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A graph G is totally connected if both G and G (its complement) are connected. The
connected Ramsey number r.(F, H) is the smallest integer k =4 so that if G is a totally
connected graph of order k then either F CG or H CG. We show that if neither of F nor H
contains a bridge, then r.(F, H) = r(F, H), the usual generalized Ramsey number of F and H. We
compute r.(P., P.), the connected Ramsey 1umber for paths.

1. Introduction

In recent years there has been a flurry of activity involving the concept of the
generalized Ramsey numbers. Let F and H be graphs (all our graphs will be finite
and without loops or multiple =dges). Then the Ramsey number r(F, H) is the
smaliest integer n such that for any graph G of order at least n, either F CG or
H cG. Here F CG is meant to imply that F is a subgraph of G and G denotes the
complement ¢i G. An alternative point of view is that r(F, H) is the smallest integer
n such that if a graph G having order at least n is edge-colored with two colors, say
red and blue, then the resulting coloring must contain either a red copy of F or a
blue copy of H. For a good survey of the subject see Burr [2] and also Harary |5]. In
his paper Burr mentions that many of the lower bounds for the generalized Ramsey
numbexs are obtained via certain canonical types of colorings (see Fig. 1).

In each case the coloring consists of two monochromatic complete graphs with all
the edges between them having the same color. Certain more general cancnical
colorings (in which more than just two monochromatic complete graphs are used)
ais. occur. When observing these: colorings one is struck by the fact that in each
case one of the colors induces a disconnected graph. Thus it seems plausable that if
tke restriction that each of G and G be a connected graph is placed on our graphs,
then we may not need to require r(F, H) vertices in G in order to insure that F CG
or H CG. This turns cut to often be the case. In order to investigate this situation,
we define the connected Ramsey number.

Definition. (i) Let G be a graph. Then G is totally connected if each of G and G is

a connected graph. (Note that every totally connected graph has order at least
four).
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Fig. 1.

(ii). For two graphs F and H, the connected Ramsey number r.(F,H) is the
smallest intzger k =4 so that if G is a totally connected graph of order at least k
then either FCG or H CG.

It is our purpose in .kis paper to initiate an investigation of this numUer. First we
note that for any two graphs F and H, r.(F, H) is well-defined and in fact, except in
those trivial cases where r(F, H)<3, we have r.(F, H)<r(F, H).

It is clear that we could conceiveably define many similar such Ramsey numbers.
In fact, let P be any graph theoretic property. Then we may define the P-Ramsey
number ry (F, H) of the grapiis F and H to be the smallest integer.n such that if G
is a graph with at least n vertices and having property P, then either FCG or
I CG. However for many properties this number would be unwieldly (at best) to
work with. I particular, suppose that we have denonstrated that for every graph G
having n vertices awd property P, either F CG or H CG. Can we conclude that
v (F,H)<n? Not necessarily. For thers could exist a graph on n 41 vertices
having property P but not having an r element induced subgraph with property P.
heace in order that there will be a decent chance of establishing the upper bounds
on rp (F, H) in the usual way, we must require that the P-nucleus, G*'={v |G - v
has propertv P} be non-en.pty for ‘every graph G having property P.

For totally connected graphs this obstruction in establishing upper bounds is
avoided via:

Theorem: 1.1. [Susdl. Rosa, Znam). If G is a totally connected graph on at least
five vertices, then the.c exists v € V(G) such that G - v is also totally connected.



The connected Ramsey number 51

A proof of this theorem appears at the end of [1].

Our next proposition, a simple consequence of the previous theorem, is & useful
tool which occurs originally in Foulis [4]. A short proof not using Theorem 1.1 may
be found in Sumner [6].

'
Theorem 1.2. If G is a totally connected graph, then each of G and \5 contains a
pati. on four vertices (i.e. P.) as an induced subgraph.

Note that since P- is a self-complementary graph, any four veitices 1hat induce P,
in G also induce P, in G.

2. Blocks

We show in Section 3 that r.(F, H) is often smalle: than r(F, H). However, our
next theorem shows that at least one of F and H must contain a bridge in order f5:
this to happen.

Theorem 2.1. Let F and H be graphs of order at least four and witq edge
connectivity at least two. Then r.(F,H)=r(F, H).

Proof. Since we certainly have r.(F,H)<r(F, H), we need only establitu the
reverse inequality. Suppose then that G is a graph of order r.(F, H) but that F2 &
and HZ G. Then G cannot be totally connected «:1d so we may choose such a graph
G so that whichever of G and G is not connected will have as few components as
possible. With no loss of generality, we assume tha. it is G and not G that is
disconnected.

