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Understanding the Concentration Dependence of Viral Capsid Assembly
Kinetics—the Origin of the Lag Time and Identifying the Critical
Nucleus Size
Michael F. Hagan* and Oren M. Elrad
Department of Physics, Brandeis University, Waltham, Massachusetts
ABSTRACT The kinetics for the assembly of viral proteins into a population of capsids can be measured in vitro with size exclu-
sion chromatography or dynamic light scattering, but extracting mechanistic information from these studies is challenging. For
example, it is not straightforward to determine the critical nucleus size or the elongation time (the time required for a nucleus
to grow to completion). In this work, we study theoretical and computational models for capsid assembly to show that the critical
nucleus size can be determined from the concentration dependence of the assembly half-life and that the elongation time is re-
vealed by the length of the lag phase. Furthermore, we find that the system becomes kinetically trapped when nucleation
becomes fast compared to elongation. Implications of this constraint for determining elongation mechanisms from experimental
assembly data are discussed.
INTRODUCTION
The assembly of protein building blocks into a shell or

capsid is essential for viral replication and thus under-

standing the mechanisms by which assembly proceeds could

identify targets or opportunities for novel antiviral therapies.

However, despite extraordinary progress in determining the

structures of assembled capsids, assembly mechanisms for

most viruses remain poorly understood because the struc-

tures of transient assembly intermediates have been inacces-

sible experimentally. The kinetics for spontaneous capsid

assembly in vitro have been measured with size exclusion

chromatography (SEC) and x-ray and light scattering (e.g.,

(1–7)), but extracting mechanistic information such as the

critical nucleus size or the time to assemble an individual

capsid has been challenging. In this article, we theoretically

examine two models for capsid assembly kinetics to show

that these properties can be determined from the concentra-

tion dependence of median assembly times and the lag phase.

Assembly kinetics in vitro has been measured for a number

of icosahedral viruses (e.g., (1–7)) and demonstrates

sigmoidal growth characterized by a lag phase, rapid growth,

and finally saturation (see Figs. 1 and 2). Zlotnick and co-

workers (2,8,9) showed that partial capsid intermediates

assemble during the lag phase, but it has often been assumed

that the duration of the lag phase corresponds to the time

required for the concentration of critical nuclei to reach

steady state, in analogy to models of actin nucleation.

However, in this work we show that because light-scatter

signal measures the mass-averaged molecular weight of

assemblages (4) and SEC usually monitors complete capsids,

the length of the lag phase is related to the elongation time, or

the time required for a nucleated partial capsid to grow to
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completion. Similarly, the critical nucleus size cannot be reli-

ably determined from the concentration dependence of initial

or maximum growth rates (9), and a method to do so using

the extent of assembly (9) is data-intensive. We demonstrate

that the critical nucleus size can be identified in a straightfor-

ward manner from the concentration dependence of the

median assembly time. Finally, we show that the system

becomes kinetically trapped when the elongation time

becomes long compared to the timescale for nucleation. It

is important to note that we do not consider the effects of

a slow transition between assembly-active and assembly-

incompetent conformations of free subunits, recently sug-

gested in Chen et al. (6).

While preparing this article, we became aware of a related

study in which Morozov et al. (10) consider simplified capsid

assembly models in which nucleation occurs via a single

dimerization event, which enables a elegant analytic solu-

tion. They show that the early phase of assembly can be char-

acterized as a shock front, and that for some conditions

prohibitively long timescales are required to reach equilib-

rium. In this work, we consider nucleation as a multistep

subunit addition process, with the objectives of under-

standing the concentration dependence of overall assembly

times and inferring nucleation and capsid growth times

from experimental light scatter measurements.

This article is organized as follows. In the next section, we

use scaling laws for elongation and nucleation times as

a function of subunit concentration in the context of a simpli-

fied assembly reaction. We then demonstrate that these esti-

mates hold for a more realistic model by examining

Brownian dynamics simulations for a model of assembly in-

to icosahedral shells. We then further explore assembly time-

scales using a system of rate equations for the assembly of

polyhedral shells and two models for capsid intermediate

free energies. In Discussion and Outlook, we consider the
doi: 10.1016/j.bpj.2009.11.023
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FIGURE 1 (a) The completion fraction PN in Brownian dynamics (BD)

simulations (the NVT simulations) is shown as a function of time for indi-

cated initial subunit volume fractions (v0). (b) Lag times tlag, elongation

times telong, and nucleation times tnuc
min calculated from BD simulations are

shown as functions of the initial subunit volume fraction. Lag times are

calculated from canonical ensemble simulations as described in Fig. 3,

whereas telong is calculated from the steady-state ensemble as described in

the text. The volume fraction vc corresponding to the crossover concentra-

tion is indicated by the �. The dashed line is a guide to the eye to demonstrate

scaling inverse to subunit concentration. The scatter in the points at volume

fractions below vc gives an indication of the statistical error at low concen-

trations.
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FIGURE 2 The time dependence of capsid assembly for the NG model

varies with initial subunit concentration c0. (a) The completion fraction

PN as a function of time for indicated initial subunit concentrations. (b)

The calculated light scatter closely tracks completion fraction until kinetic

trapping sets in. The calculated light scatter (dashed lines) and completion

fraction (solid lines) are shown as a functions of time (on a logarithmic scale)

for indicated initial subunit concentrations, with gnuc ¼ – 7kBT, N ¼ 120,

and f ¼ 105 M�1s�1.
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implications of our findings for experimental measurements

of capsid assembly dynamics. Additional simulation details,

derivations, and further evaluation of approximations in the

rate equation models are given in the Supporting Material.
CAPSID ASSEMBLY TIMESCALES

