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Abstract

We study the long time behavior of a Brownian particle moving in an anomalously diffusing field,
the evolution of which depends on the particle position. We prove that the process describing the
asymptotic behavior of the Brownian particle has bounded (in time) variance when the particle interacts
with a subdiffusive field; when the interaction is with a superdiffusive field the variance of the limiting
process grows in time as t2γ−1, 1/2 < γ < 1. Two different kinds of superdiffusing (random)
environments are considered: one is described through the use of the fractional Laplacian; the other via the
Riemann–Liouville fractional integral. The subdiffusive field is modeled through the Riemann–Liouville
fractional derivative.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

In [2], Bertini et al. considered the following system of Itô-SDEs, describing the evolution of
a one-dimensional interface:

d X (t) = λdw(t)+ α

ϕX (t), h(t)


dt

dh(t) =
1
2
∆h(t)dt − ϕX (t)d X (t),

(1)

with initial conditions X (0) = h(0) = 0. In the above system w(t) is a one-dimensional
Brownian motion (BM) on the filtered probability space (Ω ,F ,Ft , P) (E is going to denote
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expectation with respect to P) and ⟨·, ·⟩ is the scalar product of L2(R, dx) (for background
material on probability theory and stochastic differential equations we refer the reader to [3,8,
19]). More precisely, in [2] the authors consider a system thermally isolated from the exterior, in
a state in which two phases coexist. Under the assumption of planar symmetry for the system,
the interface position is represented by the point X (t) ∈ C(R+) separating the two phases. In
Eq. (1)1 the interface displacements are described as the sum of two contributions: the first is
a Brownian fluctuation, related to the macroscopic fluctuations of the system; the second is the
interaction with a diffusive field, h(t) = h(t, x) ∈ C(R+; C(R)). Also,

ϕX (t), h(t)

=


R

dxϕ(x − X (t))h(t, x),

where ϕ(x) is a probability density in the Schwartz class (regions of the field far from the
interface do not significantly affect the interface evolution) and ϕX (t) = ϕ(x − X (t)).

On the other hand, Eq. (1)2 describes the field variation as the sum of a diffusive term plus a
“feedback term” taking into account the latent heat effect.

The parameters λ > 0 and α > 0 determine the intensity of the Brownian noise and of the
coupling with the field, respectively. In [2] the authors study a scaling limit of X (t) as λ → 0
under the hypothesis α = λ of weak coupling.

Notice that the system (1) can also be interpreted as describing a Brownian motion weakly
coupled with a (diffusive) random environment, the evolution of which depends on the position
of the Brownian motion itself. For further details about the model we refer the reader to [2,1].

Let ξ(t) be the solution of the following integral equation:

ξ(t) = b̄(t)−

 t

o
dsρt−s(0)ξ(s), (2)

where b̄(t) is the scaled BM b̄(t) = λw(tλ−2) and ρt (x) = ρ(t, x) is the density of a centered
Gaussian with variance t . In [2] the following asymptotics (3) and (4) are obtained: upon
rescaling the interface position, i.e. considering the process Xλ(t) = X (tλ−2), we have that
∀N ∈ [1,∞) ∃ τ = τ(N ) > 0 s.t.

lim
λ→0

E sup
t≤τ | log λ|

|Xλ(t)− ξ(t)|N
= 0. (3)

As noticed in [2], this implies that Xλ converges weakly to ξ as λ → 0 in C(R+) endowed with
the topology of uniform convergence on compacts. Furthermore, ξ(t) is a centered Gaussian
process such that

lim
t→∞

1
log(t)

E [ξ(t)]2
=

2
π

; (4)

that is, the width of the interface fluctuations increases in time as log(t).
However, a number of natural phenomena cannot be described by means of simple diffusion;

e.g., the way some proteins diffuse across cell membranes or the motion of a particle in systems
with geometric constraints, for example on the surface of a perfect crystal. Therefore, it can be
of interest to consider systems of SDEs analogous to (1) and in which the Brownian particle
interacts with anomalously diffusing fields. The present paper is devoted to extending the results
obtained in [2] for system (1) to the case in which the interface fluctuations are due to interactions
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with anomalously diffusing fields. In other words, we will study the long time behavior of a
Brownian particle coupled with an anomalously diffusing environment (see systems (10)–(12)).

Anomalous diffusion processes are characterized by a mean square displacement which,
instead of growing linearly in time, grows like t2γ , γ > 0, γ ≠

1
2 . When 0 < γ < 1

2 the
process is subdiffusive; when γ > 1

2 it is superdiffusive.

Diffusion phenomena can be described at the microscopic level by means of BM and
macroscopically by means of the heat equation, i.e. the parabolic problem associated with the
Laplacian operator; the link between the two descriptions is, roughly speaking, the fact that the
fundamental solution to the diffusion equation is the probability density associated with BM.

A similar picture can be obtained for anomalous diffusion. The main difference is that in
nature a variety of anomalous diffusion phenomena can be observed and the question is how
to characterize them from both the analytical and the statistical points of view. It has been shown
that the microscopical (probabilistic) approach can be understood in the context of continuous
time random walks (CTRWs) and, in this framework, a process is uniquely determined once the
probability density for moving at distance r in time t is known ([4,10,14,9,5,6,13] and references
therein). The analytical approach is based on the theory of fractional differentiation operators,
where the derivative can be fractional either in time or in space (see [12,11,15,17] and references
therein).

For f (s) regular enough (e.g. f ∈ C(0, t] with an integrable singularity at s = 0), let us
introduce the Riemann–Liouville fractional derivative,

Dγ
t ( f ) :=

1
Γ (2γ )

d

dt

 t

0
ds

f (s)

(t − s)1−2γ , 0 < γ <
1
2
, (5)

and the Riemann–Liouville fractional integral,

I γt ( f ) :=
1

Γ (2γ − 1)

 t

0
ds

f (s)

(t − s)2−2γ ,
1
2
< γ < 1, (6)

where Γ is the Euler Gamma function [15]. Appendix B contains a motivation for introducing
such operators. For 1

2 < γ < 1 let us also introduce the fractional Laplacian ∆(γ ), defined
through its Fourier transform: if the Laplacian corresponds, in Fourier space, to a multiplication

by −k2, the fractional Laplacian corresponds to a multiplication by −|k|
1
γ . (5) and (6) can be

defined in a more general way (see [15]), but for our purposes the above definition is sufficient.
Furthermore, notice that the operators in (5) and (6) are fractional in time, whereas the fractional
Laplacian is fractional in space.

Let us now consider the function ργ (t, x), the solution to

∂tρ
γ (t, x) =

1
Γ (2γ )

d

dt

 t

0
ds

∂2
xρ

γ (s, x)

(t − s)1−2γ when 0 < γ <
1
2
, (7)

∂tρ
γ (t, x) =

1
Γ (2γ − 1)

 t

0
ds

∂2
xρ

γ (s, x)

(t − s)2−2γ when
1
2
< γ < 1. (8)

It has been shown (see [10,6] and references therein) that such a kernel is the asymptotic of
the probability density of a CTRW run by a particle either moving at constant velocity between
stopping points or instantaneously jumping between halt points, where it waits a random time
before jumping again. On the other hand, a classic result states that the Fourier transform of the
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solution ργ (t, x) to

∂tρ
γ (t, x) =

1
2
∆(γ )ργ (t, x),

1
2
< γ < 1, (9)

is, for γ ≥
1
2 , the characteristic function of a (stable) process whose first moment is divergent

when γ ≥ 1 (see [17]); this justifies the choice 1
2 < γ < 1 in Eq. (9). Processes of this kind

are particular CTRWs, the well known Lévy flights; in this case large jumps are allowed with
non-negligible probability and this results in the process having divergent second moment.

We will use the notation ργ (t, x) = ρ
γ
t (x) to indicate the solution to either (7), (8) or (9), as in

the proofs we use only the properties that these kernels have in common.

The above described framework is analogous to that of Einstein diffusion: for subdiffusion
and Riemann-type superdiffusion the statistical description is given by CTRWs, whose
(asymptotical) density is the fundamental solution of the evolution equation associated with
the operators of fractional differentiation and integration, i.e. (7) and (8), respectively (see
Appendix B). For the Lévy-type superdiffusion, the statistical point of view is given by Lévy
flights, whose probability density evolves in time according to the evolution equation associated
with the fractional Laplacian, i.e. (9) (see [17]).

In view of the above considerations, we introduce the following three systems of Itô-SDEs:
d Xγ (t) = λ

1
2γ dw(t)+ λ

1
γ

−1 
ϕXγ (t), hγ (t)


dt

dhγ (t) =
1

Γ (2γ )
d

dt

 t

0
ds
∂2

x hγ (s, x)

(t − s)1−2γ dt − ϕXγ (t)d Xγ (t),
(10)


d Xγ (t) = λ

1
2γ dw(t)+ λ

1
γ

−1 
ϕXγ (t), hγ (t)


dt

dhγ (t) =
1

Γ (2γ − 1)

 t

0
ds
∂2

x hγ (s, x)

(t − s)2−2γ dt − ϕXγ (t)d Xγ (t),
(11)

and d Xγ (t) = λ
1

2γ dw(t)+ λ
1
γ

−1 
ϕXγ (t), hγ (t)


dt

dhγ (t) =
1
2
∆(γ )hγ (t)dt − ϕXγ (t)d Xγ (t).

(12)

Roughly speaking, the first two systems are obtained from (1), by replacing the Laplacian of
the field h(t, x) in Eq. (1)2 with the fractional derivative and fractional integral of ∆h(t, x),
respectively (see (7) and (8)). The last system is obtained by replacing the Laplacian with the
fractional Laplacian (see (9)). In this way we model our anomalously diffusing fields.

Again, w(t) is a one-dimensional BM, ϕ(x) is a function in the Schwartz class and ϕXγ (t) =

ϕ(x − Xγ (t)). A more detailed motivation for introducing the above systems can be found in
Appendix B.

We shall denote by Xγ (t) the solution to either of the three above systems (the reason for
adopting this notation, which might at first seem confusing, will be apparent in a few lines).
For λ ∈ (0, 1), let us introduce the scaled variables

X (λ,γ )(t) := Xγ


tλ−
1
γ


,

h(λ,γ )(t, x) :=
1
λ

hγ


xλ−1, tλ−
1
γ


,
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ϕ(λ)(x) :=
1
λ
ϕ


xλ−1

.

For the function ϕ only, we use the convention ϕa(x) := ϕ(x − a), a ∈ R and we set

ϕ
(λ)
t (x) := ϕ

(λ)

λX (λ,γ )
=

1
λ
ϕ


xλ−1
− X (λ,γ )(t)


; (13)

the notation for ϕ(λ)t should include the superscript γ , which we omit.

Let also ξγ (t) be the solution to the integral equation

ξγ (t) = b(t)−

 t

0
dsργt−s(0)ξ

γ (s), ξγ (0) = 0, 0 < γ < 1, (14)

where b(t) = λ
1

2γ w(tλ−
1
γ ). Notice that, by virtue of the scaling property of Brownian motion,

the dependence of ξγ (t) on λ through b(t) is only formal. The main result presented in this paper
is a scaling limit (in fact, three scaling limits) of X (λ,γ )(t) going to ξγ (t). Also, the solution to
(14) is unique by the basic facts of the theory of Volterra integral equations, which we shall recall
at the beginning of Section 3.

Theorem 1 (First Version). With the notation introduced above, we have that ∀γ ∈ (0, 1) and
∀N ∈ [1,∞) there exists τ = τ(N , γ ) > 0 such that

lim
λ→0

E sup

t≤τ | log λ|
1

C(γ )

|X (λ,γ )(t)− ξγ (t)|N
= 0,

where C(γ ) is a positive constant, with C(1/2) = 1.

The fact that C(1/2) = 1 is consistent with (3). In Section 4 we prove an equivalent version of
Theorem 1, namely Theorem 3, where the constant C(γ ) is made explicit. Theorem 1 says that
the asymptotic behavior of X (λ,γ )(t), the rescaled solution to either one of the systems (10)–(12),
is described by the function ξγ (t). Hence, we need to determine the behavior of ξγ (t) for large
t , and this is the content of the following Theorem 2.

Theorem 2. For γ ∈ (0, 1
2 ), ξ

γ (t) is a centered Gaussian process s.t.

lim
t→∞

E

ξγ (t)

2
= const. (15)

For γ ∈


1
2 , 1


, we prove an invariance principle for ξγ (t). Let ξγϵ (t) = ϵγ−

1
2 ξγ (ϵ−1t); then, as

ϵ → 0, ξγϵ converges weakly in C(R+) to a mean-zero Gaussian process, Z(t), whose covariance
function is

E(Z(s)Z(t)) =
sin2(πγ )

π2c(γ )2

 t∧s

0
du

1

(t − u)1−γ (s − u)1−γ
.

Intuitively, this means that in the case in which the particle interacts with a subdiffusive
field, the feedback force exerted by the field keeps the process localized. On the other hand,
the superdiffusive field (no matter which one of the two we consider) is not strong enough to
overcome the effect of the Brownian nature of the particle, and the width of the fluctuation
increases in time as t2γ−1.
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Notice also that the CTRWs associated with the operators Dγ
t and I γt are non-Markovian

whereas Lévy processes are Markovian processes; nevertheless the limiting process (14) is
non-Markovian for any γ ∈ (0, 1): in the case of Lévy-type superdiffusion there is loss of
Markovianity.

