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a b s t r a c t

Risk management project is an important aspect of general project risk element
transmission theory. To solve the multi-objective time-cost trade-off problem considering
the risk elements effectively, this paper establishes an analytical model for multi-objective
risk-time-cost trade-off problem based on general project risk element transmission
theory. We divide risk elements into discrete model and continuous model to be discussed
separately, and the two models for multi-objective risk-time-cost trade-off problem are
established by taking Markov dynamic PERT network into classical PERT network. Thus,
we combine Radial Basis Function (RBF) neural network to solve the discrete model of the
problem. Finally, a practical example illustrates the effectiveness of the algorithm.

Crown Copyright© 2008 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The time-cost trade-off problem (TCTP) is the most important content in the project management. Although many
scholars did a lot of research on the problem and got many achievements, the TCTP considering the risk elements has
not been solved effectively. In the TCTP, the objective is to determine the duration of each activity in order to achieve the
minimum total costs of the project. Studies on TCTP have been done using various kinds of cost functions such as linear [1,
2], discrete [3], convex [4,5], and concave [6] and so on. From the above we can see, they all concerned the complex time
planning, but comparing with the real situation, there are twomain problems. First, there are no model considering the risk
elements on TCTP; Second, how to get the optimization about the risk-time-cost when the network is random.
In order to resolve the above problems, this paper improved the model in the paper [9] based on the general project risk

element transmission theory [7,8] and get the multi-objective risk-time-cost trade-off problem(MRTCTP) model when risk
elements considering in dynamic PERT network. Thus, this paper gets the relationship of the resource allocation and the risk
elements by combining the RBF neural networks and putting the multi-objective risk-time-cost programming problem into
the multi-objective cost, expectation, variance, risk-time probability programming.
The paper is organized as follows. Section 2 presents the analytical model of the multi-objective risk-time-cost trade-off

problem (MRTCTP), and gives the definition of the Markov dynamic PERT network. Section 3 presents the neural network
analytical algorithm of MRTCTP. An empirical example is presented in Section 4. Finally, Section 5 concludes the paper.

2. The model of multi-objective risk-time-cost trade-off problem

2.1. Raising multi-objective risk-time-cost trade-off problem

In this section, we combine multi-objective time-cost trade-off problem and raise the risk-time-cost trade-off problems
considering risk element. In practical projects, We use CPM, PERT [10] network technology to get the project completion
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Fig. 1. The three-dimensional structural model of multi-objective risk-time-cost trade-off problem.

time and the corresponding costs. And there are the following balance problems: the cost of the project is not least or within
expected expenditures when seeking to the shortest period. when the cost within expected expenditures, the time is not
within expected time. The mathematical expression of the problem expresses as follows:
T is the completion time, T ∗ is the shortest completion time, the corresponding cost is C ′. C is the total completion costs

of project, C∗ is the least completion costs, the corresponding completion time is T ′, then we can get:
When C ′ ≤ C , T ∗ must be the best solution, that is the shortest completion time.
When C ′ > C , set∆C = C ′ − C , when∆C becomes smaller, T ∗ becomes closer to the best solution.
In actual project, we often encounter the C ′ > C situation. Therefore, our aim is to enable∆C decreases, and getting the

entire project satisfactory solution.
We can understand the risk-time-cost trade-off problems well with the introducing of the multi-objective time-cost

trade-off problems. That is time-cost trade-off considering the influence of risk element. Here he risk element is random
variables, its distribution can be discrete or continuous. We build the three-dimensional structural model of risk-time-cost
trade-off problems referencing the three-dimensional structural model of general project risk element transmission theory.
As shown in Fig. 1.
From the figure we can see that risk time and cost are increasing mutual functions relations. According to the actual

project, project resource allocations will affect the time and the cost. Allocations and the time are decreasing functions.
Allocations and the cost are increasing functions. In this way we can take the risk impaction of time and cost into the
allocation of resources impaction of time and cost. Eventually we can get the analytical model of multi-objective risk-time-
cost trade-off problem combining the literature [9].