In this section, we develop scaling laws for the concentration

dependence of the duration of lag phase and nucleation time-

scales. To facilitate the presentation, we first consider

a systematic assembly process which is greatly simplified

in comparison to capsid assembly. In the following sections

and in the Supporting Material, however, we show that the

conclusions of this section remain valid when the simplifica-

tions are eliminated.
Biophysical Journal 98(6) 1065–1074
We consider a system of capsid protein subunits with total

concentration c0 that start assembling at the time t ¼ 0 into

capsids; the word subunit refers to the basic assembly unit,

which could be a protein dimer or capsomer. Our simplified

reaction is given by

1 #
fc1

bnuc

2 #
bnuc

fc1

/ #
fc1

bnuc

nnuc #
fc1

belong

/ #
fc1

belong

N; (1)

where N is the number of subunits in a capsid, c1 is concen-

tration of unassembled subunits, and bi is the dissociation

rate constant (with i ¼ {nuc, elong}), which is related to

the forward rate constant by the equilibrium constant, bi ¼
fexp(gi/kBT)/v0, with gi the subunit association free energy

(arising from hydrophobic and electrostatic interactions

(11,12)) and v0 the standard state volume. The nucleation

and elongation phases are distinguished by the fact that
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association in the nucleation phase is not free-energetically

favorable, c1 exp(–gnuc/kBT) < 1, whereas association in the

elongation phase is favorable, c1 exp(–gelong/kBT) > 1. For

the moment, we assume that there is an average nucleus

size nnuc; identifying nnuc from assembly kinetics data is

one of the objectives of our work. The physical origins of

nucleation and the factors that determine nnuc are discussed

in Rate Equation Models for Capsid Assembly.

We write the overall capsid assembly time t as t ¼ tnuc þ
telong, with tnuc and telong the average times for nucleation

and elongation, respectively. For all of the models consid-

ered in this work, we will see that when elongation is fast

compared to nucleation, the duration of the lag phase is given

by the mean elongation time for the first capsids to assemble:

tlag ¼ telong(t ¼ 0). Thus, for this model the lag time can be

calculated from the mean first-passage time for a biased

random walk with a reflecting boundary conditions at nnuc

and absorbing boundary conditions at N, with forward and

reverse hopping rates given by fc0 and belong ¼ fexp

(gelong)/v0, respectively. Mean first-passage times for these

boundary conditions are derived in Bar-Haim and Klafter

(13); inserting these forward and reverse hopping rates yields

telong ¼
nelong

fc0 � belong

�
�

belong

fc0 � belong

�2�
belong

fc0

�nelong

; (2)

with nelong ¼ N – nnuc.

In the limit of fc0[belong, Eq. 2 can be approximated to

give telong z nelong/fc0, whereas for similar forward and

reverse reaction rates, fc0 z belong, it approaches the solution

for an unbiased random walk telong z n2
elong/2fc0. We calcu-

late elongation times for other models in the Appendix and

measure them for a more realistic model in the next section.

Under conditions of constant free subunit concentration,

we can derive the average nucleation time with an equation

analogous to Eq. 2 (9,14),

tmin
nuc ¼

n̂

fc0�bnuc

�
�

bnuc

fc0�bnuc

�2�
bnuc

fc0

�
n̂zf �1expðGn̂=kBTÞc�n̂;

0

(3)

with n̂ ¼ nnuc � 1, and Gn̂ the interaction free energy for the

pre-nucleus (Gn̂ ¼ ½n̂� 1 gnuc� for this model). However,

because free subunits are depleted by assembly, the net

nucleation rate never reaches this value and asymptotically

approaches zero as the reaction approaches equilibrium.

Instead, treating the system as a two-state reaction with

nnuc-th order kinetics (see the Supporting Material) yields

an approximation for the median assembly time t1/2, the

time at which the reaction is 50% complete

t1=2z
2n̂ � 1

n̂

Peq
N

Nf
expðGn̂=kBTÞc�n̂;

0 (4)

with Peq
N as the equilibrium fraction of subunits in complete

capsids, which can be measured experimentally (11). The
factor of N�1 in Eq. 4 accounts for the fact that N subunits

are depleted by each assembled capsid.

For all models considered, we will see that when capsid

growth times are negligible compared to nucleation times,

telong and Eq. 4, respectively, predict the duration of the

lag phase and the overall median assembly time. However,

as first noted by Zlotnick (8), the reaction becomes kineti-

cally trapped if free subunits are depleted before most

capsids finish assembling. It was recently suggested

(10,14) that this trap occurs at binding free energies Gn

and subunit concentrations c0 for which the rate of subunit

depletion by nucleation (N/tnuc
min) is equal to the elongation

rate. We find that the relationships between telong and

assembly times begin to fail at a crossover concentration cc

for which initial nucleation and elongation rates are equal,

but the system becomes kinetically trapped at a larger

concentration ckt defined by the point at which the median

assembly time t1/2 matches the elongation time. These

concentrations are related to binding free energies and other

parameters by

telongztmin
nuc=N for c0 ¼ cc

telongzt1=2 for c0 ¼ ckt; (5)

with tmin
nuc and t1/2, respectively, given by Eqs. 3 and 4.
INVESTIGATING THE LAG PHASE WITH
BROWNIAN DYNAMICS (BD) SIMULATIONS

There are a number of simplifications in the schematic

assembly process of the previous section:

Malformed capsids are not considered (15–22);

Assembly proceeds along a single pathway (23–25);

Only single subunits can bind or unbind;

Transitions between intermediates are allowed through

binding or unbinding of a single subunit; and

There is only one (average) forward rate constant f.

In this section, we show that our results are valid when

applied to a computational model that does not make any

of those simplifications. We specifically consider the conclu-

sions about lag times because calculating median assembly

times is computationally demanding at low concentrations;

we examine nucleation times in the next section.

There are two observations about lag times made in this

work to be checked:

The first, crucial, observation is that lag times correspond

to the mean of the distribution of initial capsid elonga-

tion times below cc.

The second observation is that the mean elongation time

varies inversely with free subunit concentration if

elongation is primarily a first-order reaction; note

that lag times will still correspond to mean elongation

times even if elongation is not first-order.
Biophysical Journal 98(6) 1065–1074



FIGURE 3 The end of the lag phase is measured by making a linear fit to

the assembly kinetics trace at the point of maximal growth rate (-). The lag

time (þ) then corresponds to time at which the fit (dashed line) crosses the

baseline. Plots are shown for the NG model with c0 ¼ 20 mM.
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We consider simulations of a model for the assembly of

icosahedral shells (14,16,20), in which subunits are modeled

as rigid bodies, where excluded volume interactions are

modeled by spherically symmetric repulsive forces, and

complementary subunit-subunit interactions that drive

assembly are modeled by directional attractions. The lowest

energy states in the model correspond to capsids, which

consist of multiples of 30 subunits (each of which represents

a protein dimer) in a shell with icosahedral symmetry.