The paper is organized as follows. In Section 2, after establishing the notation, we state a
second (equivalent) version of Theorem 1. This version is the one that we shall actually prove
in Section 4. Section 3 contains all the technical estimates used in Section 4. This proof is a
generalization of the one used in [2] in order to prove (3). Section 5 is devoted to the proof
of Theorem 2, which relies on the use of Tauberian theorems. Finally, Appendix A provides a
sketch of the proof of the existence, uniqueness and continuity of the paths of the solution to
(10)–(12). Appendix B contains a more detailed motivation for the introduction of the operators
of fractional differentiation and integration.

2. Notation and results

The kernels in (7) and (8) can be explicitly written both in integral form (see Appendix B):

ργ (t, x) =
1

4π i

 c+i∞

c−i∞
dz ezt e−|x |zγ

z1−γ
∀c > 0 and 0 < γ < 1 (16)

and as a series:

ργ (t, x) =
1

2tγ
M


|x |

tγ
, γ


, 0 < γ < 1, where

M(z, γ ) :=

∞
k=0

(−1)k zk

k!Γ (−γ (k + 1)+ 1)
. (17)

The asymptotic behavior of the Mainardi function M(z, γ ) as z → +∞ is known:

M(z, γ ) ≃ A(γ ) z
2γ−1
2−2γ e−B(γ ) z

1
1−γ
,

with A and B constants depending on γ [11]; hence ργ (t, x) has finite moments of any orders,
given by

R
dx ργ (t, x)|x |

n < ∞, ∀n ∈ N .

We remark that this property holds when ργ (t, x) is the fundamental solution of either (7) or (8).
On the other hand, the fundamental solution of (9), namely

ργ (t, x) =


R

e−
1
2 t |k|

1
γ

eikx dk, γ ∈ (1/2, 1), (18)

has finite first moment but divergent second moment.

We want to stress that in order to prove Theorem 1 (i.e. Theorem 3), we basically use only the
following elementary properties enjoyed by both (16) and (18):

• the scaling property:

ργ (t, x) =
1
tγ
ργ


1,
x

tγ


, (19)
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from which, setting

c(γ ) := ρ
γ

1 (0), (20)

ρ
γ
t−s(0) =

ρ
γ

1 (0)

(t − s)γ
=

c(γ )

(t − s)γ
; (21)

• there exists a generic constant C = C(γ ) > 0 such thatρ
γ

1 (z)

c(γ )
− 1

 ≤ C |z|β ,1 ∀β ∈ (0, 1], (22)

and ρ
γ

1 (z)

c(γ )
− 1

 ≤ C.2 (23)

For f, g ∈ L2([0, t]), f ∗ g denotes the Volterra convolution, namely

( f ∗ g)(t) :=

 t

0
ds f (t − s)g(s).

For m ∈ N,m ≥ 2, f ∗(m)
= f ∗ f (m−1) is the convolution of f with itself (m − 1) times, where

we define f ∗(1)(t) := f (t). Set Kγ (t) := ρ
γ
t (0) and notice that

K∗(2)
γ (t − s) =

 t−s

0
ds′ρ

γ

t−s−s′(0)ρ
γ

s′(0) =

 t

s
ds′ρ

γ

t−s′(0)ρ
γ

s′−s(0)

= k(1)(γ )(t − s)1−2γ . (24)

If we iterate n times, we end up with

K∗(n+1)
γ (t − s) :=

 t

s
ds′ρ

γ

t−s′(0)K∗(n)
γ (s′

− s)

= k(n)(γ )(t − s)n−(n+1)γ , n ≥ 1, (25)

where

k(n)(γ ) := c(γ )n+1 Γ (1 − γ )n+1

Γ ((n + 1)(1 − γ ))
. (26)

To obtain the previous equality we used the fact that the Beta function B(z, w) can be expressed
in terms of the Euler Gamma function in the following way:

B(z, w)
de f
=

 1

0
ds sz−1(1 − s)w−1

=
Γ (z)Γ (w)
Γ (z + w)

Re(z), Re(w) > 0.

1 This inequality can be deduced by using (17) when referring to Riemann-type anomalous diffusion; see also
footnote 3. For when ργt is the kernel in (18), see footnote 3.

2 The constant that appears in this inequality is equal to 1 when ργ is either the Lévy-type kernel or the subdiffusive
kernel and it depends on γ otherwise; see again footnote 3.
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In the same way, on setting

P(λ,γ )t,s :=


ϕ
(λ)
t , ρ

γ
t−sϕ

(λ)
s


= P∗(1)

t,s , (27)

(on the RHS we drop the superscript (λ,γ ) for notational convenience) we have

P∗(2)
t,s =

 t

s
ds′ P(λ,γ )t,s′ P(λ,γ )s′,s ,

and for n ≥ 1

P∗(n+1)
t,s :=

 t

s
ds′ P(λ,γ )t,s′ P∗(n)

s′,s . (28)

We further introduce

K (λ,γ )
t,s :=


ϕ
(λ)
t ,

 t

s
db(s′)ρ

γ

t−s′ϕ
(λ)

s′


,

F (λ,γ )0 (t) := −

 t

0
dsK (λ,γ )

s,0 , (29)

F (λ,γ )1 (t) :=

 t

0
ds P(λ,γ )t,s K (λ,γ )

s,0 ,

F (λ,γ )2 (t) := −

 t

0
ds
 s

0
ds′ P(λ,γ )t,s P(λ,γ )s,s′ K (λ,γ )

s′,0

= −

 t

0
dsK (λ,γ )

s,0 P∗(2)
t,s ,

and in general

F (λ,γ )n (t) := (−1)n+1
 t

0
dsK (λ,γ )

s,0 P∗(n)
t,s , n ≥ 1 (30)

= −

 t

0
ds P(λ,γ )t,s F (λ,γ )n−1 (s) n ≥ 2. (31)

Via the Duhamel principle (see Lemma 2), systems (10)–(12) can be expressed in integral form
through a unique system, that is,

X (λ,γ )(t) = b(t)+

 t

0
ds

ϕ(λ)s , h(λ,γ )(s)


h(λ,γ )(t) = −

 t

0
db(s)ργt−sϕ

(λ)
s −

 t

0
ds

ϕ(λ)s , h(λ,γ )(s)


ρ
γ
t−sϕ

(λ)
s ,

(32)

where γ ∈ (0, 1); in the above system ρ
γ
t (x) = ργ (t, x) is either (16) for γ ∈ (0, 1) or (18) for

γ ∈ (1/2, 1). For any f in the Schwartz class,

ρ
γ
t f

(x) is a convolution in the space variable.

Namely,

ρ
γ
t−sϕ

(λ)
s =


ρ
γ
t−sϕ

(λ)
s


(x) =


R

dyργt−s(x − y)ϕ(λ)s (y).
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The initial conditions for (32) are X (λ,γ )(0) = h(λ,γ )(0) = 0. In Appendix A we prove that (32)
admits a unique solution in C(R+; R × L2(R)). Notice as well that from (32) one has

h(λ,γ )(t) = −

 t

0
d X (λ,γ )(s)ργt−sϕ

(λ)
s . (33)

Following [2] page 10, we formally iterate once both the equation for X (λ,γ ) and the one for ξγ ,
(32)1 and (14), respectively. Plugging (32)2 into (32)1 and using (33), we get

X (λ,γ )(1) (t) = b(t)−

 t

0
dsK (λ,γ )

s,0

+

 t

0
ds


ϕ(λ)s ,

 s

0
ds′


ϕ
(λ)

s′ ,

 s′

0
d X (λ,γ )(1) (s′′)ρ

γ

s′−s′′ϕ
(λ)

s′′


ρ
γ

s−s′ϕ
(λ)

s′



= b(t)+ F (λ,γ )0 (t)+

 t

0
ds
 s

0
ds′ P(λ,γ )s,s′


ϕ
(λ)

s′ ,

 s′

0
d X (λ,γ )(1) (s′′)ρ

γ

s′−s′′ϕ
(λ)

s′′


, (34)

where the subscript (1) of X is to recall that we are considering the first iteration of (32)1. Setting

Y (λ,γ )(1) (t) = X (λ,γ )(1) (t)− b(t)− F (λ,γ )0 (t), Y (λ,γ )(1) (t) solves

Y (λ,γ )(1) (t) =

 t

0
ds F (λ,γ )1 (s)+

 t

0
ds F (λ,γ )2 (s)

+

 t

0
ds
 s

0
ds′ P(λ,γ )s,s′


ϕ
(λ)

s′ ,

 s′

0
dY (λ,γ )(1) (s′′)ρ

γ

s′−s′′ϕ
(λ)

s′′


; (35)

observing that Y (λ,γ )(1) (t) is a.s. in C 1(R), we can rewrite the previous expression for Y (λ,γ )(1) (t) as

Ẏ (λ,γ )(1) (t) = F (λ,γ )1 (t)+ F (λ,γ )2 (t)+

 t

0
dsẎ (λ,γ )(1) (s)

 t

s
ds′ P(λ,γ )t,s′ P(λ,γ )s′,s , (36)

and hence

X (λ,γ )(1) (t) :=

 t

0
dsẎ (λ,γ )(1) (s)+ b(t)+ F (λ,γ )0 (t). (37)

On the other hand, iterating the equation for ξγ and using (24), we get

ξ
γ

(1)(t) = b(t)−

 t

0
dsργt−s(0)b(s)+ k(1)(γ )

 t

0
ds(t − s)1−2γ ξ

γ

(1)(s). (38)

We can repeat the same procedure n times; for n ≥ 2 we then have

X (λ,γ )(n) (t) := b(t)+ F (λ,γ )0 (t)+

 t

0
ds[F (λ,γ )1 + · · · + F (λ,γ )n ](s)+ Y (λ,γ )(n) (t), (39)

where

Y (λ,γ )(n) (t) := (−1)n+1
 t

0
ds


ϕ(λ)s ,

 s

0
d X (λ,γ )(n) (u)ργs−uϕ

(λ)
u

  t

s
ds′ P∗(n)

s′,s . (40)
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Y (λ,γ )(n) (t) solves the equation

Y (λ,γ )(n) (t) =

 t

0
ds


F (λ,γ )n + · · · + F (λ,γ )2n


(s)

+ (−1)n+1
 t

0
ds


ϕ(λ)s ,

 s

0
dY (λ,γ )(n) (u)ργs−uϕ

(λ)
u

  t

s
ds′ P∗(n)

s′,s , (41)

so by differentiating, using the definition of P(λ,γ )t,s and (28), we get

Ẏ (λ,γ )(n) (t) =


F (λ,γ )n + · · · + F (λ,γ )2n


(t)+ (−1)n+1

 t

0
dsẎ (λ,γ )(n) (s)P∗(n+1)

t,s . (42)

Define Aγ(n)(t) as

Aγ(n)(t) :=

n
ν=0

(−1)ν

K∗(ν)
γ ∗ b


(t) n ≥ 1, 0 < γ <

n

n + 1
, (43)

where

K∗(0)
γ ∗ b


(t) is only formal and we set it to be equal to b(t). Then, at the nth iteration

of the equation for the limiting process ξγ (t), we find that ∀n ≥ 1,

ξ
γ

(n)(t) = Aγ(n)(t)+ (−1)n+1
 t

0
dsξγ(n)(s)K

∗(n+1)(t − s). (44)

When we write X (λ,γ )(n) , we refer to the expression (39) if n ≥ 2 and to (37) if n = 1. As for Y (λ,γ )(n)

and Ẏ (λ,γ )(n) , expressions (41) and (42) coincide with (35) and (36) respectively, when n = 1. So

Y (λ,γ )(n) and Ẏ (λ,γ )(n) are defined by (41) and (42) ∀n ≥ 1.

To prove convergence of X (λ,γ ) to ξγ we prove convergence of the nth iterates. More
precisely, we prove that ∀n ≥ 1, X (λ,γ )(n) converges to ξγ(n) (in the sense of Theorem 3 below)

when γ ∈


0, n

n+1


.

The reason why we consider successive iterates of the equation for X (λ,γ ) (and hence for ξγ )
is to gain integrability and some sort of regularity. Notice indeed that

 t
0 db(s)ργt−s(0) is not well

defined for γ ≥ 1/2, whereas ∀n ≥ 1 t

0
db(s)K∗(n+1)

γ (t − s) is well defined for γ ∈


0,

2n + 1
2(n + 1)


. (45)

∀n ≥ 1, we further restrict the range of γ to γ ∈


0, n

n+1


in view of (25) (see Remark 4.2 and

(105), as well).

