY), X, YE g. Indeed, 
q(A) is determined by the condition 

P( CA> Bl) = MA 1, dB)l, 

which implies 

cp( CA, Bl) = W(A) - cp(Ak, P(B) - rp(Bk) - VW, B) 

. 

We consider only the cases when p does not preserve g. We will use the 
notation .Z, = (a,i);‘:j= i = (( - l)‘+’ 6i,s+ I-i); Z, = Id,*. We have the 
following: 

s^l,(C:) PI(%) = El, p,(A) = CAC-’ + cp(A)c, 

481.114,2-17 
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where C = (y A); 

~I,,(C)p,(ai)=GLZk+i~-*, PI(A)= -CATC-‘+cp(A)c, 

where C = ( -A- ’ ‘$; 

PZ(cri) = cIi+ k, p,(A)= CAC-’ -t rp(A)c, 

where C= ({ g), where A = Ik, B= !I,; 
I 

S”Zk+l(c)~,(%)=~,, p,(A) = CAC-’ + q(A)c, 

whereC= 

sd*(@) PI(Cli)zCln-- i, p,(A) = -cATc-’ + cp(A)c, 

where C= (t g), where A= J,, B= -tJ,; 

SdZk(@) ptcri) = clk- jr p(A)=CAC?+cp(A)c, 

where C=(g i), where A=Jk, B= -tJk; 

d%) = a, 1 d%)=% 1, p(A) = CAC-’ + cp(A)c, 

where C = ( { g), where A = (( +-‘), B=( ~, +-‘). 

5. FIXED POINTS SETS 

5.1. To compute the fixed points set of an involution we need to make 
the following observations: 

(1) If o is of the form 1 x t, where t is an involution of the linite- 
dimensional Lie algebra i, then &i)U _Y i(i’). 

(2) If fJ=rO, then &, p)” 2 &, p’), p in Am(A). 
(3) If O=rO . (1 x p), then 2(g)O N &, P), and this in turn is 

isomorphic to gti’ for i = 1 or 2; depending on whether p is an inner or an 
outer automorphism of 2. 

The remaining cases are handled case by case. The results are shown in 
Table VI. 

5.2. We show in two examples how the lixed points set is computed. 
The idea is the following: we consider the Kac-Moody algebra g, = 
( ej + a(ei);fi + a(Ji), i in Z), clearly g, c g”, and we are going to look for a 
complement to g, in g”; using a gradation on g”, we find the first element Y 
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in g”\go, form gb = (go, Y), and repeat the procedure with gb instead 
of go. 

EXAMPLE I. g of type A$;‘- ,, g = p,, in Aut(A), satisfying 
p,(e,)=e,kpi-,, iE2. 

We have the Kac-Moody algebra g, generated by 

{G, +4X,,); L, +4X-,,); hi + 4u; c}, i = 0, . . . . k - 1. 

From the realization it follows that (r commutes with multiplication by t 
inn+. 

We have that g” = n”+ + h” + n”; g, = n”, + ho + n’? and we also have 

n”+ = @ t’(ii+ + (t@R)+ (t@iL))“. 

i20 

We want to find a complement Q, to n”, in n”,; as nO, is graded and e is 
C[t] linear on n + , we will have Q + = ojao rjQo, where Q, is a com- 
plement to nO, n(ii+ +(t@h)+(t@L)) in (;io+(t@%)+(t@iiP))“. 

As we have iV+ u (t @ f;)O u (t x ii _ ) c go, we need only to consider the 
subspace Ogxcti + (8, + gacJ’. Take x, + o(X,) E g”, X, E fi + \nO,, Wa) 
minimal. Write X, = [X,, X,], for 0 < i < k smallest possible. Consider 

By the minimality assumption on ht(a), we have that X, +0(X,) belongs 
to no+, there fore the only cases when X, +0(X,) might not be in n”, are 
when (*) ai +/I and c(ai) + /I belong to A. 

Let /I = c,“=m 011, the condition (* ) implies 2k - m = n - 1, 
4am-1)=an+1T and cr(j?) = 0, therefore cr(XB) = -xg and X, + 0(X,) = 
Lx,, -4X,), xpl, but Xp = LX,,,, -4X,,,,), Xpea, + (XDp,,)l for Xfipzm in 
gp ~ ,+,. Hence 

The right-hand side is in d’+, therefore in this case we have 
(g, + g,,)” c go, which implies Q, = (0) and then go = g”. 
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EXAMPLE II. Consider the involution p2 of uzkp i, pz(ei) =ei+k. Take 
/?=CO= b f , n a, as e ore. In this case the condition (*) implies 

i=m- 1, m+k-l=n+l. 