Because the spatial positions and orientations of all subunits

are explicitly tracked, there are no assumptions about

assembly pathways or the structures that emerge from

assembly.

Simulation parameters

The parameters of the model are the energy associated with

the attractive potential, 3b, and the specificity of the direc-

tional attractions, which is controlled by the angular param-

eters qm and fm. Subunit positions and orientations are prop-

agated according to overdamped Brownian dynamics, with

the unit of time t0 ¼ a2/D, where D is the subunit diffusion

coefficient and a is the subunit diameter. Full details of the

model are given in Hagan (14).We simulated systems with

2000 subunits in periodic boxes with side lengths ranging

from 27 to 65, where all distances are measured in units of

the subunit diameter a. These side lengths correspond to

subunit volume fractions of v0 ˛ [0.052, 0.0038], corre-

sponding to concentrations of c0 ¼ 84 mM to 1 mM, with

c0 ¼ 6v0/(pa3NA) with the subunit diameter a ¼ 5.2 nm

and NA Avogadro’s number. The interaction parameters

were 3b ¼ 12.25 kBT, qm ¼ 0.75, and fm ¼ p. We consider

the assembly of T ¼ 1 capsids, so N ¼ 30 dimer subunits.

NVT simulations

We consider two sets of simulations to evaluate the time

dependence of capsid assembly. The first set corresponds

to the in vitro empty-capsid experiments modeled

throughout this work, and simulates capsid formation in

the canonical (NVT) ensemble. Simulations are initialized

by generating random positions and orientations for

subunits, with subunit positions that lead to subunit-subunit

overlap (positive potential energies in excess of 1 kBT) re-

jected, and dynamics are integrated until a prescribed time.

The fraction of subunits in complete capsids PN, which

can be monitored by SEC, is shown as a function of time

for several total subunit volume fractions in Fig. 1. In all

cases there is a lag time, followed by the rapid appearance

of complete capsids and then eventually saturation of

growth. The rate of capsid formation is nonmonotonic with

respect to initial subunit concentration; the highest subunit

volume fraction (v0 ¼ 0.052), which is above cc (Eq. 5),

has the shortest lag time but a slow rise to saturation because

the system becomes starved for free subunits or small oligo-

mers and large oligomers rarely have geometries compatible
Biophysical Journal 98(6) 1065–1074
with binding. Lag times are measured from simulation data

using the procedure described in Fig. 3. Except at high

concentrations, lag times roughly scale as tlag f v0
�1—indic-

ative of a primarily first-order elongation reaction for these

parameters, despite the fact that oligomer binding does occur

for this model.

Steady-state ensemble simulations

To evaluate the correspondence between lag times and initial

elongation times, it is necessary to directly measure mean

elongation times of growing capsids in the simulations.

However, achieving statistical relevance and avoiding finite

size effects for the measurement of initial elongation times is

extremely challenging in the NVT simulations because, by

definition, most capsids assemble later in the simulation

when free subunits have been depleted. Therefore, we also

consider simulations in a steady-state ensemble (26), in

which the free subunit concentration becomes time-indepen-

dent. Specifically, clusters that become complete capsids,

defined as closed shells in which each subunit has its full

complement of four bonds, and clusters that reach a size of

35 or more subunits, are removed from the system and their

subunits are reinserted into the simulation box, subject to the

same overlap criterion as the initial state. The simulations

reach steady state in a time that closely corresponds to the

lag time measured in the NVT simulations. Once steady state

is achieved, we measure the distribution of elongation times

and the average nucleation rate by tracking individual clus-

ters. These simulations were run for the same sets of param-

eters as the NVT simulations.

At steady state in the steady-state ensemble simulations,

the concentration of free subunits c1
ss is equal to the total

subunit concentration c0 minus the concentration of subunits

in partially assembled capsids, which is dictated by the ratio
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FIGURE 4 The median assembly times t1/2 (a) and the lag times tlag (b)

calculated from the completion fraction (PN) and calculated light scatter

(ILS) are shown as functions of initial subunit concentration c0. The estimates

for the nucleation time (Eq. 4 with nnuc ¼ 5) and lag time Eq. 2 are shown as

dashed lines, and the estimates for the crossover concentration cc and kinetic
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of capsid production rates and free subunit consumption

rates. Below cc, when elongation is fast compared to nucle-

ation, the majority of subunits are free (or prenucleated) and

c1
ss is only slightly smaller than c0, but the ratio drops signif-

icantly with increasing c0, as shown in Fig. S7 in the Sup-

porting Material.

The mean elongation times are shown as a function of the

initial subunit volume fraction in Fig. 1. We see that for v0 %
0.006 lag times measured from the NVT simulations and the

mean elongation times in the steady-state ensemble agree to

within error. Because the steady-state free subunit concentra-

tion c1
ss closely corresponds to the initial free subunit

concentration under these conditions (Fig. S7 in the Support-

ing Material), this finding supports the suggestion that lag

times correspond to the initial mean elongation time. As

the total subunit concentration increases above cc, the

steady-state concentration becomes smaller than the initial

concentration css
1 < c0 and thus the steady-state mean elonga-

tion times become longer than the lag times. We note,

however, that above cc lag times increase faster than tlag

f 1/c0; similarly mean elongation times increase faster

than telong f 1/css
1 . These results in part reflect the fact that

binding of partial capsid intermediates becomes common

above cc (see below). Furthermore, above cc, nucleation is

no longer the rate-limiting step and lag times therefore

correspond to the fastest members of the elongation time

distribution, rather than the mean elongation time (i.e.,

when nucleation is rate-limiting, the first capsids to assemble

have average elongation times, whereas those capsids with

the shortest elongation times are the first to assemble when

elongation is rate-limiting).

trap concentration ckt (Eq. 5) are shown as symbols on the estimated nucle-

ation curve.
RATE EQUATION MODELS FOR CAPSID
ASSEMBLY

Because evaluating median assembly times is computation-

ally demanding at low concentrations (see Fig. 4 a), we

use rate equation models to explore the relationship between

nucleation times and overall capsid assembly timescales.