Theorem 3 (That is, Second Version of Theorem 1). With the notation introduced above, we

have that for any integer n ≥ 1, for any γ ∈


0, n

n+1


and ∀N ∈ [1,∞), there exists

τ = τ(N , γ ) > 0 s.t.

lim
λ→0

E sup

t≤τ | log λ|
1

(n+1)(1−γ )

|X (λ,γ )(n) (t)− ξ
γ

(n)(t)|
N

= 0. (46)
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∥ · ∥p, p ≥ 1, indicates the usual L p(R, dx) norm and (ργt f )(x) =


dyργt (x − y) f (y) is a
convolution in space. Now a few observations: ∀t > 0 and ∀n ≥ 1,

ϕ
(λ)
t =

1
λ
ϕ


xλ−1
− X (λ,γ )(t)


=

1
λ
ϕ


xλ−1
− X (λ,γ )(n) (t)


, γ ∈ (0, 1); (47)

so actually the notation for ϕ(λ)t , like that for K (λ,γ )
t,s and Γ (λ,δ,γ )

s , the latter defined in (79), should
explicitly show the “dependence” on n, but we omit it. This also explains why in some estimates
(for example (78)), n appears on the right hand side but not on the left hand side.

∀p ≥ 1 there exists a positive constant C = C(p) s.t.

∥ϕ
(λ)
t ∥p ≤ Cλ

1
p −1

. (48)

Moreover, ∀t > 0,

ργ (t, x) ≤ B(γ )ργ (t, 0), (49)

where B(γ ) = 1 if ργ is either the subdiffusive kernel or (18), and it is a positive constant
actually depending on γ in the case of Riemann superdiffusion.3 (49) implies that

P(λ,γ )t,s ≤ B(γ )ργt−s(0), ∀ 0 < s < t, (50)

and 
ϕ(λ), ρ

γ
t ϕ

(λ)

≤ B(γ )ργt (0), ∀t > 0. (51)

From (50), we also have

P∗(n)
t,s ≤ CK∗(n)

γ (t − s), (52)

where C > 0 is a generic constant depending on γ .

3. Technical lemmata

Throughout the following lemma we will make extensive use of the Volterra convolution
introduced in Section 2. Notice that this convolution is commutative and that it enjoys the
property

·

0
du f (u)


∗ g


(t) =

 t

0
du( f ∗ g)(u), (53)

which easily follows after a change of variable. Indeed
·

0
du f (u)


∗ g


(t) =

 t

0
ds

 t−s

0
du f (u)


g(s)

=

 t

0
dsg(s)

 t

s
dv f (v − s) =

 t

0
dv
 v

0
ds f (v − s)g(s)

=

 t

0
dv( f ∗ g)(v).

3 A more detailed account and helpful plots of the kernels (16) can be found in [11] on page 1473; see also [15]. As
for the kernel in (18), we recall that both ργt and its first derivative in space belong to L1(R) ∩ L∞(R), ∀t > 0 and we
refer the reader to [17].
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Lemma 1. For n ∈ N, n ≥ 1, consider the integral equation

h(n)(t)− (K∗(n+1)
γ ∗ h(n))(t) = g(t), g ∈ L2([0, t]), γ ∈


0,

n

n + 1


. (54)

Name as ~γ(n)(t) the solution to (54) when the forcing g(t) is taken to be equal to Aγ

(n)(t) ∈

L2([0, t]) and as ςγ(n)(t) the solution to the same equation with a different forcing, say Gγ(n)(t).
Namely,

~
γ

(n)(t)+ (−1)n
 t

0
ds~γ(n)(s)k(n)(γ )(t − s)n−(n+1)γ

= Aγ

(n)(t) (55)

and

ς
γ

(n)(t)+ (−1)n
 t

0
dsςγ(n)(s)k(n)(γ )(t − s)n−(n+1)γ

= Gγ(n)(t). (56)

If the two forcings Aγ

(n)(t) and Gγ(n)(t) are related through

(Aγ

(n) ∗ K∗(n+1)
γ )(t) = (−1)n+1

 t

0
dsGγ(n)(s), (57)

then the same relation holds true between the corresponding solutions, i.e.,

(~
γ

(n) ∗ K∗(n+1)
γ )(t) = (−1)n+1

 t

0
dsςγ(n)(s). (58)

The proof of this lemma is an immediate consequence of some basic facts in the theory of
Volterra integral equations, which we recall here. For more details on this theory we refer the
reader to [18]. For some T > 0, let g(t),K(t) ∈ L2([0, T ]). Then the solution h(t) to the
equation

h(t)−

 t

0
dsK(t − s)h(s) = g(s)

exists and is unique and can be expressed as

h(t) = g(t)−

 t

0
ds H(t − s)g(s), (59)

where

H(t − s) = −

∞
ν=0

K∗(ν+1)(t − s).

When the kernel K(t) is not in L2, the solution to (59) still exist and is unique provided that for
some n ∈ N the iterated kernel K∗(n) is bounded on [0, T ]. The proof of this fact can be found
in [18], Section 1.12, where kernels of the form K(t) = tα , with α ∈ (0, 1) are considered.

Proof of Lemma 1. For γ ∈ (0, n/n + 1), the kernel of Eqs. (55) and (56) is a bounded
continuous function, so the standard theory for kernels in L2 applies. Thanks to (59), together
with (55)–(57), proving (58) boils down to proving

(−1)n+1
 t

0
ds


H ∗ Gγ(n)

(s) =


K∗(n+1)
γ ∗ H ∗ Aγ

(n)


(t).
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Such an equality holds true because, by the commutativity of the Volterra convolution, the right
hand side is equal to

H ∗


K∗(n+1)
γ ∗ Aγ

(n)


(t) =

 t

0
H(t − s)


K∗(n+1)
γ ∗ Aγ

(n)


(s)

= (−1)n+1
 t

0
ds H(t − s)

 s

0
Gγ(n)(s

′)ds′
;

now the conclusion follows from property (53). �

In the following lemma and throughout the paper we will be using the notation F { f (x)}(k) =

f̂ (k) and L{g(t)}(µ) = g#(µ) for the Fourier transform and the Laplace transform respectively
and we will use the superscript ˜ for the Fourier–Laplace transform.

Lemma 2. For 0 < γ < 1
2 , let vγ (t, x) be a solution to∂tv

γ (t, x) =
1

Γ (2γ )
d

dt

 t

0
ds

∆xv
γ (s, x)

(t − s)1−2γ + F(t, x) (0,∞)× R

vγ (0, x) = v
γ

0 (x) {0} × R

and, for 1
2 < γ < 1, let it be a solution to∂tv
γ (t, x) =

1
Γ (2γ − 1)

 t

0
ds

∆xv
γ (s, x)

(t − s)2−2γ + F(t, x) (0,∞)× R

vγ (0, x) = v
γ

0 (x), {0} × R

where vγ0 (x) ∈ C(R), F(t, x) ∈ C(R+ × R). Then

vγ (t, x) =


R

dyργ (t, x − y)vγ0 (y)+

 t

0
ds


R
dyργ (t − s, x − y)F(s, y),

with ργ (t, x) the kernel defined in (16).

Proof. Let us observe that the Duhamel principle for the heat equation (i.e. the parabolic equation
associated with the Laplacian) can be expressed as follows: if u(t, x) is a classical solution to

∂t u(t, x) =
1
2
∆x u(t, x)+ F(t, x) (0,∞)× R, F ∈ C(R+ × R),

u(0, x) = u0(x) {0} × R, u0 ∈ C(R),

then its Fourier–Laplace transform satisfies

ũ(µ, k) =
û(0, k)+ F̃(µ, k)

µ+
1
2 k2

, (60)

where

µ+

k2

2

−1
is the Fourier–Laplace transform of the fundamental solution of the diffusion

equation, i.e. of the heat kernel.

Now let us recall that the Fourier–Laplace transform of ργ (t, x) is given by (134) (in (134) take
c1 = 1; see Appendix B); also, µ1−2γ ṽγ (µ, k) is the Laplace transform of Dγ

t (v̂
γ (·, k)) when

0 < γ < 1
2 , whereas for 1

2 < γ < 1 it is the Laplace transform of I γt (v̂
γ (·, k)) (see Appendix B).
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Hence

L(∂t v̂
γ (t, k)) =


∞

0
dt e−µt∂t v̂(t, k)

= −v̂(0, k)+ µ ṽγ (µ, k) = −c1k2µ1−2γ ṽ(µ, k)+ F̃(µ, k)

⇒ ṽ(µ, k) =
v̂(0, k)+ F̃(µ, k)

µ+ c1k2µ1−2γ ,

which is precisely what we where looking for (see (134) and (60)). �

Lemma 3. ∀N ≥ 1 and 0 < γ < 1, let p, q and r be real numbers greater than 1 s.t.
p−1

+ q−1
= 1, q > max {N , r} and r−1

− q−1 < (2γ )−1. Let v(·) be an Fs-adapted process
in C(R+, Lr (R)) and ψ a random variable in L p(R). Then there exists a positive constant
C = C(q, r, γ ) such that

E

ψ,  t2

t1
db(s)ργt2−sv(s)

N
 1

N

≤ C(t2 − t1)
ν


E∥ψ∥
β
p

 1
β


E sup

t1≤s≤t2
∥v(s)∥q

r

 1
q

,

for any t1 ≤ t2, where β =
Nq

q−N and ν =
1
2 − γ


1
r −

1
q


.

Proof (Sketch). The proof is identical to the proof of Lemma 3.1 in [2], so we will not repeat it.
The additional condition r−1

− q−1 < (2γ )−1 is an integrability condition and comes from the
fact that t2

t1
ds∥ργt2−s∥

2
r ′ < ∞ ⇐⇒

1
r

−
1
q
<

1
2γ
, (61)

where r ′ is such that 1
r ′ +

1
r = 1 +

1
q (see page 12 in [2]). (61) follows from the scaling property

(19) in the following way: t2

t1
ds∥ργt2−s∥

2
r ′ =

 t2

t1

ds

(t2 − s)2γ


R

dyρr ′

1 (y)(t2 − s)γ
 2

r ′

= C
 t2

t1
ds(t2 − s)2γ (

1
r ′ −1)

< ∞ ⇐⇒ 2γ


1
r ′

− 1

> −1

⇐⇒
1
r

−
1
q
<

1
2γ
. �

Remark 3.1. The extra condition 1
r −

1
q <

1
2γ is automatically satisfied when γ ∈


0, 1

2


. It is

non-empty only when γ ∈


1
2 , 1


.

In the remainder of this section and in the proof of Theorem 3 we will very often make use of
the following simple observation (sometimes without saying it explicitly).

Note 3.1. Let (Ω , µ), (Ω ′, µ′) be two (finite dimensional) measure spaces, f : Ω × Ω ′
→ R a

positive function and m a real number greater than or equal to 1. Suppose

F(y) :=


Ω

dµ(x) f (x, y) < ∞ for a.e. y ∈ Ω and
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Ω ′

dµ′(y)


Ω

dµ(x) f (x, y)

m

< ∞.

Then 
Ω ′

dµ′(y)


Ω

dµ(x) f (x, y)

m

=


Ω ′

dµ′(y)


F(y)m−1


Ω

dµ(x) f (x, y)


=


Ω

dµ(x)

Ω ′

dµ′(y)F(y)m−1 f (x, y)

≤


Ω ′

dµ′(y)F(y)m
m−1

m

Ω

dµ(x)


Ω ′

dµ′(y) f (x, y)m
 1

m

,

having applied Hölder’s inequality with m/(m − 1) and m. Looking at the first line and the last

line of the above equations and dividing both sides by


Ω ′


Ω f

mm−1
m we obtain


Ω ′

dµ′(y)


Ω

dµ(x) f (x, y)

m

≤


Ω

dµ(x)


Ω ′

dµ′(y) f (x, y)m
 1

m
m

. (62)

When (Ω , µ), (Ω ′, µ′) are just R equipped with the Lebesgue measure, the above inequality
reads 

dy


dx f (x, y)

m

≤


dx


dy f (x, y)m

 1
m
m

.

If instead (Ω ′, µ′) is a probability space and (Ω , µ) is the time interval [0, T ] with the Lebesgue
measure, inequality (62) implies that ∀t ∈ [0, T ] and N ≥ 1, we have

E sup
t∈[0,T ]

 t

0
ds f (s)

N ≤ E

 T

0
ds| f (s)|

N ≤ T N sup
s∈[0,T ]

E | f (s)|N . (63)

In the remainder of this section, C is a constant that does not depend on λ or δ, although it
might depend on a positive power of T . Also, in the proofs we assume for simplicity T ≥ 1, even
though all the results are true for any T > 0, and hence they are stated in such generality. Even
if we assumed T ≥ 1, this would not be restrictive in view of the fact that the result that we are
concerned with is a long time result, more specifically T ∼ | log λ| with λ → 0. The case γ =

1
2

is not explicitly considered in Lemmas 4 and 5.

Lemma 4. ∀N ≥ 1, 0 < γ < 1 and ζ ∈


0, 1

2γ


, there exists C > 0 such that

sup
0≤s≤t≤T


E
K (λ,γ )

t,s

N 1
N

≤ CT ζγ λ
1

2γ −1−ζ
, T > 0, λ ∈ (0, 1). (64)

Also, ∀n ≥ 1, N , γ, ζ as above,
E sup

t∈[0,T ]

X (λ,γ )(n) (t)
N 1

N

≤ C


1 + λ
1

2γ −ζ−1


eCT (n+1)(1−γ )

, (65)
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T > 0, λ ∈ (0, 1). Moreover, for the displacement of the center we find
sup

t∈[0,T ],t+τ≤T
E sup

t ′∈[t,t+τ ]

X (λ,γ )(n) (t ′)− X (λ,γ )(n) (t)
N 1

N

≤ C

τ

1
2 + τλ

1
2γ −ζ−1


eCT (n+1)(1−γ )

, (66)

τ, λ ∈ (0, 1) and T > 0.

