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Abstract

We study kink (domain wall) solutions in a model consisting of two complex scalar fields coupled to two independent Abelian
gauge fields in a Lagrangian that hdsl) x U (1) gauge plusZ, discrete symmetry. We find consistent solutions such that
while theU (1) symmetries of the fields are preserved while in their respective vacua, they are broken on the domain wall. The
gauge field solutions show that the domain wall is sandwiched between domains with constant magnetic fields.

0 2003 Elsevier B.\MOpen access under CC BY license.

1. Introduction kinks will be our primary object of study. A similar
model, without the discrete exchange symmetry was
Over the last thirty years or so, the study of soli- Studied some-time ago by Witten [1] in the context of
tonic solutions to classical field theories has yielded a superconducting string solution. The model was in-
many interesting results of wide relevance to parti- vestigated in more detail by MacKenzie [2] to show
cle physics, cosmology and condensed matter physics.that while a symmetry is preserved in the vacuum, un-
The more recent fascination with brane-world models expected topological structures can arise in the interior
of particle physics and cosmology has added new mo- of a domain wall. More recently, Lemperiere and Shel-
tivation for these kinds of investigations. In this Letter lard [3] have reported on the behavior and stability of
we will study a simple model of two complex scalar or  the superconducting currents in Witten'’s model.
Higgs fieldsg; andg, coupling to two different/ (1) Our own motivation for this rather abstract inves-
gauge fieldsd1, and Az, with the added feature of  tigation lies with the symmetry breaking mechanism
an exact discret&, symmetry under the interchange proposed in Ref. [4] in the context of brane-world
1 < 2. We will derive solutions to the coupled classi- models and dubbed as the “clash of symmetries”.
cal field equations that exhibit a kink or domain wall Briefly, Ref. [4] examines a toy model with Higgs
form for the scalar fields. The nature of the gauge field fields in three triplet representations oflabal SU(3)

configurations self-consistently coupled to the Higgs Symmetry, where a discrete permutation symmetry be-
tween the triplets is enforced. Omitting inessential
- @oh 4 0.S.R ) complications, the vacuum states of the theory sponta-
-mail addresses: rozowsky@phy.syr.edu (J.S. Rozowsky), _
r.volkas@physics.unimelb.edu.au (R.R. Volkas), wali@phy.syr.edu neOUS|y breal&J.(3) dOWﬂ_ to(2), as well as .spon
(K.C. Wall). taneously breaking the discrete symmetry. Kink solu-
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tions are derived that interpolate between vacua in- U(1) gauge fieldsA; 2. To the overallU (1) x U(1)
variant underlifferently embedded SU(2) subgroups. gauge symmetry we add Z, discrete symmetry
For instance, one can havespin asymptotically pre-  which interchanges the scalagg, <> ¢» and the gauge
served on one side of a domain wall, with-spin fields, A1 < A. The discrete symmetry makes the
on the other. Although the unbroken subgroups on two gauge coupling constants equal in magnitude. The
both sides are isomorphic, the different embeddings Lagrangian is

within the parent group cause additional symmetry 1

v 1 v
breakdown at all non-asymptotic points. This addi- £=—7 1Y Fy — 2 Y Fouy + (DY 1) (D1¢1)
tional symmetry breaking is the “clash”. The idea is ©
that some of the symmetry breaking we see in our uni- + (D5 ¢2)" (Daug2) — V (91, 92), (2.1)