Zlotnick and co-workers (2,8,9) have developed a system

of rate equations that describe the time evolution of concen-

trations of empty capsid intermediates as

dc1

dt
¼ �2f1c2

1 þ b2c2 þ
XN

n¼ 2

�fncnc1 þ bncn

dcn

dt
¼ fn�1c1cn�1 � fnc1cn n ¼ 2.N

�bncn þ bnþ 1cnþ 1;

(6)

where cn is the concentration of intermediates with n
subunits, and fn and bn are, respectively, association and

dissociation rate constants for intermediate n. There are

several important assumptions, which are not present in the

BD simulations: malformed capsids are not considered, only

single subunits can bind or unbind, and only one fi and bi
value is considered for each size i (averaged over averaged

over all intermediates of that size). Despite these simplifica-

tions, rate equations of this form have shown good agree-

ment with median assembly times of experimental assembly

kinetics data (2,5). These simplifications should not affect

our analysis of nucleation times, which involve a relatively

small number of subunits and largely depend on the Boltz-

mann weights of pre-nuclei. Furthermore, we show that our

results still hold when these simplifications are systemati-

cally eliminated in the Supporting Material.

The association and dissociation rate constants are related

by detailed balance bn¼ fexp(gn/kBT)/v0, with gn¼Gn – Gn–1

the change in free energy due to association of a subunit.

Association free energies gn, which can be fit to experimental

data using the law of mass action (11,27,28), include hydro-

phobic and electrostatic interactions (12) and depend on pH

and salt concentration (11). Specifying the assembly model

requires defining the set of intermediates n and the transition

rates fn, bn. To show that our conclusions are general, we

consider two choices of these definitions.
Biophysical Journal 98(6) 1065–1074
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The nucleation and growth (NG) model

Our first definition is based on the models of Zlotnick and

co-workers (2,8,9), in which the subunit-subunit association

free energy for intermediate i is proportional to the number

of new subunit-subunit contacts nc, i formed by addition of

a subunit to that intermediate. Note that this assumption

neglects the fact that rotational entropy penalties are most

likely not proportional to the number of contacts (see (35)

for further discussion). Specifying {gi} thus requires defining

the geometry of each intermediate. This usually begins with

specifying the geometry of a capsid and its subunits in terms

of a polyhedron (for example, see Fig. S6 in the Supporting

Material or Fig. 1 in (9)), and assuming that assembly

proceeds along a single path. The path can be comprised of

the lowest energy intermediate for each size i (8) or corre-

spond to an average pathway (9) in which all subunits, except

during the initial and final stages of assembly, make the same

average number of contacts. We choose the latter approach, as

it is simpler and not obviously inferior in light of the other

approximations in the rate equation models. Specifically,

the association rate constant f is independent of intermediate

size, and association free energies are given by gn ¼ gnuc

before nucleation (n< nnuc) and gn¼ gelong during elongation

(nnuc % n < N – 1), where nnuc is the critical nucleus size.

Finally, inserting the last subunit makes the maximum

number of possible contacts and thus enjoys the most favor-

able association free energy gN (see the Appendix for discus-

sion of an irreversible final assembly step). Except for the last

subunit, this model corresponds to Eq. 1.

Our NG model is quite similar to that of Zlotnick and co-

workers (2,9), which reproduces experimental assembly

kinetics for several viruses (2,5). Nucleation has been shown

to correspond to completion of polygons (e.g., a pentamer of

dimers for cowpea chlorotic mottle virus (3) or a trimer of

dimers for turnip crinkle virus (30)), which can be under-

stood by noting that the subunits assembling to form the first

polygon make fewer contacts on average than later subunits.

Furthermore, intertwining of flexible terminal arms and other

subunit conformation changes can provide additional stabili-

zation upon polygon formation. In Zlotnick and co-workers’

formulation (2,9), the nucleation and elongation phases are

distinguished by having different forward rate constants,

with a slow rate constant before nucleation and a rate

constant which is several orders-of-magnitude higher during

growth. However, based on the fact that nucleation seems to

correspond to the subunit stabilization that results from

completion of polygons, we choose to distinguish the nucle-

ation and growth phases with different subunit-subunit asso-

ciation free energies.

We find that our results concerning lag times and identifi-

cation of the critical nucleus size are insensitive to parameter

values. We will therefore present results in Numerical Results

for one parameter set: nucleation size nnuc ¼ 5 (a pentamer

of dimers) and free energy parameters gnuc ¼ 7 kBT,
Biophysical Journal 98(6) 1065–1074
gelong ¼ 2gnuc and gN ¼ 2gelong, which imply that adding

a subunit becomes, on average, twice as favorable after

nucleation and four times as favorable for the final subunit.

We note that the value of f corresponds to an average asso-

ciation rate, and not the association rate constant for a single

subunit binding site. To clarify this point, we consider

a model in the Supporting Material in which we relax the

assumption that the association rate constant is independent

of intermediate size.
The classical nucleation theory model

We also consider a definition of transition rates based on the

classical nucleation theory (henceforth referred to as CNT)

suggested by Zandi et al. (31), in which each partial-capsid

intermediate is described as a sphere, with a missing spher-

ical cap. The unfavorable free energy due to unsatisfied

subunit-subunit interactions at the perimeter of the cap is rep-

resented by a line tension s, and the binding free energy is

Gn ¼ ngc þ sln; (7)

with the perimeter of the missing spherical cap given by

ln ¼ 2½pnðN � nÞ=N�1=2
; (8)

with gc the binding free energy per subunit (not per contact)

in a complete capsid. Following Zandi et al. (31), we set the

line tension to s ¼ –gc/2, which indicates that, on average,

a subunit adding to the perimeter of the capsid satisfies

half of its contacts. We find that Eq. 7 with s ¼ �gc/2 is

a reasonable description during the growth phase in BD

simulations, but fewer contacts are made by subunits associ-

ating to form the first polygon. Note that whereas Eq. 7 is

derived under a continuum approximation, we use it to calcu-

late free energies for intermediates with discrete sizes n when

solving Eq. 6. We assume that the forward rate constant is

proportional to the number of subunits on the perimeter, fn
¼ f0ln, with f0 the association rate constant for a single

binding site. From BD simulation trajectories (14,16,20),

we know that this relation overpredicts the net forward rate

constant, as only the subunit binding sites that lead to

more than one subunit-subunit contact lead to productive

assembly for parameters that give rise to effective assembly.