Proof (Sketch). (64) follows from Lemma 3 and (48), where in Lemma 3 we have chosen
1
r −

1
q =

1
2γ − ζ , ζ ∈


0, 1

2γ


. Having in mind Note 3.1, from (29) and (64), using (63) we

have 
E sup

t∈[0,T ]

F (λ,γ )0 (t)
N 1

N

≤ CT 1+ζγ λ
1

2γ −ζ−1
. (67)

From (30), (64) and (52) we get
sup

t∈[0,T ]

E
F (λ,γ )n (t)

N 1
N

≤ T ζγ T n−nγ λ
1

2γ −ζ−1
, n ≥ 1, (68)

so, again by (63),
E sup

t∈[0,T ]

 t

0
ds F (λ,γ )n (s)

N
 1

N

≤ CT ζγ+1T n−nγ λ
1

2γ −ζ−1
. (69)

Also, from (42) and (52),
sup

t∈[0,T ]

E
Ẏ (λ,γ )(n) (t)

N 1
N

≤ C


sup

t∈[0,T ]


E
F (λ,γ )n (t)

N 1
N

+ · · · + sup
t∈[0,T ]


E
F (λ,γ )2n (t)

N 1
N


+ CT n−γ (n+1)
 T

0
dt


sup

s∈[0,t]
E
Ẏ (λ,γ )(n) (s)

N 1
N

.

By the Gronwall Lemma and (68) we then obtain that ∀n ≥ 1,
sup

t∈[0,T ]

E
Ẏ (λ,γ )(n) (t)

N 1
N

≤ Cλ
1

2γ −ζ−1eCT (n+1)−γ (n+1)
, (70)

and hence
E sup

t∈[0,T ]

 t

0
dsẎ (λ,γ )(n) (s)

N
 1

N

≤ Cλ
1

2γ −ζ−1eCT (n+1)−γ (n+1)
. (71)
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When n = 1, (65) is a straightforward consequence of (37), (67) and (71) and the fact that

E sup
t∈[0,T ]

|b(t)|N
≤ CT

N
2 . (72)

When n > 1, we first rewrite (39) as follows:

X (λ,γ )(n) (t) = b(t)+ F (λ,γ )0 (t)+

 t

0
ds


F (λ,γ )1 + · · · + F (λ,γ )n


(s)

+

 t

0
dsẎ (λ,γ )(n) (s), (73)

and then (65) follows from (67), (72), (69) and (71). By acting in a similar way we find the
following estimates:

sup
t∈[0,T ],t+τ≤T

E sup
t ′∈[t,t+τ ]

F (λ,γ )0 (t ′)− F (λ,γ )0 (t)
N 1

N

≤ Cτ T ζγ λ
1

2γ −1−ζ
,

 sup
t∈[0,T ],t+τ≤T

E sup
t ′∈[t,t+τ ]


 t ′

t
ds F (λ,γ )n (s)


N
 1

N

≤ Cτ T ζγ T n(1−γ )λ
1

2γ −1−ζ
,

 sup
t∈[0,T ],t+τ≤T

E sup
t ′∈[t,t+τ ]


 t ′

t
dsẎ (λ,γ )(n) (s)


N
 1

N

≤ Cτ T ζγ T (2n+1)(1−γ )λ
1

2γ −1−ζ
.

So, recalling that for the BM b(t)

E sup
t ′∈[t,t+τ ]

|b(t ′)− b(t)|N
≤ Cτ

N
2 , (74)

(66) follows. �

Lemma 5. ∀N , n ≥ 1, 0 < γ < 1, ζ ∈


0, 1

2γ


, T > 0, λ, δ ∈ (0, 1) there exists a constant

C > 0 such that
E sup

t∈[δ,T ]

 t

δ

dsK (λ,γ )
s,s−δ

N
 1

N

≤ C

δ1−γ

+ δζλ
1

2γ −ζ−1

δ

1
2 + δλ

1
2γ −ζ−1


eCT (n+1)(1−γ )

, (75)
E sup

t∈[δ,T ]

  t

δ

dsργt−s(0)K
(λ,γ )
s,s−δ

N
 1

N

≤ C

δ1−γ

+ δζλ
1

2γ −ζ−1

δ

1
2 + δλ

1
2γ −ζ−1


eCT (n+1)(1−γ )

, (76)
E sup

t∈[0,T ]

 t

0
dsργt−s(0)K

(λ,γ )

s,0

N
 1

N

≤ Cλ
1
γ

−2ζ−2eCT (n+1)(1−γ )

. (77)
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Moreover, ∀M > 0, we have

sup
s∈[δ,T ]


E
Γ (λ,δ,γ )

s

N  1
N

≤ C

λ

3
4 + λ

1
2γ −

1
4 + λ

M
8


T 1−2γ 1

{0<γ<1/2}
+ δ1−2γ 1

{1/2<γ<1}


eCT (n+1)(1−γ )

, (78)

where 1 is the indicator function and

Γ (λ,δ,γ )
s :=


ϕ(λ)s ,

 s−δ

0
db(s′)ρ

γ

s−s′ϕ
(λ)

s′


−

 s−δ

0
db(s′)ρ

γ

s−s′(0). (79)

Proof. The proof of the bounds (75)–(78) is given by following [2, pages 16–18], so it will not
be very detailed. Recalling (47), we have that ∀n ≥ 1, γ ∈ (0, 1) and for 0 ≤ s ≤ t, K (λ,γ )

t,s can
be expressed as

K (λ,γ )
t,s =


ϕ(λ),

 t

s
db(s′)ρ

γ

t−s′ϕ
(λ)


(80)

+


ϕ
(λ)

λ


X (λ,γ )
(n) (t)−X (λ,γ )

(n) (s)
 − ϕ(λ),

 t

s
db(s′)ρ

γ

t−s′ϕ
(λ)


(81)

+


ϕ
(λ)
t ,

 t

s
db(s′)ρ

γ

t−s′(ϕ
(λ)

s′ − ϕ(λ)s )


. (82)

Observe also that ∀a, b ∈ R and ∀m ≥ 1,

∥ϕb − ϕa∥m ≤ ∥ϕ′
∥m |b − a|, ϕh := ϕ(x − h). (83)

Let us start with proving (77). We decompose K (λ,γ )

s,0 according to the prescription (80)–(82);
recalling the notation (13), the term coming from (81) becomes

ϕ(λ)s − ϕ(λ),

 s

0
db(s′)ρ

γ

s−s′ϕ
(λ)


.

Using Lemma 3, we have
E

ϕ(λ)s − ϕ(λ),

 s

0
db(s′)ρ

γ

s−s′ϕ
(λ)

N
 1

N

≤ sνE∥ϕ(λ)s − ϕ(λ)∥p ∥ϕ(λ)∥r

with r, p and ν to be chosen according to Lemma 3. By (83), (48) and (65), we obtain that

sup
s∈[0,t]


E

ϕ(λ)s − ϕ(λ),

 s

0
db(s′)ρ

γ

s−s′ϕ
(λ)

N
 1

N

≤ Ctνλ
1
p −1

λ
1
r −1λ

1
2γ −ζ−1eCt (n+1)(1−γ )

≤ CeCt (n+1)(1−γ )

tγ ζλ
1
γ

−2ζ−2
,

having chosen 1
r +

1
p − 1 =

1
2γ − ζ . For p′ and q ′ such that 1

p′ +
1
q ′ = 1, we have t

0
dsργt−s(0)


ϕ(λ)s − ϕ(λ),

 s

0
db(s′)ρ

γ

s−s′ϕ
(λ)

N
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≤ C

 t

0

ds

(t − s)γ p′

 N
p′

 t

0
ds

ϕ(λ)s − ϕ(λ),

 s

0
db(s′)ρs−s′ϕ(λ)

q ′
 N

q′

,

and so
E sup

t∈[0,T ]

 t

0
dsργt−s(0)


ϕ(λ)s − ϕ(λ),

 s

0
db(s′)ρ

γ

s−s′ϕ
(λ)

N
 1

N

≤ C

E
 T

0
ds

ϕ(λ)s − ϕ(λ),

 s

0
db(s′)ρs−s′ϕ(λ)

q ′
 N

q′


1
N

≤ C

E


 T

0
ds

ϕ(λ)s − ϕ(λ),

 s

0
db(s′)ρs−s′ϕ(λ)

q ′

N
 1

Nq′

≤ C sup
s∈[0,T ]


E

ϕ(λ)s − ϕ(λ),

 s

0
db(s′)ρs−s′ϕ(λ)

Nq ′
 1

Nq′

≤ Cλ
1
γ

−2ζ−2eCT (n+1)(1−γ )

.

The addends (80) and (82) can be examined in the same way, so we leave this to the reader. We
now very briefly show how to obtain (75). We again decompose K (λ,γ )

s,s−δ according to (80)–(82).
For the term coming from (80), by exchanging the order of integration (which is now allowed)
and integrating by parts, we get

E sup
t∈[δ,T ]

 t

δ

ds


ϕ(λ),

 s

s−δ
db(s′)ρ

γ

s−s′ϕ
(λ)

N
 1

N

≤ C

δ1−γ

+ δ
1
2 δ1−γ


.

For the term coming from (81), we haveE sup
t∈[δ,T ]


 t

δ

ds


ϕ
(λ)

λ


X (λ,γ )
(n) (s)−X (λ,γ )

(n) (s−δ)
 − ϕ(λ),

 s

s−δ
db(s′)ρ

γ

s−s′ϕ
(λ)


N
 1

N

≤ Cδζλ
1

2γ −ζ−1

δ

1
2 + δλ

1
2γ −ζ−1


eCT (n+1)(1−γ )

,

having applied Lemma 3 with the choice 1
r −

1
q =

1
2γ − ζ , ζ ∈


0, 1

2γ


, and (66), as well. In an

analogous way, for the term coming from (82) we obtain
E sup

t∈[δ,T ]

 t

δ

ds


ϕ(λ)s ,

 s

s−δ
db(s′)ρ

γ

s−s′


ϕ
(λ)

s′ − ϕ
(λ)
s−δ

N
 1

N

≤ Cδζλ
1

2γ −ζ−1

δ

1
2 + δλ

1
2γ −ζ−1


eCT (n+1)(1−γ )

.

(76) results from applying the same technique again so we will not present the proof.
In order to prove (78), let us express Γ (λ,δ,γ )

s as

Γ (λ,δ,γ )
s =


dxϕ


x − X (λ,γ )(n) (t)


I (λ,δ,γ )t (x),
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where

I (λ,δ,γ )t (x) :=

 t−δ

0
db(s)


R

dyϕ(y)

ρ
γ
t−s


λ(x − y − X (λ,γ )(n) (s))


− ρ

γ
t−s(0)


.

By a change of variables and using the scaling property (19), we can rewrite as follows:

I (λ,δ,γ )t (x)

=

 t−δ

0
db(s)ργt−s(0)


R

dyϕ(y)

 1
c(γ )

ρ
γ

1

λ


x − y − X (λ,γ )(n) (s)


(t − s)γ

− 1

 ,
where c(γ ) is defined in (20). We now use the bounds (22) and (23). More precisely, setting

z = λ


x − y − X (λ,γ )(n) (s)

/(t − s)γ , we estimate the integrand above in the following way:

ρ
γ

1 (z)

c(γ )
− 1

 ≤ C when |x | > λ−1/8ρ
γ

1 (z)

c(γ )
− 1

 ≤ C |z| when |x | ≤ λ−1/8.

So, following [2, pages 15–16], we apply the Burkholder inequality [16] and we get

E |It (x)|
N

≤ C 1{|x |>λ−1/8}

 t−δ

0

ds

(t − s)2γ


N
2

+ C 1{|x |≤λ−1/8}E


 t−δ

0

ds

(t − s)2γ


R

dyϕ(y)
λ

x − y − X (λ,γ )(n) (s)


(t − s)γ

2


N
2

≤ C1{|x |>λ−1/8}

1
{0<γ<1/2}

t1−2γ
+ 1

{1/2<γ<1}
δ1−2γ

 N
2

+ C1{|x |≤λ−1/8}λ
N


λ−N/8

+ 1 + E sup
s∈[0,T ]

X (λ,γ )(n)

N  t−δ

0

ds

(t − s)4γ


N
2

≤ C1{|x |>λ−1/8}

1
{0<γ<1/2}

t1−2γ
+ 1

{1/2<γ<1}
δ1−2γ

 N
2

+ C1{|x |≤λ−1/8}λ
N

λ−N/8

+ 1 + λ
1

2γ −ζ−1


eCT (n+1)(1−γ )

,

where in the last inequality we have used (65). If we choose ζ = 1/8 in the above, we obtainE



{|x |≤λ−1/8}

ϕ


x − X (λ,γ )(n) (t)


I (λ,δ,γ )t


N


1
N

≤ C ϕ N
N−1

E

{|x |≤λ−1/8}

dx
I (λ,δ,γ )t

N
 1

N

≤ C

λ3/4

+ λ
1

2γ −
1
4


eCT (n+1)(1−γ )

.
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Moreover, for any M > 0 we haveE



{|x |>λ−1/8}

ϕ


x − X (λ,γ )(n) (t)


I (λ,δ,γ )t


N


1
N

≤ λ
M
8

E


{|x |>λ−1/8}

dxϕ


x − X (λ,γ )(n) (t)
 2N

2N−1
(1 + x2)

1
2N−1 |x |

2N M
2N−1

2N−1


1
2N

·

E

{|x |>λ−1/8}

dx

I (λ,δ,γ )t (x)
2N

1 + x2


1

2N

≤ λM/8


1
{0<γ<1/2}

t1−2γ
+ 1

{1/2<γ<1}
δ1−2γ


.