2.2. Definition of Markov dynamic PERT network

Dynamic PERT network can be described as a queuing system network. Each network will be built as a function of the
corresponding service. From queuing theory, arrival rate of the service subjects to the parameters of a Poisson distribution.
The desk assumption is that the number of systems in each service is limited or one and the service time is exponentially
distributed. Thus, for each joint activities, it forms a queuing system (M/M/..Model), and Azaron et al. [9,11] take this
dynamic PERT network into classical PERT network. Concrete steps are as follows :
Step 1. Compute the density function of the time spent in each service station.
Step 1.1. If there is one server in the service station settled in the ith node,then the density function of time spent in this
(M/M/1) queuing system is wi(t) = (µi − λ)e−(µi−λ)t , t > 0, where λ and µi are the generation rate of new projects and
the service rate of this queuing system, respectively. Therefore, the distribution of time spent in this service station would
be exponential with parameter µi − λ.
Step 1.2. If there are infinite number of servers in the service station settled in the ith node, then the time spent in this
(M/M/∞)queuing system would be exponentially distributed with parameter µi, because there is no queue.
Step 2. Transform the dynamic PERT network into an equivalent classical PERT network.
Step 2.1. Replace each node with a stochastic arc (activity) whose length is equal to the time spent in the particular service
station.
Let us explain how to replace node k in the network of queues with a stochastic activity. Assume that b1, b2, . . . , bm are

the incoming arcs to this node and d1, d2, . . . , dn are the outgoing arcs from it. Then,we substitute this node by activity k′, k′′,
whose length is equal to the time spent in the corresponding queuing system. Furthermore, all arcs bi for i = 1, 2, . . . , n
end up with k′ while all arcs dj for j = 1, 2, . . . ,m start from node k′′.The indicated process is opposite of the absorption an
edge, see [12] for more details.
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Step 2.2. Eliminate all arcs with zero length.
Step3. Compute the distribution function of the longest path length in the classical PERT network with exponentially
distributed activity durations obtained in Step 2.2. We use the method of Kulkarni and Adlakha [13] in this step, because
this method is an analytical one, simple, easy to implement on a computer and computationally stable.
Azaron et al. has given definitions to the dynamic PERT network and see [9] formore details. On the basis of this, we build

the multi-objective risk-time-cost trade-off problem model by transforming the dynamic PERT network into the classical
PERT network.

2.3. The analytical model of multi-objective risk-time-cost trade-off problem

Let G = (V , E) be the transformed classical PERT network with set of nodes V = v1, v2, . . . , vm and set of activities
E = e1, e2, . . . , en. The source and sink nodes are denoted by s and y, respectively. We build the analytical model of MRTCTP
combining [9], according to 2.1. Here are some important definition.

Definition 1. Risk-time probability, the probability that the project completion time does not exceed a given threshold,
which is expected completion time, then

P(T ≤ t0) = P1(t0). (2.1)

Definition 2. Project cost(D), the cost of activity e ∈ E in the transformed classical PERT network is assumed to be a
non-decreasing function de(xe) of the risk element xe allocated to it. Therefore, the project cost(D) would be equal to
D =

∑
e∈E de(xe)

Definition 3. The characteristic function of project completion time, expectation and variance as follows, respectively.

E(T ) =
∫
∞

0
(1− p1(t)) dt =

∫
∞

0
tp′1(t) dt (2.2)

D(T ) =
∫
∞

0
t2p′1(t) dt −

[∫
∞

0
tp′1(t) dt

]2
, (2.3)

where p′1(t) is the density function of project completion time. ge(xe) is the average cost function e ∈ E. When risk element
is xe, it equals the mean time spent in the service station. As explained in 2.2, if there is one server, the mean time spent
would be equal to µe − λ. if there are infinite number of servers in the corresponding service station, it is equal to µe. Ae is
the maximum number of risk elements, Be is the minimum number of risk elements.
We can have the engineering data and experts prediction to estimate the de(xe) and ge(xe). When a project to be a good

result, the model can use the data to predict other similar period and the related costs, This is the main purpose we have
established the model.
{X(t), t ≥ 0} is a finite-state absorbing continuous-time Markov process, it is concluded that this state is an absorbing

one and obviously the other states are transient. We assume that the states are numbered 1, 2, . . . ,N , where state 1 is the
initial state, namely X(t) = (O(s),∅). State N is the absorbing state, namely X(t) = (∅,∅). Let T represent the project
completion time in the PERT network. Clearly, T = min(t > 0; X(t) = N/X(0) = 1). Thus, T is the time until {X(t), t ≥ 0}
gets absorbed in the final state starting from state 1.
If F(t) = P{T ≤ t}, definite Pi(t) = P(X(t) = N/X(0) = i), i = 1, 2, . . . ,N , then F(t) = Pi(t). We can get the vector of

equation left function, marked P(t) then P(t) = [P1(t), P2(t), . . . , PN(t)]T.

p′(t) = QP(t) (2.4)
P(0) = [0, 0, . . . , 1]T

where P ′(t) represents the derivation of the state vector P(t) and Q is the infinitesimal generator matrix of the stochastic
process {X(t), t ≥ 0}. The infinitesimal generator matrix Q would be a function of the control vector µ = [µe; e ∈ E]T.
Therefore, the non-linear dynamic model is

p′(t) = Q (µ)P(t) (2.5)
Pi(0) = 0; ∀i = 1, 2, . . . ,N − 1
PN(t) = 1.