Again ht(a) minimal implies X, + a(XB) is in go and [X, +0(x,,), 
A’, +a(.l’,)]=X, +cr(X,)+X,, +a(X,,) is in g, where a’=tx,+, +/?. 
Taking m = 2, . . . . k + 1 we have a linearly dependent family of rank k - 1. 
In fact there is a linear combination Y= Cht y=k c,(X,, + 0(X,)) such that 
[Y, X& +0(X,,)] = 0, i = 0, . ..) k- 1, and the space H’= GjEL t’@ Y is 
complementary to g, in g” witht he additional property that H = H’O Cc is 
an infinite-dimensional Heisenberg Lie algebra. 

5.3. In other cases we find that (X, + 0(X,) $ go: tl> 0 and ht CI is 
minimal) is a one-dimensional space generated by an element Y, such 
that [X-, + 0(X,,), Y,] = 0 for all i in 1, and there exists 01~ E 7c, such that 
[X,, + 0(x,,), Y, ] # 0. In this case we define gb = the subalgebra generated 
by {go, Y,, Y-3 CY,, Y-l>, where Y_ is a generator for the 
corresponding space in n:. We then repeat the process with gb instead of 
go. 

APPENDIX A: TITS BUILDINGS 

Introduction 

In the process of defining buildings we should keep in mind the following 
procedure to construct complicated geometrical objects from simpler ones 
CT, 11. 

Take an object C and to each element x of C attach a subgroup G, of 
the group G. Then there exists a unique minimal object S?‘, extending C, on 
which G acts in such a way that no two elements of C are equivalent under 
G and G, is the stability group of x in G. This can be achieved by taking 
the quotient of the product G x C by the equivalence relation 
(g,x)-(g’,x’)ifandonlyifx=x’andg-’g’EG,. 

Now let (G, B, ZV, S) be a Tits system of afline type, that is, 
W= N/(B A N) is an afline Weyl group. We further assume that 
n nENnBnpl = Bn N. 

We are going to associate to (G, B, N, S) a set 9? endowed with a struc- 
ture of simplical complex, a set of morphisms of simplicial complexes from 
the afline space A into W, a distance making W a complete metric space for 
which the morphisms above are isometries, and an action of G on S? 
preserving these structures. 

In this case C is going to be a fundamental chamber for the irreducible 
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action of Won an afftne space. For each x in C we call W, the stabilizer of 
x in W. Finally, we associate to x the group G, = SW, B. 

A.1. The Simplicial Complex 

Let ?? be the set of parabolic subgroups of G. For P E 9 we denote by 
z(P) c T the type of P. Let 93 be the set of pairs (P, x) with PE 8, 
x E Cr(P). For P E 9, the set F = F(P) = {(P, x): x E C,,,,} is called a facet 
of a of type r(F) = z(P) and codimension card(r( P)). If P’ E 9 and P c P’ 
we say that F(P’) is a facet of F(P), and we have then r(P’) 3 T(P). 
Reciprocally, the facet F(P) has for any type Y c z(P) exactly one facet of 
type Y [BT, (2.1.1)]. 

The map (P, x) + x is called the canonical map from 33 onto C. If F 
(resp. F) is a facet of type X of 2, the restriction of this map to F (resp. F) 
is a bijection of F (resp. F) onto C,y (resp. C,) whose inverse is called the 
canonical map from C, (resp. C,) onto F (resp. P). Then we can give F 
(resp. F) the structure of an open (resp. closed) alline simplex that comes 
from the structure in C (resp. C) [BT, (2.1.2)]. 

A.l.l. G acts on a by g.(P,x)=(gPg-‘,x), PEP, IEC,(~, [BT, 
(2.1.4)]. 

A.2. The Structural Mappings and the Adartments of $8 

There exists a unique map j: A -+ 6? satisfying the following two con- 
ditions: 

(i) the restriction of j to C is the canonical bijection from C onto 
F(B); 

(ii) j(v(n).x)=n.j(x) for all ntzN, xeA. 

The map j is injective. If F is a facet of A then j(F) is a facet of 39 of the 
same type, we have j(F) = j(F), and the restriction of j to F is an affine 
bijection of F onto j(F) [BT, Proposition 2.2.11. 

A.2.1. DEFINITION. The map j is called the canonical map from A into 
S9. A map cp from A into .!?J is called a structural map of 93 if there is an 
element g E G such that q(x) = g. j(x) for all x in A. 

We call the apartment (resp. half apartment, wall) of 99 any subset of 99 
that is the image of A (resp. an alline root, a wall of A) under a structural 
map. 