This concludes the proof of (78). �

Lemma 6. ∀0 ≤ s ≤ t , λ ∈ (0, 1), β ∈ (0, 1], n, N ≥ 1 and γ ∈ (0, 1), we haveE


sup

0≤s≤t≤T
(t − s)(1+β)γ

|P(λ,γ )t,s − ρ
γ
t−s(0)|

N
 1

N

≤ Cλβλ
1

2γ −ζ−1eCT (n+1)(1−γ )

. (84)

Also, ∀δ ∈ (0, 1) and for any Q > 0, we have
E sup

t∈[δ,T ]

 t−δ

0
ds|P(λ,γ )t,s − ρ

γ
t−s(0)|

N
 1

N

≤ C

λ

1
2γ −ζ

+ λQ


eCT (n+1)(1−γ )

. (85)

Sketch of Proof. Using the definition of P(λ,γ )t,s (27), by a change of variables and the scaling
property (19), we have

|P(λ,γ )t,s − ρ
γ
t−s(0)| ≤ ρ

γ
t−s(0)


dxdy ϕ(x)ϕ(y)

×

 1
c(γ )

ρ
γ

1

 λ(x − y + X
(λ,γ )

(n)
(t)− X

(λ,γ )

(n)
(s))

(t − s)γ

− 1

 . (86)

From (22), then

|P(λ,γ )t,s − ρ
γ
t−s(0)|

≤ Cργt−s(0)


dxdyϕ(x)ϕ(y)

x − y + X (λ,γ )(n) (t)− X (λ,γ )(n) (s)
β λβ

(t − s)γβ
.

We now want to use (66) in order to conclude; however, (66) holds only for N ≥ 1 whereas β
is in the range β ∈ (0, 1]. We do not want to choose β = 1 (see (109) and comments after it);
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hence we first apply the Young inequality with p =
1
β

and get

|P(λ,γ )t,s − ρ
γ
t−s(0)| ≤ Cργt−s(0)

×


dxdyϕ(x)ϕ(y)


|x | + |y| +

X (λ,γ )(n) (t)− X (λ,γ )(n) (s)
+ 1


λβ

(t − s)γβ
,

and now (84) is a straightforward consequence of (66). To get (85), we use again the bounds (22)

and (23), this time in the following way: setting z = λ


x − y + X (λ,γ )(n) (t)− X (λ,γ )(n) (s)

/(t −

s)γ , we estimate

ρ
γ

1 (z)

c(γ )
− 1

 ≤ C when |x | > λ−1

ρ
γ

1 (z)

c(γ )
− 1

 ≤ C |z| when |x | ≤ λ−1.

So, from (86) we have t−δ

0
ds|P(λ,γ )t,s − ρ

γ
t−s(0)|

≤ C
 t−δ

0

ds

(t − s)2γ


ϕ(x)ϕ(y)1

{|x |≤λ−1}


λ


x + y + X (λ,γ )(n) (t)− X (λ,γ )(n) (s)


+ C
 t−δ

0

ds

(t − s)γ


ϕ(x)ϕ(y)1

{|x |>λ−1}
C

≤ C1
{|x |≤λ−1}

λ

 t−δ

0

ds

(t − s)2γ


C +

X (λ,γ )(n) (t)− X (λ,γ )(n) (s)


+ C1
{|x |>λ−1}

 t−δ

0

ds

(t − s)γ


ϕ(x)|x |

2Q
 1

2


{|x |>λ−1}

ϕ(x)

|x |2Q

 1
2

.

(85) now follows from (65). �

4. Proof of Theorem 3

We recall that C is a positive constant that does not depend on λ and δ, though it might depend
on a positive power of T . Also, for simplicity, all the proofs are presented for T ≥ 1, even though
the statements are clearly still valid for any T > 0. Since it has already been treated in [2], the
case γ = 1/2 is not explicitly considered.

The intuitive idea that motivates the structure of the proof is based on the observation that,
“morally”, things go as if P(λ,γ )t,s were converging to ργt−s(0) as λ → 0 (see Lemma 6); formally,

this can be obtained by thinking that, as λ → 0, ϕ(λ)t → δ0. While such an idea is not hard to
turn into a rigorous argument, one of the main technical difficulties is encountered when trying
to do the same thing to get some intuition as regards what K (λ,γ )

s,0 ought to converge to. If in the

definition of K (λ,γ )

s,0 we replace ϕ(λ)t with δ0 and exchange the order of integration, we find that

K (λ,γ )

s,0 should converge to
 t

0 db(s)ργt−s(0). The problem is that we are not allowed to exchange
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the order of integration (see the comment after (3.5) in [2]) and that
 t

0 db(s)ργt−s(0) is not well

defined as a process in C(R+) when γ ≥
1
2 . In the same way, ∀n ≥ 1, F (λ,γ )n is well defined for

any γ ∈ (0, 1), whereas the object that it converges to is not (see (116) and (45)).
The proof goes as follows. ∀n ≥ 1 we introduce the process ηγ(n)(t), a solution to the equation

η
γ

(n)(t) = Gγ

(n)(t)+ (−1)n+1
 t

0
dsηγ(n)(s)K

∗(n+1)(t − s), 0 < γ <
n

n + 1
(87)

where

Gγ

(n)(t) :=

2n
ν=n

(−1)ν+1
 t

0
db(u)K∗(ν+1)

γ (t − u), n ≥ 1, 0 < γ <
n

n + 1
. (88)

We now observe that Lemma 1 can be applied to ξγ(n), defined in (44), and ηγ(n). In this case

the forcing terms are Aγ(n) and Gγ

(n), respectively, and we can easily prove that they are related

through (57). We can in fact show that the i th addend of Aγ(n) is related to the i th addend of Gγ

(n)
through (57); all we need to show is that ∀ν ∈ 0, . . . , n,

(−1)ν

K∗(ν)
γ ∗ b ∗ K∗(n+1)

γ


(t) = (−1)n+1

 t

0
ds(−1)ν+n+1

 s

0
db(u)K∗(ν+1)

γ (s − u),

which is a straightforward consequence of the definition of K∗(m)
γ given in (25), together with the

following equality:
K∗(n+1)
γ ∗ b


(t) =

 t

0
ds
 s

0
db(u)K∗(n)

γ (s − u), n ≥ 1. (89)

Hence, Lemma 1 gives

(−1)n+1

ξ
γ

(n) ∗ K∗(n+1)
γ


(t) =

 t

0
dsηγ(n)(s). (90)

Recall that the definition of X (λ,γ )(n) is given by (39) for n ≥ 2 and by (37) when n = 1. Using

(90), we look at the difference between X (λ,γ )(n) and ξγ(n):

X (λ,γ )(n) (t)− ξ
γ

(n)(t) = F (λ,γ )0 +

 t

0
dsργt−s(0)b(s) (91a)

+

n−1
j=1

 t

0
ds F (λ,γ )j (s)− (−1) j+1


K∗( j+1)

∗ b

(t)


(91b)

+

 t

0
dsẎ (λ,γ )(n) (s)− (−1)n+1

 t

0
dsξγ(n)(s)K

∗(n+1)(t − s)


(91c)

= F (λ,γ )0 +

 t

0
dsργt−s(0)b(s) (91d)

+

n−1
j=1

 t

0
ds F (λ,γ )j (s)− (−1) j+1


K∗( j+1)

∗ b

(t)


(91e)
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+

 t

0
ds


Ẏ (λ,γ )(n) (s)− η
γ

(n)(s)

, (91f)

where for n = 1 the sum in (91b) (and in (91e)) is understood to be equal to zero. As we have

already said, we want to prove that ∀n ≥ 1, X (λ,γ )(n) converges to ξγ(n) for γ ∈


0, n

n+1


. To this

end, let us further expand the integrand in (91f), using the fact that Ẏ (λ,γ )(n) solves Eq. (42):


Ẏ (λ,γ )(n) − η

γ

(n)


(t) = R(λ,γ )(n) (t)+ (−1)(n+1)

 t

0
ds

Ẏ γλ − ηγ


(s)K∗(n+1)(t − s) (92)

where

R(λ,γ )(n) (t) :=

2n
j=n

F (λ,γ )j (t)− Gγ

(n)(t)

+ (−1)(n+1)
 t

0
ds Ẏ (λ,γ )(n) (s)


P∗(n+1)

t,s − K∗(n+1)(t − s)

, (93)

and Gγ

(n)(t) is defined in (88).

Let δ ∈ (0, 1). From now on we assume that t ≥ δ.

Remark 4.1. We omit to study the case t < δ because it can be treated in the same way as it
is dealt with in [2], where it is presented explicitly; see in particular (3.23), (3.44) and (3.45)
in [2]. In other words, what we actually show is that the estimates in (106), (113)–(117) and
(121) are valid when the supremum is taken over the interval [δ, T ] (more precisely, in the case
of (113)–(117) and (121) the supremum should be over [λa, T ], because at that point δ will have
been chosen to be equal to λa ; see the lines before (117)). Though, by acting as in [2], we can
show that the same estimate holds true when the supremum is taken over the whole interval
[0, T ]. Hence from now on we will assume that t ≥ δ in order to streamline the notation and the
presentation of the proof.

Using the definition of K (λ,γ )

s,0 , we obtain the following decomposition: t

0
dsργt−s(0)K

(λ,γ )

s,0

=

 δ

0
dsργt−s(0)K

(λ,γ )

s,0 +

 t

δ

dsργt−s(0)

ϕ(λ)s ,

 s−δ

0
db(s′)ρ

γ

s−s′ϕ
(λ)

s′


+

 t

δ

dsργt−s(0)

ϕ(λ)s ,

 s

s−δ
db(s′)ρ

γ

s−s′ϕ
(λ)

s′


.

We now use the above decomposition to rewrite the difference between F (λ,γ )1 and t
0 db(s)K∗(2)

γ (t − s). For γ ∈ (0, 1/2),F (λ,γ )1 (t)−

 t

0
db(s)K∗(2)

γ (t − s)

N
=

 t

0
ds P(λ,γ )t,s K (λ,γ )

s,0 −

 t

0
db(s)K∗(2)

γ (t − s)

N (94)
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≤ C

 t

0
ds


P(λ,γ )t,s − ρ
γ
t−s(0)


K (λ,γ )

s,0

N (95)

+ C

 δ

0
dsργt−s(0) K (λ,γ )

s,0

N
+ C

 t

δ

dsργt−s(0)

ϕ(λ)s ,

 s−δ

0
db(s′)ρ

γ

s−s′ϕ
(λ)

s′


−

 t

δ

dsργt−s(0)
 s−δ

0
db(s′)ρ

γ

s−s′(0)

N
+ C

 t

δ

dsργt−s(0)
 s−δ

0
db(s′)ρ

γ

s−s′(0)−

 t

0
db(s)K∗(2)(t − s)

N (96)

+ C

 t

δ

dsργt−s(0)

ϕ(λ)s ,

 s

s−δ
db(s′)ρ

γ

s−s′ϕ
(λ)

s′

N
≤ C

 t

0
ds


P(λ,γ )t,s − ρ
γ
t−s(0)


K (λ,γ )

s,0

N (97)

+ C

 δ

0
dsργt−s(0) K (λ,γ )

s,0

N + C

 t

δ

dsργt−s(0)Γ
(λ,δ,γ )
s

N (98)

+ C

 t

δ

dsργt−s(0)K
(λ,γ )
s,s−δ

N + C
Ψ (δ,γ )

(1) (t)
N , (99)

where in the last inequality we used the definition of Γ (λ,δ,γ )
s given in (79) and we set Ψ (δ,γ )

(1) (t)
to be the difference in (96), namely

Ψ (δ,γ )

(1) (t) :=

 t

δ

dsργt−s(0)
 s−δ

0
db(s′)ρ

γ

s−s′(0)−

 t

0
db(s)K∗(2)(t − s),

γ ∈ (0, 1/2).