Representing C as the set of nodes includingM/M/1 service stations and D as the set of nodes includingM/M/∞ service
stations in the original dynamic PERT network. Make the system stable, ∃ξ following the establishment of relations

µe ≥ λ+ ξ, e ∈ C (2.6)
µe ≥ ξ, e ∈ D.
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Thus, when risk element subordinated to continuous state, multi-objective risk-time-cost trade-off model as follows.

Min f1(x) =
∑
e∈E

de(Xe) (2.7)

Min f2(x) =
∫
∞

0
tp′1(t) dt

Min f3(x) =
∫
∞

0
t2p′1(t) dt −

[∫
∞

0
tp′1(t) dt

]2
Min f4(x) = P1(t0)
Subject to: P ′(t) = Q (µ)P(t)
Pi(0) = 0; ∀i = 1, 2, . . . ,N − 1
PN(t) = 1
ge(xe) = µe − λ, e ∈ C
ge(xe) = µe, e ∈ D
µe ≥ λ+ ξ, e ∈ C
µe ≥ ξ, e ∈ D
xe ≤ Ae, e ∈ E
xe ≤ Be, e ∈ E.

The corresponding discrete state model as follows

Min f1(x) =
∑
e∈E

de(Xe) (2.8)

Min f2(x) =
K−1∑
k=0

k∆h(P1(k+ 1)− P1(k))

Min f3(x) =
K−1∑
k=0

(k∆h)2(P1(k+ 1)− P1(k))−

[
K−1∑
k=0

(k∆h)(P1(k+ 1)− P1(k))

]2
Min f4(x) = P1(t0/∆h)
Subject to: P(k+ 1) = P(k)+ Q (µ)P(k)∆h, k = 0, 1, . . . , K − 1
Pi(0) = 0; ∀i = 1, 2, . . . ,N − 1
PN(k) = 1, k = 0, 1, . . . , K
Pi(k) ≤ 1
ge(xe) = µe − λ, e ∈ C
ge(xe) = µe, e ∈ D
µe ≥ λ+ ξ, e ∈ C
µe ≥ ξ, e ∈ D
xe ≤ Ae, e ∈ E
xe ≤ Be, e ∈ E. (2.9)

According to the definition of integral thinking, we divide completion cost into K portions and set step is ∆h. Then we
can control accuracy of in order to make the discrete model solution closer to the continuous model.

3. The neural network analytical algorithm of multi-objective risk-time-cost trade-off problem

In the development of artificial neural networks (ANN) [14], it has formulated dozens of influential models. Such as,
Perceptron (MLPs) [15], Grossberg adaptive theory [16,17], Fukushima cognitive neural network theory [18], Kohonen
Self-Organizing Map [19], Hopfield feedback network model [20], BP networks [21], Boltzmann machine [23], Radial Basis
Function (RBF) network [22], etc. With years of practice and development, artificial neural networks have been successfully
applied to pattern recognition, control, optimization fields.
We apply RBF neural network to solve problem (8) on the basis of referencing the paper [24].We introduce risk preference

factor λ1, λ2, λ3, λ4 and transform (8) into the following nonlinear programming problem
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min Z(x) = λ1f1(x)+ λ2f2(x)+ λ3f3(x)− λ4f4(x)
subject to: P(k+ 1) = P(k)+ Q (µ)P(k)∆h, k = 0, 1, . . . , K − 1 (3.1)
Pi(0) = 0; ∀i = 1, 2, . . . ,N − 1,
PN(k) = 1, k = 0, 1, . . . , K ,
Pi(k) ≤ 1
ge(xe) = µe − λ, e ∈ C
ge(xe) = µe, e ⊆ D
µe ≥ λ+ ε, e ∈ C
µe ≥ ε, e ∈ D
xe ≤ Ae, e ∈ E
xe ≥ Be, e ∈ E.

This model will be simplified, when xe ∈ [Be, Ae],e ∈ C , the arrival rate and service rate of queuing system both are greater
than zero, D ≤ 1. Then (9) can be changed into the following form

min Z(x) = λ1f1(x)+ λ2f2(x)+ λ3f3(x)− λ4f4(x)
subject to: P(k+ 1) = P(k)+ Q (µ)P(k)∆h, k = 0, 1, . . . , K − 1 (3.2)
Pi(0) = 0; ∀i = 1, 2, . . . ,N − 1,
PN(k) = 1, k = 0, 1, . . . , K ,
ge(xe) = µe − λ, e ∈ C . (3.3)

When F(k) = P(k+ 1)− P(k)− Q (µ)P(k)∆h, transform (10) by introducing Lagrange function can get