Suppose that G consists of an isolated vertex and a complete graph, i.e.
G =K, UK, (n=3). Let a be the isclated vertex and let b and ¢ be vertices in
G - a. Then forin the graph G* = G + ab — bc. Then G * is totally connected. Yet
if FCG?*, then since FZ G, £ must contain the edge ab. But that is impossibic
since ab would be a bridge in F. Also, since G * is a tree, HZ G *. Hence we may
suppose that G is not the disjoint union of a complete graph and an isolated vertex.

Now choose two vertices u and v as follows: If G has an isolated vertex let such a
vertex be u and let v e any other vertex not adjacent to all the vertices in
G —u —v. If G has no isolated vertices, then let A and B be any two compornents
of G and choose u € A and v € B. Now form the graph G* = G + uv. Thenif G*
is connected, it is totally connected and otherw:<: it has fewer components than G.
In cither case we must have F CG* or H C G *. However, if F CG* then F must
contain the edge uv. But this is impossible since uv would be a bridge in F. Also if
HCG*=G6 - uv, then H CG which cannot be Hence in any event we have a
contradiction and the theore.a follows.

We remark that as a consequence of Theorem 1.2, r.(P,, H) = 4 for any graph H



' mces Thus if one of the graphs involved contains a bridge then

v ‘the Itheorem‘need not hoid.

- 3,_‘»Paths-, ;

In thxs se ~t10n we w111 determine the connected Ramsey number for paths. We
~ will let P, and C, denote a pal hand a cycle, respectively, on n vertices. Also for a
'g,raph G, if $ is a subset of the vertices of G we will write (S) for the subgraph
induced by S If u and v are ver ices of G we will write u ~ v to indicate that u an«!
v are adjacent inG and udv otherwmc, i.e. uAv means u and v are adjacent in G

D'eﬁnitmn.. Letnbea posmve int..zer. Then n* is the largest even integer smaller
than n, i.c.

ee {n-l if n is odd,
n—2 "if n is even.

For the proof of Theorem 3.1 it is useful to keep in mind that [(m —3)/2] =
im*—1.
The nex: lemma appears in [3].

Lemma 3.1. If n and m are positive even integers, then
(i) T(C4, (‘4) = 6,
@) If n=m =4 and (n,m)# (4,4), thenr(C,,C.)=n+1m - 1.

Lemma 3.2. (i) r.(Ps, Ps) =6,
(i) re(Ps, Ps) =6,
(iii) r.(Ps, Ps)=5.

Proof. We will verify (i;. The proofs cf (ii) and (jii® are similar. Clearly r.(Ps, Ps) =
6. Let G be a totally connected graph on six verti :s. Then by Theorem 1.2, there
exist vertices a, b, ¢ and 4 in G such that {a, b, ¢, d} induces a path in both G and
G.Saya~b,b~c and . ~d. Let x and y be the remaining vertices of G. Then
with no loss of generality we may assume that x ~ y. Now if x ~ a, then yxabed is a
Psin G. Hence we may assume that xda and similarly that xAd, yda and yAd. Now
if xAb, then caydxb is a Ps in G. Thus we may assume that x ~ b. If yAc, then
bdxayc is a P in G. Hence we may supposs that y ~ ¢. But then abxycd is a P in
G. Thus in any event either P,CG or PsCG. Hence r.{Pe, Ps) < 6.

Theorem 3.1. (i) r.(P.,P)) =4 for n =<,
(ii} For n and m integers with n=m =3, r.(P., Pa) =n +[(m - 3)/2] - 1.

Proof. We have already noted that () is an immediate consequence of
Theorem 1.2.
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To prove (ii), let G be a totally connected graph of order n + [(m =3)2]-1.1f
n <6, the result is by Lemma 3.2. Hence we will assume that n =7. Thus
(n*,m*)# (4,4) and so by Lemma 3.1

r(Cos,Cue)=n*+im* -1

sn+im*-2=n+[(m-3)2]-1.