For n ≥ 1, we define

Ψ (δ,γ )

(n+1)(t) :=

 t

0
dsργt−s(0)Ψ

(δ,γ )

(n) (s), γ ∈


0,

n

n + 1


. (100)

In the same way, by using (31), (50) and (100), we haveF (λ,γ )2 (t)+

 t

0
db(s)K∗(3)(t − s)

N (101)

≤ C

 t

0
ds
 s

0
ds′ρ

γ

s−s′(0)


P(λ,γ )t,s − ρ
γ
t−s(0)


K (λ,γ )

s′,0

N (102)

+ C

 t

0
dsργt−s(0)

 δ

0
ds′ρ

γ

s−s′(0)K
(λ,γ )

s′,0

N
+ C

 t

0
dsργt−s(0)

 s

δ

ds′ρ
γ

s−s′(0)Γ
(λ,δ,γ )

s′

N (103)
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+ C

 t

0
dsργt−s(0)

 s

δ

ds′ρ
γ

s−s′(0)K
(λ,γ )

s′,s′−δ

N + C
Ψ (δ,γ )

(2) (t)
N . (104)

Remark 4.2. We will show that the terms in (98) and the first addend in (99) (and hence also
the addends in (103) and the first addend in (104)) are small for γ ∈ (0, 1) (see (106), (107) and
(76)). The reason why we need to iterate the equation for X (λ,γ ) and ξγ an infinite number of
times comes from Ψ (δ,γ )

(n) (see (45) and (105)). We will in fact prove that
E sup

t∈[δ,T ]

Ψ (δ,γ )

(n) (t)
N 1

N

≤ Cδn−(n+1)γ . (105)

Also, we will show that (97) is small when γ ∈


0, 1

2


and (102) is small for γ ∈


1
2 , 1


; see

(110) and (113).

Let us now address the points mentioned in Remark 4.2, in the same order in which we listed
them.

For p, q > 1 s.t. p−1
+ q−1

= 1 and pγ < 1, we have δ

0
dsργt−s(0) K (λ,γ )

s,0

N ≤ C

 δ

0

ds

(t − s)pγ


N
p
 δ

0
ds|K (λ,γ )

s,0 |
q


N
q

.

Since t ≥ δ, δ

0

ds

(t − s)pγ ≤

 δ

0

ds

(δ − s)pγ = Cδ1−pγ ,

and hence

E sup
t∈[δ,T ]

 δ

0
dsργt−s(0) K (λ,γ )

s,0

N ≤ Cδ
1−pγ

p N E

 δ

0
ds|K (λ,γ )

s,0 |
q


N
q

≤ Cδ
1−pγ

p N


E

 δ

0
ds|K (λ,γ )

s,0 |
q
N
 1

q

≤ Cδ
1−pγ

p N
δ

N
q sup

s∈[0,T ]


E |K (λ,γ )

s,0 |
Nq
 1

q
,

where in the last inequality we used Note 3.1. If we choose p =
γ+1
2γ and q =

γ+1
1−γ

, by using
(64) we get

E sup
t∈[0,T ]

 δ

0
dsργt−s(0) K (λ,γ )

s,0

N ≤ Cδ1−γ λ
1

2γ −ζ−1
, γ ∈ (0, 1). (106)

By the same sort of trick as was used to get (106), we also get s

δ

ds′ρ
γ

s−s′(0)Γ
(λ,δ,γ )

s′

N ≤ C sup
s′∈[δ,s]


E
Γ (λ,δ,γ )

s′

Nq
 1

q

.

Therefore, using (78), we have

E sup
s∈[δ,T ]

 s

δ

ds′ρ
γ

s−s′(0)Γ
(λ,δ,γ )

s′

N ≤ C

λ

3
4 + λ

1
2γ −

1
4


eCT (n+1)(1−γ )
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+


λ

M
8 (T 1−2γ 1

{0<γ<1/2}
+ δ1−2γ 1

{1/2<γ<1}
)


eCT (n+1)(1−γ )

, γ ∈ (0, 1). (107)

Notice that on the right hand side of the above equation, n appears because X (λ,γ )(n) is contained

in the definition of Γ (λ,δ,γ )
s ; see (78), (47) and the comment after it.

As for the first term in (99) (or the first term in (104)), we just use (76) in Lemma 5. In order to
prove (105), we show in some detail how the estimate for Ψ (λ,γ )

(1) is obtained; the way that one
gets (105) for n ≥ 1 should then be obvious from the definition (100) and using (25). Recalling
that we are assuming that t ≥ δ, using (24) and exchanging the order of integration in the
definition of Ψ (λ,γ )

(1) we have

Ψ(1)(t)
(λ,γ )

=

 t−δ

0
db(s)

 t

s+δ
ds′ρ

γ

t−s′(0)ρ
γ

s′−s(0)−

 t

0
db(s)

 t

s
ds′ρ

γ

t−s′(0)ρ
γ

s′−s(0)

= −

 t−δ

0
db(s)

 s+δ

s
ds′ρ

γ

t−s′(0)ρ
γ

s′−s(0)

−

 t

t−δ
db(s)

 t

s
ds′ρ

γ

t−s′(0)ρ
γ

s′−s(0). (108)

Now we can estimate the two terms in (108) separately. In both cases we first make a further
change of variables and then integrate the stochastic integral by parts. We show how to handle
the first; for the second the procedure is the same: t−δ

0
db(s)

 s+δ

s
ds′ρ

γ

t−s′(0)ρ
γ

s′−s(0)

 =

 t−δ

0
db(s)

 δ

0
duργt−s−u(0)ρ

γ
u (0)


≤

b(t − δ)

 δ

0
duργδ−u(0)ρ

γ
u (0)


+ sup

s∈[0,t−δ]
|b(s)|

 t−δ

0
ds
∂

∂s

 δ

0
duργt−s−u(0)ρ

γ
u (0)


≤

b(t − δ)

 δ

0
duργδ−u(0)ρ

γ
u (0)


+ sup

s∈[0,t−δ]
|b(s)|

 δ

0
duργδ−u(0)ρ

γ
u (0)−

 δ

0
duργt−u(0)ρ

γ
u (0)

 .
Notice now that from (24), δ

0
duργδ−u(0)ρ

γ
u (0) = Cδ1−2γ

and, since t ≥ δ, δ

0
ρ
γ
t−u(0)ρ

γ
u (0) = C

 δ

0

du

(t − u)γ uγ
≤ C

 δ

0

du

(δ − u)γ uγ
=

 δ

0
duργδ−u(0)ρ

γ
u (0).

So, after dealing with the second term in (108) in an analogous way, (105) follows on using (72).
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Let us now turn to (97) and (102). Let β > 0; then for (97), applying the Hölder inequality,
we have t

0
ds


P(λ,γ )t,s − ρ
γ
t−s(0)


K (λ,γ )

s,0

N
≤ sup

0≤s≤t

P(λ,γ )t,s − ρ
γ
t−s(0)

N (t − s)γ (1+β)N


×

 t

0
ds
K (λ,γ )

s,0

p
 N

p
 t

0

ds

(t − s)γ q(1+β)

 N
q

. (109)

Looking at the last integral in (109), we need to impose the integrability condition β < −1+1/γ .
Taking the supremum for t ∈ [0, T ], and the expectation of both sides, using (64) and (84), we

then obtain that for γ ∈


0, 1

2


and for any N ≥ 1,

E sup
t∈[0,T ]

 t

0
ds


P(λ,γ )t,s − ρ
γ
t−s(0)


K (λ,γ )

s,0

N ≤ Cλ
1
γ

−2ζ− 3
2 eCT (n+1)(1−γ )

, (110)

where we have chosen β = 1/2 in (84). We can make such a choice for β because when we study

the difference in (94), and hence (97), we take γ ∈


0, 1

2


; see Remark 4.2. When we consider

(102), we cannot mimic what we have done for (97); in fact from (109) we get that the left hand

side of (110) is bounded by λβ+
1
γ

−ζ−2 exp(CT (n+1)(1−γ )). When we impose the integrability
condition β < −1 + 1/γ and β +

1
γ

− ζ − 2 > 0, β ∈ (0, 1], we find that these two conditions
together cannot be satisfied for all γ ∈ (0, 1) (actually they hold at most for γ ∈ (0, 2/3)). So,

when γ ∈


1
2 , 1


we need to do something else.

 t

0
ds
 s

0
ds′ρ

γ

s−s′(0)


P(λ,γ )t,s − ρ
γ
t−s(0)


K (λ,γ )

s′,0

N (111)

≤ C

 t−δ

0
ds
 s

0
ds′ρ

γ

s−s′(0)
P(λ,γ )t,s − ρ

γ
t−s(0)

 K (λ,γ )

s′,0

N
+ C

 t

t−δ
ds
 s

0
ds′ρ

γ

s−s′(0)
P(λ,γ )t,s − ρ

γ
t−s(0)

 K (λ,γ )

s′,0

N
≤ C sup

s∈[0,T ]

 s

0
ds′ρ

γ

s−s′(0)K
(λ,γ )

s′,0

N

·


sup

t∈[δ,T ]

 t−δ

0
ds
P(λ,γ )t,s − ρ

γ
t−s(0)

+  t

t−δ
ρ
γ
t−s(0)

N

, (112)

where in the last inequality we have used (86) and then (23). By (77) and (85), we then have
E sup

t∈[0,T ]

 t

0
ds
 s

0
ds′ρ

γ

s−s′
(0)

P(λ,γ )t,s
− ρ

γ

t−s
(0)

 K (λ,γ )

s′,0

N
 1

N

≤ Cλ
1

2γ −ζ−1

λ

1
2γ −ζ

+ δ
1−γ


e

CT (n+1)(1−γ )

. (113)
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If in (105), (106), (107) and (76) we choose δ = λ and M > 0, recalling (110) we have that for

γ ∈


0, 1

2


and ∀N ≥ 1, ∃b(γ ) > 0 s.t.


E sup

t∈[0,T ]

F (λ,γ )1 (t)−

 t

0
db(s)K∗(2)

γ (t − s)

N
 1

N

≤ Cλb(γ )eCT 2(1−γ )

. (114)

Via (31) and (50), this implies that for n ≥ 1, γ ∈


0, 1

2


and ∀N ≥ 1, ∃ b(γ ) > 0 s.t.


E sup

t∈[0,T ]

F (λ,γ )n (t)− (−1)(n+1)
 t

0
db(s)K∗(n+1)

γ (t − s)

N
 1

N

≤ Cλb(γ )eCT 2(1−γ )

. (115)

On the other hand, if in (105)–(107) and (76) we choose δ = λa , with a =
2γ−1

2γ (1−γ )
, and

M >
4(2γ−1)2

γ (1−γ )
, recalling (113), we find that ∀n ≥ 2, 1

2 < γ < n
n+1 and N ≥ 1, ∃ l(γ ) > 0

s.t. 
E sup

t∈[0,T ]

F (λ,γ )n (t)− (−1)(n+1)
 t

0
db(s)K∗(n+1)(t − s)

N
 1

N

≤ Cλl(γ )eCT (n+1)(1−γ )

. (116)

Note 4.1. We want to stress that the above estimate (116) is needed only for n ≥ 2 and
1
2 < γ < n

n+1 , whereas (115) is valid for any n ≥ 1 and γ ∈


0, 1

2


. In other words we

will not need an estimate on
F (λ,γ )1 (t)−

 t
0 db(s)K∗(2)

γ (t − s)
 for γ > 1

2 .

Set now

Ψ(0)(t)
(δ,γ )

:=

 t

0
dsb(s)ργt−s(0)−

 t

δ

ds
 s−δ

0
db(s′)ρ

γ

s−s′(0);

then F (λ,γ )0 +

 t

0
dsb(s)ργt−s(0)

N
≤ C

 δ

0
dsK (λ)

s,0

N + C

 t

δ

dsΓ (λ,δ,γ )
s

N + C

 t

δ

dsK (λ,γ )
s,s−δ

N + C
Ψ(0)(t)

(δ,γ )
N .

It is easy to prove that
E sup

t∈[δ,T ]

Ψ(0)(t)
(δ,γ )

N 1
N

≤ Cδ1/2.

So by (64), (78) and (75), on choosing again δ = λa, a = 1
{0<γ<1/2}

+
2γ−1

2γ (1−γ )
1

{1/2<γ<1}
and

M > 0 · 1
{0<γ<1/2}

+
4(2γ−1)2

γ (1−γ )
1

{1/2<γ<1}
, we get that ∀n ≥ 1, 0 < γ < n

n+1 and ∀N ≥ 1,
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∃ m(γ ) > 0 s.t.