L(x, β1, β2) = λ1f ′4(x)+ λ2f2(x)+ λ3f3(x)− λ4f4(x)+ β1F(k)+ β2(ge(xe)− (µe − λ)),

where β1, β2 are Lagrange parameters, according to the nature of the Lagrange equation, ∃β∗1 , β
∗

2 s.t. x
∗ we know the

following relationship

∂L(x∗, β∗1 , β
∗

2 )

∂x
= λ1f ′1(x)+ λ2f

′

2(x)+ λ3f
′

3(x)− λ4f
′

4(x)+ β1F(k)+ β2(ge(xe)− (µe − λ)) = 0 (3.4)

∂L(x∗, β∗1 , β
∗

2 )

∂β1
= F(k) = P(k+ 1)− P(k)− Q (µ)P(k)∆h = 0

∂L(x∗, β∗1 , β
∗

2 )

∂β1
= ge(xe)− (µe − λ) = 0.

In RBF neural network, select polymer-based function to Gaussian kernel, (12) can be transformed as follows

min F(x) = λ1 exp

−
n∑
i−1
(xif1(xi)− f1(x))2

2rE2

+ λ2 exp
−

n∑
i−1
(xif3(xi)− E(x))2

2rE2



+λ3 exp

−
n∑
i−1
(xif3(xi)− D(x))2

2rE2

− λ4 exp
−

n∑
i−1
(xif4(xi)− f4(x))2

2rE2

+ β1F(k)+ β2(ge(xe)− (µe − λ)). (3.5)

The corresponding RBF neural network model shown in Fig. 2.
Where G(�) is Gaussian function as follows

uj = exp

[
−
(X − Cj)T(X − Cj)

2δ2j

]
, j = 1, 2, . . . ,Nh. (3.6)
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Fig. 2. The RBF neural network model of MRTCTP.

Fig. 3. Dynamic PERT network.

Fig. 4. Classical PERT network.

4. Practical analysis

In order to demonstrate the effectiveness of the algorithm, we also use the dynamic PERT network [9]. Assuming that
the time of the network node followed exponential distribution and every activity followed the Poisson distribution that
the parameter is λ and λ = 10. Its network diagram is shown in Fig. 3.
We assume that there is one service station in node 1, 2, 3, 6, 7 and two service stations in node 4, 5. According to the

algorithm of 2.2, we transform the above figure into the classical PERT network, which is shown as Fig. 4.
Table 1 gives the risk-cost function and risk-time function of the classical PERT network activities, and the largest and

smallest number of risk elements.
We set λ1 = 2, λ2 = 2, λ3 = 1, λ4 = 1. The longest trails of classic PERT network randomprocess have 14 states, the set S

includes the states. S = [(1, 2), (1, 3), (1, 5), (1, 5∗), (2, 4), (2, 4∗), (3, 4), (3, 4∗), (4, 5), (4∗, 5), (4, 5∗), (6), (7), (φ, φ)].
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Table 1
Risk-cost function and risk-time function.

e de(xe) ge(xe) Ae Be

1 3x21 + 2 0.7− 0.1x1 5 1
2 2x2 + 1 1.5− 0.1x2 6 1
3 x3 + 2 1− 0.1x3 9 1
4 x4 1.5− 0.3x4 4 1
5 3x5 + 4 0.9− 0.1x5 5 1
6 x6 + 3 1.1− 0.1x6 6 1
7 4x7 + 1 1− 0.2x7 3 1

Table 2
Model results.

f1 f2 f3 f4 ∆h K

0.8 10
30.897 4.576 2.254 0.382 0.4 20
30.904 4.614 2.602 0.363 0.27 30
30.885 4.634 2.824 0.371 0.2 40

λ1 = 2, λ2 = 2, λ3 = 1, λ4 = 1

FK=20(x) = 70.818
FK=30(x) = 70.327
FK=40(x) = 69.552

Q(µ) equal to the matrix of paper [9]. Set K = 10, 20, 30, 40,∆h is 0.8, 0.4, 0.27, 20 respectively. The results in following
Table 2 show the effectiveness of the algorithm.

5. Conclusions

Based on the general project risk element transmission theory, this paper analyzes the multi-objective risk-time-cost
trade-off problemby introducing the risk element, it improves theMarkovdynamic PERTmodel, and finally get the analytical
model of multi-objective risk-time-cost trade-off problem. By introducing neural network, andmaking an effective solution
of the model, the effectiveness of the approach is illustrated with a practical example. By establishing the multi-objective
risk-time-cost trade-off problem model, it not only has an important effect on the risk element transmission theory, but
has an important significance for actual project. If we applied the model to the field of computers, the reliability model of
computer network considering risk elements can be built. This should be a subject of future research and we expect further
improvement of the risk element transmission theory.
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