We can transport the structure of afline euclidean space from A to j(A) 
and to any apartment by requiring the maps to be isometries. In particular, 
we will denote the distance in an apartment M by d,. For any g in G, the 
map x + g. x is an isomorphism of A onto the apartment g . A. 
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A.3. The Metric of the Building 

There is a unique function d: 98 x 9$ + R + such that on every apartment 
A, d coincides with d, [BT, Lemma 2.5.11. The function d is invariant 
under G. 

Furthermore, d is a distance on a and for any x, 4’ in 98, the subset D = 
{ZE& d(x,z)+d(z, y)=d(x, y)) is contained in every apartment A con- 
taining x and y, and coincides with the segment [x, y] of the afline space A 
[BT, Proposition 2.5.4-J. 

A.3.1. The metric space 99 is complete [BT, Theorem 2.5.121. 

A.4. DEFINITION. The set ~9 endowed with the structure of simplicial 
complex, the family of structural maps, and the distance d defined above is 
called the building of the Tits system (G, B, N, S). 

A.5. B-Adapted Homomorphisms 

Let cp: G -+ G be a B-adapted homomorphism. Let (P, x) E 9, P E 9, 
x E c(P); as gP is of type i( g)(t( P)), the pair ( gP, r(g) ..x) is an element of 
g and this determines an action of G on W. 

The action satisfies [BT, Proposition 2.7.21: 
(i) IfgEG, ~~98, then cp(g).y=g.y. 

^ 
(ii) For every g in G, the map y -+ g. y is an isometry of the sim- 

plicial complex. 

A.5.1. In particular, we can take d = Aut, G, that is, the group of 
automorphisms of G that preserve the conjugacy class of B, and we take 
Ad: G -+ Aut, G as the map cp. Then y. g . .Y = y(g) . y. .Y for every y in G, g 
in G, and x in &? [BT, 2.7.41. 

APPENDIX B: FIXED POINT LEMMA 

B.1. LEMMA. Let x, y E 99. There is a unique point m in a such that 
d(x, m) = d(y, m) = d(x, y)/2. It is called the middle of [x. y]. Let x, y, 
~~93 and let m be the middle of [x, y], then 

(*) d(x, z)’ + d(z, y)’ 2 2d(m, z)’ + d(x, y)‘/2. 

This can be shown by using the fact that for any apartment A of 33 and any 
chamber C of A, there exists a retraction pc: 33 4 A such that p,‘(C) = C 
[BT, (2.3.41 and such that 

d(p,(u), PC(v)) < d(u, u) for all u, v in 9, 
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having equality when there is an apartment that contains u, v, and c [BT, 
(2.5.3)]. Taking an apartment A that contains x and y, and a chamber c in 
A that contains m, we have d(p,(z), p&m)) = d(z, m) and we are reduced to 
a planar geometry inequality. 

B.2. LEMMA. Let E be a complete metric space and let E’ be a part of E 
having the following property: 

For any pair of points x, y in E’, there exists a point m in E such that (*) 
holds for euery z in E. 

If M is a bounded set in E’, then the stabilizer of M in Isom E, i.e., 
{a E Isom E: a(M) c M}, has a fixed point in the closure of E’ in E. 

Proof If X, Y are two sets in E we call diam(X, Y) = sup d(x, y) and 
diam( X) = diam(X, A’). 

Let PER, O<k<l. For every set XcE’ define 

f(X)=(mEE’:3x,yEXs.t.(*)issatisliedVzEE 

and 

d(x, y) > k .diam(X)}. 

Then f(X) # @ if X# @. 
For m, x, y as in the definition of f(X) we have 

d(m, z)‘< (d(x, z)~ + d( y, z)*)/2 - d(x, y)‘/4 

< diam(X, z)’ - k2 diam(X)2/4. 

Taking z in X, 

diam(f(X), X)<k, diam(X), 

Therefore taking z in f(X), 

diam f(X) < k, diam(X), 

If M is a bounded set of E’, then 

where k, = dm. 

k, = J’w. 

diam(fq(M))<kldiam(M), 4> 1; 

for every q in N pick x in f q(M), then 

d(x,, xq+ 1) < k,kl diam(M) 

4x,, xq+m ) < k, kf diam(M)/( 1 - k2) = ckq, c a constant. 
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Hence {xy } is a Cauchy sequence in E and therefore there is a limit point 
x E E’, independent of the choice of {x,) ye N. As the stabilizer of M in 
Isom(E) leaves each one of thefY(M) stable, x has to be fixed. 

B.3. PROPOSITION. Let M be a bounded set of .!B. The stabilizer of M in 
Isom 28 has a fixed point x, belonging to the closure of the convex hull of M. 

Prooj Take E = 9, E’ = convex hull of M and apply the lemma. 
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