However, we show in the Supporting Material that our

conclusions are not affected by changing the proportionality

constant. As for the NG model, our conclusions about lag

times and identifying the critical nucleus are insensitive to

parameter values.

The most significant difference between the CNT model

and the nucleation and growth models is the size of the crit-

ical nucleus. For the NG model the critical nucleus size

is nnuc, provided exp(gnuc/kBT) < c0v0 < exp(gelong/kBT).

For the CNT model, the critical nucleus size varies with

subunit concentration, and is given by the maximum in

kBT log(c1v0)n þ Gn, or (31)
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nnuc ¼ 0:5N

 
1� G�

G2 þ 1
�1=2

!
; (9)

with G ¼ [gc – ln(c1v0)]/s.
NUMERICAL RESULTS

We explore the concentration dependence of assembly

kinetics by numerically integrating the system of rate equa-

tions (Eq. 6) with the initial condition c1 ¼ c0 over a range

of subunit concentrations. We start with the NG model,

with representative parameters: the contact free energy gnuc

¼ 7 kBT (z 4 kcal/mol) (11), capsid size N ¼ 120 corre-

sponding to 120 dimer subunits in hepatitis B virus (11),

the critical nucleus size nnuc ¼ 5, and the subunit association

rate constant f ¼ 105 M�1 s�1 (5). As is evident from Eqs. 2

and 4, assembly dynamics are insensitive to gelong and gN,

provided that the forward reaction is favorable during elon-

gation; we use gelong¼ 2gnuc and gN¼ 4gnuc (see Rate Equa-

tion Models for Capsid Assembly for further discussion).

As shown in Fig. 2, the fraction of subunits in complete

capsids (PN(t)) obtained from the rate equations mirrors the

results of the BD simulations (Fig. 1 a). In both cases, the

kinetic trap point ckt roughly corresponds to the point at

which the time to build the capsid becomes longer than the

average nucleation time (Eq. 5). For the rate equation

models, the kinetic trap concentration can be calculated as

a function of our parameter values using Eqs. 2, 3, and 5

to give ckt z 60, which corresponds well to the point at

which assembly times increase with subunit concentration.

Assembly eventually occurs above ckt as large partial capsids

scavenge subunits from smaller intermediates.

We calculate light-scatter signal ILS from the mass-aver-

aged molecular weight of assemblages (2). Because light-

scatter units are arbitrary, we normalize calculated light

scatter by N to give 1 if all subunits are in complete capsids

(PN ¼ 1). As shown in Fig. 2 b, the calculated light scatter

closely tracks the completion fraction for initial subunit

concentrations below cc z 38 mM, as the majority of assem-

bled subunits are found in complete capsids once the lag

phase is complete.

The concentration-dependence of median
assembly times and lag times

The median assembly times (reaction half-lives), and lag

times numerically calculated for the nucleation and growth

model, with respect to the completion fraction PN and calcu-

lated light scatter, are given in Fig. 4. As illustrated in Fig. 3,

lag times are extracted from numerical solutions for each

parameter set with a linear fit to the assembly trace at the

point of maximal assembly rate (dPN/dt or dILS/dt). The

lag time is given by the intersection of the linear fit with

the baseline value, which is 0 for the completion fraction

and roughly 1/N for calculated light scatter. Note that for
initial subunit concentrations below cc, lag times for both

the completion fraction and calculated light scatter are

inversely proportional to c0, and the mean first-passage

time estimate (Eq. 2) for the capsid elongation phase telong

closely predicts the lag time for completion fractions. The

lag time for light scatter is shorter than for the completion

fraction because signal is integrated over all assemblages, but

demonstrates the same scaling. Hence, lag times measured

for PN (SEC) or light scattering are associated with the elon-

gation phase, or the time required to build a complete capsid.

Note that our expressions for the lag time differ from the

well-known expression for the time lag in nucleation theory

(32), which gives the time for the concentration of nuclei to

reach steady state.

The correspondence between light scatter and completion

fraction lag times begins to break down at the crossover

concentration cc (Eq. 5), when the concentration of free

subunits is depleted before the first capsids finish assem-

bling. Above this point, the molecular weight average

growth rate becomes dominated by dimerization and hence

varies inversely with the square of initial subunit concentra-

tion. The relationship between the lag time and the elonga-

tion phase of capsid assembly discovered here explains the

observation of Endres and Zlotnick (9) that the duration of

lag time is proportional to the elongation forward rate

constant.

The reaction half-life (median assembly time) t1/2 is given

by PN(t1/2)¼ 0.5Peq
N for the completion fraction, or the anal-

ogous relation for calculated light scatter. Below cc, half-

lives measured with light scatter and completion fraction

agree quantitatively, as anticipated from Fig. 2 b, and agree

closely with the two-state nucleation kinetics estimate

(Eq. 4). In Fig. 4 a, the numerical and theoretical half-lives

are normalized by the equilibrium Peq
N to emphasize that the

scaling with concentration identifies the critical nucleus size:

t1=2=Peq
N fcnnuc�1

0 :

The fact that assembly times can be predicted from nucle-

ation kinetics alone can be understood by noting that

assembly times are dominated by nucleation below cc. The

close correspondence between the theoretical and numerical

median assembly times below cc suggests that this quantity

may provide a simple alternative to the critical nucleus esti-

mator presented in the Appendix of Endres and Zlotnick (9).

As evident from Eq. 4, the critical nucleus size can also be

identified by evaluating ln t1/2/PN as a function of the

subunit-subunit association free energy gnuc. We find that

agreement between the theoretical predictions and numerical

results is insensitive to gnuc and nnuc.