E sup

t∈[0,T ]

F (λ,γ )0 (t)−

 t

0
dsb(s)ργt−s(0)

N
 1

N

≤ Cλm(γ )eCT (n+1)(1−γ )

. (117)

We will also need the following estimate:


E sup

t∈[δ,T ]

 t

0
dsΨ (δ,γ )

(n) (s)

N
 1

N

≤ Cδ(n+1)(1−γ ). (118)

This inequality can be worked out with calculations analogous to those needed to obtain (105),
and hence we omit them; roughly speaking, looking at (105), (118) is correct thanks to the further
integration. Also, it is what one would expect in view of the fact that

 t
0 dsb(s)K∗(n+1)(t − s) is

defined for any γ ∈ (0, 1), as opposed to
 t

0 db(s)K∗(n+1)(t − s). With this remark in mind, it is
easily seen that, with the same steps as led to an estimate onF (λ,γ )n (t)− (−1)(n+1)

 t

0
db(s)K∗(n+1)(t − s)

 ,
using this time (113) and (118), we have that ∀n ≥ 1, γ ∈


0, n

n+1


and ∀N ≥ 1,

∃τ = τ(γ, N ) > 0 s.t.

lim
λ→0

E sup

t≤τ |log λ|
1

(n+1)(1−γ )

 t

0
F (λ,γ )n (s)− (−1)(n+1)

 t

0
ds b(s)K∗(n+1)(t − s)

N
= 0. (119)

The last ingredient that we will need in order to conclude is the following estimate: ∀n ≥ 1,
γ ∈ (0, n

n+1 ) and ∀N ≥ 1, ∃ d(γ ) > 0 s.t.


E sup

t∈[0,T ]

 t

0
ds Ẏ (λ,γ )(n) (s)


P∗(n+1)

t,s − K∗(n+1)(t − s)
N

 1
N

≤ Cλd(γ )eCT (n+1)(1−γ )

, (120)

which is obtained by combining (84) and (71) when n = 1; when n ≥ 2, we act like in
(111)–(112) and then use (85) and (71).

From the definition of R(λ,γ )(n) given in (93), using (115), (116) and (120), it is straightforward to

see that ∃ d̃(γ ) > 0 s.t.


E sup

t∈[0,T ]

R(λ,γ )(n) (t)
N 1

N

≤ Cλd̃(γ )eCT (n+1)(1−γ )

, (121)
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for any n ≥ 1, γ ∈


0, n

n+1


and N ≥ 1. Hence, the Gronwall Lemma applied to (92) gives that

∀n ≥ 1, γ ∈


0, n

n+1


and N ≥ 1, ∃τ = τ(γ, N ) > 0 s.t.

lim
λ→0

E sup

t≤τ | ln λ|
1

(n+1)(1−γ )

Ẏ γλ − ηγ

(t)
N = 0. (122)

Finally, looking at (91d)–(91f), thanks to (117), (119) and (122), Theorem 3 is proven.

5. Proof of Theorem 2

In the diffusive case, the integral equation (2) is explicitly solvable. To our knowledge, (14)
cannot be solved for γ ≠

1
2 . However, considering the associated Green function, that is, the

solution of

Fγ (t) = 1 −

 t

0
dsργt−s(0)F

γ (s), 0 < γ < 1, (123)

one gets

ξγ (t) =

 t

0
db(s)Fγ (t − s), 0 < γ < 1. (124)

Notice that the theory of Volterra integral equations for kernels with bounded iterates implies that
the solution to (123) is unique, as commented at the beginning of Section 3, after the statement
of Lemma 1.

Lemma 7. For any 0 < γ < 1, the following holds:

lim
t→∞

t1−γ Fγ (t) =
sin(πγ )
πc(γ )

, (125)

where c(γ ) is defined in (20).

Remark 5.1. Since c(1/2) = (2π)−1/2, Lemma 7 is an extension of Theorem 2.2 in [2]. When
γ = 1/2, it provides an alternative proof of such a theorem.

Proof of Lemma 7. By taking the Laplace transform of (123) we obtain that the Green function
Fγ has the Laplace transform

(Fγ )#(µ) =
µ−γ

µ1−γ + c(γ )Γ (1 − γ )
. (126)

Provided that Fγ (t) is monotone decreasing, the Tauberian theorem for densities (see e.g. [7])
gives

lim
t→∞

t1−γ Fγ (t) =
1

Γ (γ )
lim
µ→0

µγ (Fγ )#(µ).

Therefore the only thing that we need to show is that Fγ (t) is monotone decreasing. We recall
that a function is completely monotone if and only if its even derivatives are positive and the
odd ones are negative. Furthermore, a function is the Laplace transform of a positive measure if
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and only if it is completely monotone (see again [7]). We think of d Fγ (t) as an (a priori signed)
measure on R+ and introduce

Φ#(µ) := −


∞

0
e−µt d Fγ (t) = 1 − µ(Fγ )#(µ).

By (126) we have

Φ#(µ) =
c(γ )Γ (1 − γ )

µ1−γ + c(γ )Γ (1 − γ )
.

The function (0,∞) ∋ µ −→ µ1−γ is positive and has completely monotone derivatives. For
A > 0 the function (0,∞) ∋ x −→ A(A + x)−1 is completely monotone. Hence (see [7]), the
function Φ#(µ) is completely monotone and we are done. �

Proof of Theorem 2. By (124) we get

E

ξγ (t)

2
=

 t

0
(Fγ (s))2ds,

so (15) is straightforward. In order to prove the invariance principle in Theorem 1, we first need
to prove tightness of the process ξγϵ (t). From (124) to (125) a few computations show that for

each γ ∈


1
2 , 1


there exists a constant C = C(γ ) such that

lim
ϵ→0

E(ξγϵ (t)− ξγϵ (s))
2

≤ C(t − s)2γ−1.

Since ξγϵ is a Gaussian process, we can first obtain a bound on the higher moments, thus
getting tightness from Kolmogorov’s criterion. Finally, the convergence of the finite dimensional
distributions follows from the convergence of the covariance, deduced from (124) to (125). �

Acknowledgments
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Appendix A. Existence and uniqueness

In this section we sketch the proof of the existence, uniqueness and continuity of the solution
of the system (32).

Theorem 4. Let B be the Banach space of vectors (X, h) ∈ R × L2(R) with the norm

∥(X, h)∥B :=


|X |2 + ∥h∥

2
2.

Let us consider the following Cauchy problem with initial datum (X0, h0) ∈ B:
X (t) = X0 + b(t)+

 t

0
ds Υ(X (s), h(s))

h(t) = ρ
γ
t h0 −

 t

0
db(s)ργt−sϕX (s) −

 t

0
ds Υ(X (s), h(s))ργt−sϕX (s),

(127)
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where Υ : B → R is bounded and globally Lipschitz; recall that ϕ is a probability density in the
Schwartz class of test functions and ϕX = ϕ(x − X).

Then for any (X0, h0) ∈ B there exists a unique solution to (127); such a solution, (X (t), h(t)),
belongs to C(R+; B) and is such that

sup
t∈[0,T ]

E∥(X (t), h(t))∥2
B < ∞ ∀T > 0. (128)

Uniqueness holds in the following sense: if (X̄(t), h̄(t)) is another continuous solution
satisfying (128), then

P


sup

t∈[0,T ]

∥(X (t), h(t))− (X̄(t), h̄(t))∥2
B = 0


= 1 ∀T > 0.

Proof. We prove existence by Picard iterations, uniqueness by using the Gronwall Lemma and
continuity by using Kolmogorov’s criterion. For the time being, ργt is either (16) or (18), so
γ ∈ (0, 1).

Existence: construct the sequence {(X (n)(t), h(n)(t))} such that (X (0)t , h(0)t ) = (X0, ρ
γ
t h0) and,

for n ≥ 1,
X (n)(t) = X0 + b(t)+

 t

0
ds Υ(X (n−1)(s), h(n−1)(s))

h(n)(t) = ρt h0 −

 t

0
db(s)ργt−sϕX (n−1)(s) −

 t

0
dsργt−sβ(X

(n−1)(s), h(n−1)(s)),

where we set β(X, h) := Υ(X, h)ϕX ; notice that for a suitable constant K > 1 we have

|Υ(X, h)|2 + ∥β(X, h)∥2
2 + ∥ϕX∥

2
2 ≤ K

|Υ(X, h)− Υ(Y, g)| + ∥β(X, h)− β(Y, g)∥2 + ∥ϕX − ϕY ∥2 ≤ K∥(X, h)− (Y, g)∥B,

for any (X, h) and (Y, g) in B. Hence

E∥(X (1)(t), h(1)(t))− (X (0)(t), h(0)(t))∥2
B ≤ 2K 2


t + t2


;

moreover, by the Cauchy–Schwarz inequality,

E |X
(n+1)

(t)− X
(n)
(t)|2 ≤ t

 t

0
ds E |Υ(X

(n)
(s), h

(n)
(s))− Υ(X

(n−1)
(s), h

(n−1)
(s))|2,

for n ≥ 1. Similarly,

E∥h(n+1)(t)− h(n)(t)∥2
2 ≤ 2E

 t

0
ds
ργt−s[ϕX (n)(s) − ϕX (n−1)(s)]

2
2

+ 2t E
 t

0
ds∥ργt−s[Υ(X

(n)(s), h(n)(s))− Υ(X (n−1)(s), h(n−1)(s))]∥2
2.

As ργt is a probability density, and because ∥ρ
γ
t ϕ∥2 ≤ ∥ρ

γ
t ∥1∥ϕ∥2, ργt is contractive on L2(R);

therefore

E∥(X (n+1)(t), h(n+1)(t))− (X (n)(t), h(n)(t))∥2
B

≤ 2K 2(1 + t)
 t

0
ds E∥(X (n)(s), h(n)(s))− (X (n−1)(s), h(n−1)(s))∥2

B .
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Iterating, we end up with

E∥(X (n+1)(t), h(n+1)(t))− (X (n)(t), h(n)(t))∥2
B ≤

[2K 2(t + t2)]n+1

n!
,

which gives uniform convergence on compacts [0, T ] of the sequence

X (n)(t), h(n)(t)


to a

limiting process, (X (t), h(t)). Such a process is therefore an Ft -adapted solution to (127).

Uniqueness: by what we have done so far, it is clear that one can find a suitable c(t) uniformly
bounded on compacts such that if


X̄(t), h̄(t)


is another solution, then

E∥(X (t), h(t))− (X̄(t), h̄(t))∥2
B ≤ c(t)

 t

0
ds E∥(X (t), h(t))− (X̄(t), h̄(t))∥2

B,

and hence uniqueness follows by the Gronwall Lemma; (128) is then a consequence of continuity,
which we are going to prove.

Continuity: as b(t) is a.s. continuous and β(X, h) bounded, X (t) is a.s. continuous. In order to
prove continuity for h(t) we first need to prove that for any g ∈ L2(R),

lim
t→0

∥ρ
γ
t g − g∥2 = 0.

In fact, using the scaling property of the kernel and the Jensen inequality (weighted version), we
get

∥ρ
γ
t g − g∥

2
2 =


R

dx


R

dwργ1 (w)

g(x − wtγ )− g(x)

2

≤


R

dx


R
dwργ1 (w)


g(x − wtγ )− g(x)

2
=


R

dwργ1 (w) ∥Twtγ g − g∥
2
2

where Tτ , τ ∈ R, is the translation (Tτ g)(x) = g(x − τ). Let us study the integrand:

∥Tτ g − g∥
2
2 = C∥Tτ g − ĝ∥

2
2 =


R

dξ |e−iξτ ĝ(ξ)− ĝ(ξ)|2

⇒ limt→0 ∥Twtγ g − g∥
2
2 = 0 for a.e. w and

ρ
γ

1 (w) ∥Twtγ g − g∥
2
2 ≤ Cργ1 (w)∥g∥

2
2 ∈ L1(R),

so we can apply the dominated convergence theorem and conclude.
We are left with the continuity of k(t) := h(t)− ρ

γ
t h0.

−k(t + δ)+ k(t) =

 t

0
db(s) (ργt+δ−s − ρ

γ
t−s)ϕX (s) +

 t+δ

t
db(s) ργt+δ−sϕX (s)

+

 t

0
ds Υ(X (s), h(s)) (ργt+δ−s − ρ

γ
t−s)ϕX (s)

+

 t+δ

t
ds Υ(X (s), h(s)) ργt+δ−sϕX (s).

From now on we treat the cases 0 < γ < 1
2 and 1

2 < γ < 1 separately.
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Let us start with the superdiffusion:

E∥k(t + δ)− k(t)∥4
2 ≤ C(A1 + A2 + A3 + A4),

where

A1 := E

 t

0
ds (ργt+δ−s − ρ

γ
t−s)ϕX (s)

4

2
,

A2 := E

 t+δ

t
ds ργt+δ−sϕX (s)

4

2
,

A3 := E

 t

0
db(s) (ργt+δ−s − ρ

γ
t−s)ϕX (s)

4

2
,

A4 := E

 t+δ

t
db(s) ργt+δ−sϕX (s)

4

2
.

We need to estimate all the above terms:

A1 ≤ C E

 t

0
ds∥(ργt+δ−s − ρ

γ
t−s)ϕX (s)∥2

4

= C E

 t

0
ds∥(ργs+δ − ρ

γ
s )ϕ∥2

4

= C E

 t

0
ds


R

dx


R

dzργ1 (z)[ϕ(x − z(s + δ)γ )− ϕ(x − zsγ )]

2
 1

2
4

≤ C E

 t

0
ds


R
dzργ1 (z)∥ϕz(s+δ)γ − ϕzsγ ∥2

4

≤ C E

 t

0
ds


R
dzργ1 (z)|z|δ

γ

4

≤ Ct4δ4γ ,

having used the scaling property (19) and (83).