Hence either C,-CG or C.-CG. Suppose that C,,-CG and let C be a cycle of
order m* in G. If m is odd then C,,_, CG and so since G is connected, some vertex
v not in C is adjacent in G to some vertex of C and hence we have P,, CG. Thus
we can suppose that m is even and hence m* = m — 2. Also by (i) we may assume
that m >4 andsom =6. Let S = V(G)— C. If (S) (in G) contains a non-trivial
component, then since G is connected, there exist vertices a,b € S with adb and
bAx for some vertex x in C. Hence P,, CG. Thus we may assume that S is a set of
independent vertices of G. Now let A = freC’ | vAw for some w € S}. If
| A |>(m —2)/2, then there would be two consecutive elements of C in A. But then
either these two vertices are adjacent to distinct vertices in 3 in which case we have
at once that P, CG or else they are adjaceni to the same element of S in which
case C.-; CC and so, since G is connected, we have in this case too that P. CcG.
Thus we may suppose that |A | < (m —2)/2. Hence there exists B CC such that
|B|=(m —2)/2 and no element of B is adjacent in G to any element of S. Thus we
have partitioned V(G) into the sets S,B and D = C — B, wherc, in G, (S) is
complete, |[B|=|D|=(m —2)/2 and every element of B is adjacent to every
element of S. Thus since |[BUS|=n~2 and |S|=|B]|, then knowing that S is
complete we can conclude that C, .,C(B US) (in G). Now if D Fad a non-trivial
component, it would follow from the connectedness of G that P, C G. Thus we may
suppose that D is an independent set in G.

Now suppose that no vertex in S ic adjacent in G to any vertex of D. Then as
before since [S|=|D|=(m —2)/2=2, (D US) (in G) contains a copy of C,_, in
which every vertex of D is included. Thus since G is connected, if (B) (in G)had a
non-trivial component, we would have P,, CG. Hence we may assume that B is
independent in G and thus complete in G. Since G is connected and no vertex of D
is adjacent to any vertex in S U D, if d is any vertex of D then we must haved ~ b
for some b € B. But then since G is connected, there is some x € D with bAx. But
once again, there is some y € B with y ~ x. Thus since (B U S) (in G) is complete
of order n -2, (B US U{x,d}) (in G) contains P,.

Suppose on the other hand that there is some vertex u € S adjacent in G tosome
vertex v € D. Then there must exist some w € D with udw. Now if w s adjacent in
G to any vertex of B, then it is easy to see that we have P, C(B U S U{v, w}) (in
(). Hence we may assume that w ~ y for some y € S and that no vertex of D is
adjacent in G to any vertex of B. Now if (B) (ir G) had even a single edge, then it
would follow that (B U'S U {v, 'v}) (in G) contains P, (the existence of an edge in B
iz needed in case |B! =S |). Thus we can assume that (B) (in G} is independent.



The graph so obtained has order n + [(m - 3)/2] — 2 and does not contain P, and
its complement does not contain P,,. Thus r. (P,.,P 1>n +{{m —3)/2] -2 and the
proof of our theorem is complete.

It is mte‘ 'stmg to. obqerve the close relatxonshxp between the usual Ramsey
numbe:s fo aths and the connected Ramsey numbers. We recast Theorem 3.lina
difforent way in order to delineate this relationship.

Corcliary 3_;1. Let n,and m be positive integers with n 2m = 5. Then

r(P.,P.)~-1 ifmisodd,

rg(Pum)={r(Pum)-—2 if m is even.

4. “oncluding remnarks and questions

This paper has dealt with the number r.(F, H} It would seem worthwhile also to
investigate: tne more general k -cornected Ramse:' number r, (F, H). r. (F, H) is the
smallest integer n 5o that every graph G aaving l G |=n and such that G is totally
k-connectes (i.e. both G and G are k-connected) will have F CG or H CG. Of
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course there may also be many other numbers r, (F, H) whose study may prove
worthwhile to the overall investigation of the generalized Ramsey numbers. Finally
‘we mention the problem of determining the oiher connected Ramsey numbers for
pairs of graphs at least one of which contains a bridge. In particular r.(P,, C.,) needs
to be determined.

Acknowledgement

The author would like to thank the referee for suggesting an improvement in the
presentation of the definition of the connected Ramsey number.

References

{1] J. Bosék, A. Rosa, S. Zndm, On decomposition of comnplete graphs into factors wit’ given
diameters, in: Theory of Graphs (Academic Press, New York, 1969) 37-56.

[2] Stefan A. Burr, Generalized Ramsey theory for graphs — A survey, in: Graphs and Combinatorics
(Springer-Verlag, Be-lin 1974) 52-75.

[3] R.D. Faudree, R.H. Sche!>, All Ramsey numbers for cycles in graphs, Discrete Math. 8 \ 974)
313-329.

[4) D.J. Foulis, Empirical logic, Xeroxed course notes, Univeristy of Massachusetts, Amherst, MA
(1969-1970).

[5] F. Harary, A survey of generalized Ramsey theory, in* Graphs and Combinatorics (Springer-Verlag,
Berlin, 1974), 10-17.

[6] D.P. Sumner, Dacey Graphs, J. Austr. Math. Soc. 4 (1974) 492-502.