Maximum assembly rates

As noted by Endres and Zlotnick (9), it is not reliable to

relate the critical nucleus size to initial assembly rates or

the extent of assembly as a function of time due to the
Biophysical Journal 98(6) 1065–1074
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presence of the lag phase. At low concentrations, though, the

maximum assembly rates approach the initial nucleation rate

given in Eq. 3 (see Fig. S10 in the Supporting Material).

However, because the maximum assembly rates deviate

from the theoretical prediction well below the crossover

concentration cc, it appears that median assembly times are

a more robust predictor of the critical nucleus size.
The classical nucleation model

To evaluate whether our conclusions are model-dependent,

we also consider the concentration dependence of assembly

times and lag times for the CNT model. To facilitate compar-

isons between the models, we set gc¼ 13.8 kBT and f0¼ 105/

[2(N/p)1/2], so that Peq
N and the average association rate

constants are the same for both models. This choice enables

the elongation time prediction of Eq. 2 to be directly

compared with the numerically calculated lag time; as shown

in Fig. 5, the numerical results and theoretical estimate agree.

Furthermore, as for the NG models, the calculated light

scatter closely tracks the completion fraction below the

kinetic trap point. As noted in Rate Equation Models for

Capsid Assembly, the most significant difference between

the CNT and NG models is that the critical nucleus size in

the classical nucleation model varies with subunit concentra-

tion (Eq. 9), with 4 n̂nuc < 9 for the simulated range of initial

subunit concentrations in this work. The reaction half-life,

however, appears to scale roughly as t1/2/PN f C�9
0 because

the effective critical nucleus size increases over the course of

the reaction as free subunits are depleted.

For all parameter sets we considered, the CNT model

demonstrates a large effective critical nucleus size as the

concentration is reduced below cc. Hence, analyzing the

concentration dependence of experimental median assembly

times could be one way to evaluate which of the CNT model

or NG model better represents capsid assembly mechanisms.
FIGURE 5 The median assembly time (-) and lag time (þ) calculated

from the completion time and the lag time for light scatter (:) for the clas-

sical nucleation model are shown as functions of concentration. The theoret-

ical prediction for lag time Eq. 2 is shown as a dashed line.
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The effect of binding between partial-capsid
intermediates

Because binding between intermediates does occur in the BD

simulations, their results validate the predictions we have

just explored with rate equation models. This fact can be

understood by noting that binding between partial capsid

intermediates is most prevalent above cc, when many capsids

are assembling at the same time. Although intermediate

binding can, in principle, ameliorate the kinetic trapping pre-

dicted by the simple models above ckt, in practice the kinetic

trap point is only slightly shifted because binding between

large partial capsids is rarely compatible with their geome-

tries. Although the time to assemble the first capsid continues

to decrease with increasing subunit concentration for the BD

simulations (Fig. 1), assembly of subsequent capsids is

impeded at the highest subunit volume fractions (Fig. 1 a).

Furthermore, malformed capsids become increasingly likely

as concentrations increase and partial capsids interact (see

(16,33) for further discussion of these points).

Binding between intermediates can also arise when the

association rates or binding free energies are stronger along

one subunit-subunit interface. For most viruses, in fact, the

capsid protein rapidly dimerizes and exists primarily as

a dimer in solution; the subunit considered in the NG and

CNT models corresponds to a protein dimer, and the mono-

mer is not explicitly considered. For systems in which rate

constants are arranged so that hierarchical assembly and

addition of individual subunits occur with comparable rates,

as explored in Sweeney et al. (25), the correspondence

between lag times and capsid elongation times will still

hold, but the scaling of elongation times (and hence lag

times) with subunit concentrations could differ. This possi-

bility would be interesting to examine further.
The slow approach to equilibrium

We note that accurate estimation of Peq
N is not necessary to

obtain the critical nucleus size from t1/2, as nucleation rates

have such a dramatic concentration dependence even at

subunit concentrations for which Peq
N > 0.5. This observation

could be important, as the median assembly times shown in

Fig. 4 a and Fig. 5 extend beyond experimental feasibility at

low concentrations (see Fig. S9 in the Supporting Material),

particularly for the CNT model because of the large effective

critical nucleus size. Furthermore, as noted by Zlotnick (8),

capsid assembly approaches equilibrium asymptotically.

Therefore, when estimating Peq
N , it is important to plot

PN(t) on a logarithmic scale to judge equilibration, and it

may be necessary to extract the contact free energy gnuc or

gc from fits to kinetic data over a series of concentrations

(2,5). The slow approach to equilibrium due to nucleation

barriers was noted from simulations in Hagan and Chandler

(16), and is discussed for the classical nucleation model in

Morozov et al. (10).
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DISCUSSION AND OUTLOOK

In this work, we examine simulations and two theoretical

models for capsid assembly, for which we find that the dura-

tion of the lag phase measured by SEC or dynamic light

scatter is related to the time for a nucleated capsid to grow

to completion, and hence scales inversely with initial subunit

concentration. When nucleation of new partial capsids is

faster than this growth time, the system becomes kinetically

trapped due to starvation of free subunits, meaning that

capsid formation rates decreases with increasing initial

subunit concentration. If there is a well-defined critical

nucleus size, it can be identified from the scaling of the

median assembly time with respect to initial subunit concen-

tration.

These predictions have important implications for obtain-

ing mechanistic information about capsid elongation (growth

after nucleation) from bulk in vitro assembly kinetics exper-

iments. The fact that overall reaction times are closely pre-

dicted by an expression based solely on nucleation kinetics

(Eq. 4, Fig. 4) when assembly is most efficient, suggests

that the lag phase contains the most information about elon-

gation. In fact, the preceding analysis demonstrates that the

average elongation time, and hence the average growth

velocity during elongation, are directly related to the dura-

tion of the lag phase. Because Chen et al. (6) recently showed

that time-resolved light scattering data can be obtained with

millisecond resolution, it will be possible to measure lag

times with high precision if the reaction is started in

a controlled manner. Additional mechanistic information

about the elongation process could be obtained if the distri-

bution of growth times could be deconvolved from the distri-

bution of nucleation times. The kinetic trap criterion,

however, limits this possibility by constraining growth times,

and hence causes the lag phase duration to be short compared

to nucleation times.