A2 ≤ E


R

dxδ
 t+δ

t
(ρ
γ
t+δ−sϕX (s))

2ds

2

= δ2 E

 δ

0
ds∥ργs ϕX (t+δ−s)∥

2
2

2

≤ Cδ4,

having used the Cauchy–Schwartz inequality and the contractivity.

In order to find estimates for the last two terms, let us choose ψ(x) =
√

1 + |x | so that
∀ f ∈ L2(R), ∥ f ∥

4
2 ≤ ∥ψ−2

∥
2
2∥ fψ∥

4
4. Hence, via the Burkholder inequality and again

Cauchy–Schwartz, we get

A3 ≤ ∥ψ−2
∥

2
2 E

 t

0
db(s)ψ(ργt+δ−s − ρ

γ
t−s)ϕX (s)

4

4

≤ C E

 t

0
ds

ψ(ρ

γ
t+δ−s − ρ

γ
t−s)ϕX (s)

22

2
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≤ Ct
 t

0
ds E


R

dx ψ(x + X (s))4

(ρ
γ
t+δ−s − ρ

γ
t−s)ϕ

4
(x)

≤ Ct


1 + E sup

u∈[0,t]
|X (u)|2

 t

0
ds∥ψ(ργs+δ − ρ

γ
s )ϕ∥

4
4,

having used ψ(x + X)4 ≤ (1 + |X |
2)ψ4(x). Let us look at the integrand: since ψ(x) ≤

ψ(y)+
√

|x − y|, we have

∥ψ(ρ
γ
s+δ − ρ

γ
s )ϕ∥

4
4 ≤ C∥(ρ

γ
s+δ − ρ

γ
s )(ψϕ)∥

4
4 (129)

+ C


R
dx


R

dy(ργs+δ(x − y)− ρ
γ
s (x − y))


|x − y|ϕ(y)

4

. (130)

The first addend can be estimated similarly to what we have done for A1, so we get

∥(ρ
γ
s+δ − ρ

γ
s )(ψϕ)∥

4
4 ≤ Cδ4γ

;

for the second, after applying Cauchy–Schwartz on the integrand, we find

(130) ≤ C


R
dx


R

dy(ργs+δ − ρ
γ
s )(x − y) |x − y|

2

×


R

dy(ργs+δ − ρ
γ
s )(x − y)ϕ2(y)

2


≤ C


R

dzργ1 (z)|z|((s + δ)γ − sγ )

2

∥(ρ
γ
s+δ − ρ

γ
s )ϕ

2
∥

2
2 ≤ Cδ4γ ,

and we end up with

A3 ≤ Ct2


1 + E sup

u∈[0,T ]

|X (u)|2

δ4γ .

For A4, analogously,

A4 ≤ Cδ


1 + E sup

u∈[0,T ]

|X (u)|2
 δ

0
ds∥ψργs ϕ∥

4
4

≤ Cδ


1 + E sup

u∈[0,T ]

|X (u)|2


×

 δ

0
ds


∥ψϕ∥

4
4 +


R

dx


R

dyργs (x − y)


|x − y|ϕ(y)

4

.

Now the integral on the second line is estimated from above by δ

0
ds


∥ψϕ∥

4
4 +


R

dzργs (z)|z|

2

∥ρ
γ
s ϕ

2
∥

2
2


,

and so

A4 ≤ Cδ2


1 + E sup

u∈[0,T ]

|X (u)|2

.
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Proving continuity in the subdiffusive case is slightly more delicate; let us write

E∥k(t + δ)− k(t)∥2N
2 ≤ C(A1 + A2 + A3 + A4),

where N = N (γ ) is to be specified in the following and

A1 := E

 t

0
ds (ργt+δ−s − ρ

γ
t−s)ϕX (s)

2N

2
,

A2 := E

 t+δ

t
ds ργt+δ−sϕX (s)

2N

2
,

A3 := E

 t

0
db(s) (ργt+δ−s − ρt−s)ϕX (s)

2N

2
,

A4 := E

 t+δ

t
db(s) ργt+δ−sϕX (s)

2N

2
.

For A2,

A2 ≤ Cδ2N
 δ

0
∥ρ

γ
s ϕ∥

2
2

2N

≤ C δ4N ,

so we need N > 1
4 .

For A3, let us choose again ψ(x) =
√

1 + |x | as an auxiliary function; then ∀N > 0,
∥ψ−2

∥
N

N
N−1

< ∞ and ∀ f ∈ L2(R), ∥ f ∥
2N
2 ≤ ∥ψ−2

∥
N

N
N−1

∥ fψ∥
2N
2N . Via the Burkholder

inequality, using ψ2N (x + X) ≤ C (1 + |X (u)|N )ψ2N (x) and working as we did for A3, we
get

A3 ≤ C E

 t

0
ds ψ2

[(ρ
γ
t+δ−s − ρ

γ
t−s)ϕX (s)]

2
N

N
(131)

≤ C t N−1


1 + E sup

u∈[0,t]
|X (u)|N

 t

0
ds


R
dx ψ2N (x)

(ργs+δ − ρ
γ
s )ϕ

2N
(x)

≤ C t N−1


1 + E sup

u∈[0,t]
|X (u)|N

 t

0
ds


R
dx

ψ(x)  s+δ

s
dτρ′γ

τ ϕ

2N

≤ C t N−1


1 + E sup

u∈[0,t]
|X (u)|N



×

 t

0
ds


R
dx

ψ(x)  s+δ

s
dτ

d

dτ

 τ

0
du

ρ
γ
u ϕ

′′

(τ − u)1−2γ

2N

= C t N−1


1 + E sup

u∈[0,t]
|X (u)|N



×

 t

0
ds


R
dx

ψ(x)  s+δ

0

du ργu ϕ′′

(s + δ − u)1−2γ −

 s

0

du ργu ϕ′′

(s − u)1−2γ

2N

≤ C t N−1


1 + E sup

u∈[0,t]
|X (u)|N


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×

 t

0
ds


R
dx

ψ(x)  s

0
duργu ϕ

′′


1

(s + δ − u)1−2γ −
1

(s − u)1−2γ


2N

+

 t

0
ds


R
dx

ψ(x)  s+δ

s
du

ρ
γ
u ϕ

′′

(s + δ − u)1−2γ

2N


≤ C t N−1


1 + E sup

u∈[0,t]
|X (u)|N


[A3a + A3b], (132)

where

A3a =

 t

0
ds


R
dx

 s

0
du


1

(s + δ − u)1−2γ −
1

(s − u)1−2γ


ρ
γ
u ϕ

′′ψ

2N

+

 t

0
ds


R
dx

 s

0
du


1

(s + δ − u)1−2γ −
1

(s − u)1−2γ


×


R

dyργu (x − y)ϕ′′(y)


|x − y|

2N

A3b =

 t

0
ds


R
dx

 s+δ

s
du

1

(s + δ − u)1−2γ ρ
γ
u ϕ

′′ψ

2N

+

 t

0
ds


R
dx

 s+δ

s
du

1

(s + δ − u)1−2γ


R

dyργu (x − y)ϕ′′(y)


|x − y|

2N

.

We claim that
R

dx

 max
0≤u≤s+δ

(ρ
γ
u ϕ

′′ψ)(x)

2N

< ∞,
R

dx

 max
0≤u≤s+δ

(ρ
γ
u (·)

√
· ∗ ϕ′′)(x)

2N

< ∞.

Indeed, ργu ϕ′′ψ is continuous in u, so the maximum in (132)1 is attained at, say, ũ and
∥ρ

γ

ũ ϕ
′′ψ∥

2N
2N ≤ C . The maximum in (132)2 is reached at the second extremum (s + δ); in

fact 
R

dx


R

dyργu (x − y)


|x − y|ϕ′′(y)

2N

≤ C


R
dx


R

dzργ1 (z)|z|
N uγ

2N

.

Therefore,

A3a ≤ C
 t

0
ds

 s

0
du


1

(s + δ − u)1−2γ −
1

(s − u)1−2γ

2N

= C(t)δ(1−2γ )2N ,

with C(t) bounded on compacts and

A3b ≤ C
 t

0
ds

 s+δ

s
du

1

(s + δ − u)1−2γ

2N

= Ctδ4Nγ .
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In order to apply the Kolmogorov criterion we need 4Nγ > 1 and (1 − 2γ )2N > 1. For A1 and
A4,

A1 ≤ C

 t

0
dsψ(x)(ργt+δ−s − ρ

γ
t−s)ϕX (s)

2N

2N

≤ Ct2N−1 E


R
dx
 t

0
ds|ψ(x)(ργt+δ−s − ρ

γ
t−s)ϕX (s)|

2N ,

which is exactly (131).

A4 ≤ C


1 + E sup

u∈[0,t]
|X (u)|2N


δ2N−1

 δ

0
∥ψρ

γ
s ϕ∥

2N
2N ;

with analogous calculations, the integrand on the right hand side is bounded, and hence

A4 ≤ C


1 + E sup

u∈[0,t]
|X (u)|2N


δ2N .

To conclude, requiring
N ≥

1
2(1 − 2γ )

if γ ≥
1
4

N ≥
1

4γ
if γ ≤

1
4
,

continuity follows. �

Appendix B. Motivation

In the introduction we have briefly discussed the choice of the operators of fractional
differentiation and of the fractional Laplacian. In this appendix, we want to show how the
operators Dγ

t and I γt naturally arise in the context of anomalous diffusion and explain in some
more detail the link with CTRWs.

We want to determine an operator A s.t.
∂tρ

γ
t (x) = A ργt (x)

ρ
γ
t (0) = δ0,

with ργ (t, x) enjoying the following three properties:
R

dxργt (x) = 1,


R
dxργt (x) x = 0 and


R

dxργt (x) x2
∼ t2γ (133)

(notice that for γ =
1
2 we recover the diffusion equation with A = ∆). We recall that f̂ , f #

and f̃ denote the Fourier, the Laplace and the Fourier–Laplace transforms of the function f ,
respectively.

By (133), the following must hold:

ρ̂
γ
t (k) = 1 −

1
2

ct2γ k2
+ o(k2) and

ρ̃γ (µ, k) =
1
µ

−
ck2

2µ2γ+1 Γ (2γ + 1) =
1
µ
(1 − c1µ

−2γ k2),



M. Ottobre / Stochastic Processes and their Applications 122 (2012) 844–884 883

where c1 =
1
2 cΓ (2γ + 1). In definitions (7) and (8) the constant c1 should appear; we just set it

equal to 1 both for simplicity and because we are not interested, in this context, in estimating the
“anomalous diffusion” constant.

We can assume that the expression for ρ̃γ (µ, k) is valid in the regime µ−2γ k2
≪ 1. Actually,

condition (133)3 is meant for an infinitely wide system and for long times. In other words, if Λ
is the region where the particle moves, we claim that

lim
t→∞

lim
Λ→R


Λ dxργt (x) x2

t2γ = const.

This means that we are interested in the case k ≪ µ. Of course one can in principle find an
infinite number of functions s.t. ρ̃γ (µ, k) =

1
µ
(1 − c1ϵ) for ϵ = µ−2γ k2. One possible choice is

ρ̃γ (µ, k) =
1

µ(1 + c1ϵ)
= µγ−1 µγ

µ2γ + (c1k)2
=

1

µ+ c1k2µ1−2γ , (134)

which leads to an integro-differential equation and, when γ =
1
2 , it coincides with the

Fourier–Laplace transform of a Gaussian density.

We now find the operator whose fundamental solution is ρ̃γ (µ, k). We have

L(∂t ρ̂
γ (·, k))(µ) = −1 + µρ̃γ (µ, k) = −c1k2µ1−2γ ρ̃γ (µ, k).

Let p = 2γ − 1 and φp(t) =
t p−1

Γ (p) ; then we need to distinguish two cases in order to study the
right hand side of the above equation:

when 0 < γ < 1
2 one can easily check that

L(φp ∗ ρ̂γ (k, ·)) = ρ̃γ (µ, k)µ−p

which implies that

ρ̃γ (µ, k)µ1−2γ is the Laplace transform of
1

Γ (2γ − 1)

 t

0
ds

ρ̂γ (s, k)

(t − s)2−2γ ;

when 1
2 < γ < 1, instead, a straightforward calculation shows that

L[∂t (φp+1 ∗ ρ̂γ (k, ·))] = ρ̃γ (µ, k)µ−p

and so

ρ̃γ (µ, k)µ1−2γ is the Laplace transform of
1

Γ (2γ )
d

dt

 t

0
ds

ρ̂γ (s, k)

(t − s)1−2γ .

Finally, taking the inverse Fourier transform, we get that ργ (t, x) satisfies (7) when 0 < γ < 1
2

and (8) when 1
2 < γ < 1. Moreover, the explicit expression for ργt (x) holds true: by (134) we

get that

ρ̃γ (µ, k) =


R

dx eikx µ
γ−1

2
√

c1
e
−

µγ
√

c1
|x |

and hence

ρ#(x, µ) =
µγ−1

2
√

c1
e
−

µγ
√

c1
|x |
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and now, by the inverse Laplace formula, we obtain (16). Obviously, the expression (16) has been
deduced after having chosen (134) among all possible candidates for ρ̃γ and this choice can now
be justified in view of the link with CTRWs.
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