This constraint could potentially be overcome in several

ways. The distribution of elongation times can be directly

measured in experiments that monitor the assembly of indi-

vidual capsids, as the elongation and nucleation phases can

be separated (34). For bulk assembly studies, recent theoret-

ical studies (14,35) found that robust assembly is possible

under conditions of fast heterogeneous nucleation if there

is excess capsid protein. Thus, experimental systems in

which capsid assembly is induced by nucleic acids (36),

synthetic polymers (37,38), nanoparticles (39), and portal

or scaffolding proteins (40–42) could be used to elucidate

elongation mechanisms (although assembly mechanisms

can be influenced by the heterogeneous component

(14,36,43)).

Finally, we note that processes not considered in this

work, such as transitions between assembly-active and

assembly-inactive conformations of free subunits (6) or hier-

archical assembly (44) would add additional complexity to

analysis of the lag phase. In particular, if conformational
transitions are slow compared to elongation times, the

conformational transition timescale will be reflected in the

duration of the lag phase. We plan to investigate that case

further. In addition, a systematic comparison of model

predictions with experimental assembly data over a wide

range of concentrations could reveal additional features of

complexity in assembly mechanisms and suggest model

improvements.
APPENDIX

We consider two additional cases for elongation times in this Appendix.

Elongation times with intermediate-dependent
forward rate constants

The parameter f in Eq. 2 is the average forward rate constant for the elonga-

tion phase. For the CNT model, the forward rate constants are proportional

to the perimeter of the partial capsid intermediate, fn ¼ f0ln, with the perim-

eter ln given by Eq. 8. For fc1[belong we show in the Supporting Material

that telong ¼ 0.5(pN)1/2/(f0c1). In Fig. 5, we see that elongation times for the

CNT model can be approximated with Eq. 2 by setting f ¼ 2f0(N/p)1/2.

Irreversible elongation steps

It is evident from Eq. 2 that elongation times would be essentially the same if

the final subunit insertion step was irreversible. In fact, as shown by Zlotnick

(28), all features of assembly dynamics are the same in the case of a final

irreversible assembly step except for times greater than the time for subunit

dissociation from a complete capsid (bN). Subunit exchange from complete

capsids has been seen experimentally (45), but over a timescale of days

rather than the minutes or hours in which assembly takes place. This obser-

vation is captured by all of the models considered here, in which insertion of

the final subunit is the most favorable free energy, and hence dissociation

of a subunit from a complete capsid (bN f exp(gN/kBT)) is slow. For the

case of several irreversible steps during the elongation phase, elongation

times could be calculated by breaking Eq. 2 into independent random walks

in series, with one walk between each set of irreversible steps.
SUPPORTING MATERIAL

Five figures are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(09)01752-4.

We are grateful to Jane Kondev for a discussion that led us to investigate the

origins of the lag phase and to Robert Jack for discussions about the steady-

state ensemble.

M.F.H. and O.M.E. were supported by award No. R01AI080791 from the

National Institute of Allergy and Infectious Diseases. M.F.H. also acknow-

ledges support by the National Science Foundation through the Brandeis

Materials Research Science and Engineering Center. The BD simulations

were performed on the Brandeis High Performance Computing Cluster.
REFERENCES

1. Prevelige, Jr., P. E., D. Thomas, and J. King. 1993. Nucleation and
growth phases in the polymerization of coat and scaffolding subunits
into icosahedral procapsid shells. Biophys. J. 64:824–835.

2. Zlotnick, A., J. M. Johnson, ., D. Endres. 1999. A theoretical model
successfully identifies features of hepatitis B virus capsid assembly.
Biochemistry. 38:14644–14652.
Biophysical Journal 98(6) 1065–1074

http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)01752-4
http://www.biophysj.org/biophysj/supplemental/S0006-3495(09)01752-4


1074 Hagan and Elrad
3. Zlotnick, A., R. Aldrich, ., M. J. Young. 2000. Mechanism of capsid
assembly for an icosahedral plant virus. Virology. 277:450–456.

4. Casini, G. L., D. Graham, ., D. T. Wu. 2004. In vitro papillomavirus
capsid assembly analyzed by light scattering. Virology. 325:320–327.

5. Johnson, J. M., J. H. Tang, ., A. Zlotnick. 2005. Regulating self-
assembly of spherical oligomers. Nano Lett. 5:765–770.

6. Chen, C., C. C. Kao, and B. Dragnea. 2008. Self-assembly of brome
mosaic virus capsids: insights from shorter time-scale experiments.
J. Phys. Chem. A. 112:9405–9412.

7. Berthet-Colominas, C., M. Cuillel, ., B. Jacrot. 1987. Kinetic-study of
the self-assembly of brome mosaic-virus capsid. Eur. Biophys. J. Bio-
phys. Lett. 15:159–168.

8. Zlotnick, A. 1994. To build a virus capsid. An equilibrium model of the
self-assembly of polyhedral protein complexes. J. Mol. Biol. 241:59–67.

9. Endres, D., and A. Zlotnick. 2002. Model-based analysis of assembly
kinetics for virus capsids or other spherical polymers. Biophys. J.
83:1217–1230.

10. Morozov, A. Y., R. F. Bruinsma, and J. Rudnick. 2009. Assembly of
viruses and the pseudo law of mass action. J. Chem. Phys. 131:155101.

11. Ceres, P., and A. Zlotnick. 2002. Weak protein-protein interactions are
sufficient to drive assembly of hepatitis B virus capsids. Biochemistry.
41:11525–11531.

12. Kegel, W. K., and P. Schoot Pv. 2004. Competing hydrophobic and
screened-Coulomb interactions in hepatitis B virus capsid assembly.
Biophys. J. 86:3905–3913.

13. Bar-Haim, A., and J. Klafter. 1998. On mean residence and first passage
times in finite one-dimensional systems. J. Chem. Phys. 109:5187–
5193.

14. Hagan, M. F. 2008. Controlling viral capsid assembly with templating.
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 77:051904.

15. Schwartz, R., P. W. Shor, ., B. Berger. 1998. Local rules simulation of
the kinetics of virus capsid self-assembly. Biophys. J. 75:2626–2636.

16. Hagan, M. F., and D. Chandler. 2006. Dynamic pathways for viral
capsid assembly. Biophys. J. 91:42–54.

17. Nguyen, H. D., V. S. Reddy, and C. L. Brooks, 3rd. 2007. Deciphering
the kinetic mechanism of spontaneous self-assembly of icosahedral
capsids. Nano Lett. 7:338–344.

18. Wilber, A. W., J. P. K. Doye, ., P. Wong. 2007. Reversible self-
assembly of patchy particles into monodisperse icosahedral clusters.
J. Chem. Phys. 127:085106.

19. Hicks, S. D., and C. L. Henley. 2006. Irreversible growth model for
virus capsid assembly. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
74:031912.

20. Elrad, O. M., and M. F. Hagan. 2008. Mechanisms of size control and
polymorphism in viral capsid assembly. Nano Lett. 8:3850–3857.

21. Rapaport, D. C. 2008. Role of reversibility in viral capsid growth: a para-
digm for self-assembly. Phys. Rev. Lett. 101:186101.

22. Nguyen, H. D., V. S. Reddy, and C. L. Brooks. 2009. Invariant poly-
morphism in virus capsid assembly. J. Am. Chem. Soc. 131:2606–2614.

23. Endres, D., M. Miyahara, ., A. Zlotnick. 2005. A reaction landscape
identifies the intermediates critical for self-assembly of virus capsids
and other polyhedral structures. Protein Sci. 14:1518–1525.

24. Zhang, T. Q., and R. Schwartz. 2006. Simulation study of the contribu-
tion of oligomer/oligomer binding to capsid assembly kinetics. Biophys.
J. 90:57–64.
Biophysical Journal 98(6) 1065–1074
25. Sweeney, B., T. Zhang, and R. Schwartz. 2008. Exploring the parameter
space of complex self-assembly through virus capsid models. Biophys.
J. 94:772–783.

26. Maibaum, L. 2008. Phase transformation near the classical limit of
stability. Phys. Rev. Lett. 101:256102.

27. Ceres, P., S. J. Stray, and A. Zlotnick. 2004. Hepatitis B virus capsid
assembly is enhanced by naturally occurring mutation F97L. J. Virol.
78:9538–9543.

28. Zlotnick, A. 2007. Distinguishing reversible from irreversible virus
capsid assembly. J. Mol. Biol. 366:14–18.

29. Reference deleted in proof.

30. Sorger, P. K., P. G. Stockley, and S. C. Harrison. 1986. Structure and
assembly of turnip crinkle virus. II. Mechanism of reassembly
in vitro. J. Mol. Biol. 191:639–658.

31. Zandi, R., P. van der Schoot, ., H. Reiss. 2006. Classical nucleation
theory of virus capsids. Biophys. J. 90:1939–1948.

32. Wu, D. T. 1992. The time-lag in nucleation theory. J. Chem. Phys.
97:2644–2650.

33. Whitelam, S., E. H. Feng, ., P. L. Geissler. 2009. The role of collective
motion in examples of coarsening and self-assembly. Soft Matter.
5:1251–1262.

34. Jouvenet, N., P. D. Bieniasz, and S. M. Simon. 2008. Imaging the bio-
genesis of individual HIV-1 virions in live cells. Nature. 454:236–240.

35. Hagan, M. F. 2009. A theory for viral capsid assembly around electro-
static cores. J. Chem. Phys. 130:114902.

36. Johnson, J. M., D. A. Willits, ., A. Zlotnick. 2004. Interaction with
capsid protein alters RNA structure and the pathway for in vitro
assembly of cowpea chlorotic mottle virus. J. Mol. Biol. 335:455–464.

37. Sikkema, F. D., M. Comellas-Aragonès, ., R. J. Nolte. 2007. Mono-
disperse polymer-virus hybrid nanoparticles. Org. Biomol. Chem.
5:54–57.

38. Hu, Y., R. Zandi, ., W. M. Gelbart. 2008. Packaging of a polymer by
a viral capsid: the interplay between polymer length and capsid size.
Biophys. J. 94:1428–1436.

39. Sun, J., C. DuFort, ., B. Dragnea. 2007. Core-controlled polymor-
phism in virus-like particles. Proc. Natl. Acad. Sci. USA. 104:1354–
1359.

40. Parent, K. N., S. M. Doyle, ., C. M. Teschke. 2005. Electrostatic inter-
actions govern both nucleation and elongation during phage P22 pro-
capsid assembly. Virology. 340:33–45.

41. Parent, K. N., A. Zlotnick, and C. M. Teschke. 2006. Quantitative anal-
ysis of multi-component spherical virus assembly: scaffolding protein
contributes to the global stability of phage P22 procapsids. J. Mol.
Biol. 359:1097–1106.

42. Tuma, R., H. Tsuruta, ., P. E. Prevelige. 2008. Detection of interme-
diates and kinetic control during assembly of bacteriophage P22 procap-
sid. J. Mol. Biol. 381:1395–1406.

43. McPherson, A. 2005. Micelle formation and crystallization as para-
digms for virus assembly. Bioessays. 27:447–458.

44. Misra, N., D. Lees, ., R. Schwartz. 2008. Pathway complexity of
model virus capsid assembly systems. Comput. Math. Method Med.
9:277–293.

45. Parent, K. N., M. M. Suhanovsky, and C. M. Teschke. 2007. Phage P22
procapsids equilibrate with free coat protein subunits. J. Mol. Biol.
365:513–522.


	Understanding the Concentration Dependence of Viral Capsid Assembly Kinetics-the Origin of the Lag Time and Identifying the Critical Nucleus Size
	Introduction
	Capsid Assembly Timescales
	Investigating The LAG Phase with Brownian Dynamics (BD) Simulations
	Simulation parameters
	NVT simulations
	Steady-state ensemble simulations

	Rate Equation Models for Capsid Assembly
	The nucleation and growth (NG) model
	The classical nucleation theory model

	Numerical Results
	The concentration-dependence of median assembly times and lag times
	Maximum assembly rates
	The classical nucleation model
	The effect of binding between partial-capsid intermediates
	The slow approach to equilibrium

	Discussion and Outlook
	Appendix
	Elongation times with intermediate-dependent forward rate constants
	Irreversible elongation steps

	Supporting Material
	References