verse might be due to such a clash, if our world is in- where
deed a brane in a higher-dimensional space. 2
This idea is still at the developmental stage; no V(1. ¢2) = 21(d1¢1+ ¢3d2 — v°)" + A2 d1¢5 2.
realistic brane-world model building using the clash (2.2)
mechanism has yet been attempted, to our know- The covariant derivatives in the Lagrangian are given
edge, though Ref. [6] reports on some recent progress.by
In the course of thinking about the clash of symme-
tries idea, however, an even simpler model field the- Dy, =9, —ieA1,, Dy, =0, —ieAy,. (2.3)
ory with U (1) factors and interchange symmetries be-
tween the different sectors naturally presented itself
as a useful theoretical laboratory. The model studied \acyum 1: (¢I¢1) =2, <¢>2*<¢2> =0, (2.4)
in this Letter arose in exactly this way, though, of )
course, it is also entitled to ar)1/ indepen)(;ent exgistence Vacuum 2: (g1g1) =0,  (¢302)=v*. (2.5)
as a simple-but-not-too-simple vehicle for the study These two vacua are degenerate and are the global
of gauge fields coupled to domain wall Higgs config- minima of the potential for the parameter regime
urations. From this perspective, our work is relevant
to general studies of superconducting topological soli- #1 =0 and 2 >0. (2.6)
tons, as in Refs. [1-3,7,8] for example. From the clash  We would like to construct domain wall solutions
of symmetries perspective, the present exercise beginspy requiring the scalar Higgs fields to asymptote
the study of the breakdown édcal continuous sym- to different respective vacua on either side of the
metries. wall. We will be interested in the behavior of the
The rest of this Letter is structured as follows: in corresponding gauge fields for this kind of Higgs
Section 2, the model and the field equations are pre- configuration. The boundary conditions for the scalars
sented. The numerical study of kink solutions to these are
equations is then presented in Section 3, while Sec- {

The Higgs potential admits two vacuum solutions:

0, z— —o0,

tion 4 provides a physical explanation for the solu- ]¢1(z)| =1o. 25 oo

tions. Section 5 contains some concluding remarks.
v, 7 —> —0Q,

and Jozol =[5 20

wherez is the direction perpendicular to the domain
wall.

. ) ] ] It is straightforward to compute the equations of
Using the notation of [4] we start with the action  notion for the Higgs fields

for two complex scalar fieldgs » coupled to different

2.7)

2. Themode€

av

- el
Qualitatively similar solutions, but to a different theory with a —_2 * g UZ
different motivation were discovered by Pogosian and Vachaspati in 19 (‘Pa Pa + ¢b 2 )

Ref. [5]. — A2Ga bbb, (2.8)

DauDg(pa =
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wherea, b are either 1, 2 or 2, 1, respectively. The
equations of motion for the gauge fields are similarly
given by

duFL =2eIm[g; (8" —ieAy)¢a]- (2.9)

Since we are going to be looking for static domain
wall solutions (i.e., static ¥ 1 solitons), we search
for solutions that depend anbut are independent of
all the other spatial coordinates and timén order to
simplify our equations we make use of the temporal
gauge,Ag = 0. With these choices the equations of
motion reduce to

!/
o

= (2.10)

A,y = 26" A1y RS, (241

R{ = ¢?(AL, + A3 )Ry + 201 Ry (RS + RS —v7)
R (2.12)

where prime denotes a derivative with respect émd
¢a = Ru(2)e'%®_ The corresponding equations for
the fields with subscript 2 can be obtained simply by
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For a domain wall solution the scalar fields must
obey the boundary conditions in Eq. (2.7). Thus, by
analyzing Eqg. (2.13) we see that the gauge fields are
required to have the following asymptotic behavior:

A1(z = o0) = e_ﬁevlz‘ -0

—+/2evz|

and Ax(z —> —o0)=e — 0. (2.15)

We observe that this asymptotic behavior is also
consistent with Eq. (2.14). The values dfi(—o0)
and Ax(oc0) are seemingly unconstrained by any of
our differential equations. However, note that when
7z K —1 for A1(z) or whenz > 1 for Ax(z) the
solutions become linear functions gfthe asymptotic
solutions to Eqg. (2.13). The linear solutions are due to
the requirement thaR1(z) and R2(z) vanish asz —
—00, +00, respectively (this is because we require
them to be kink solutions). Thus, the only allowed
values ofA1(—o0) and A2(o0) are either aconstant
(corresponding to constant asymptotic behaviour) or
+00. Consistent with this, we will also impose the
boundary conditions

exchanging subscripts 1 and 2. We see in Eq. (2.10) A}(z = —o0) = const£ 0

that thez components of both gauge fields are pure
gauge and because neithgr(z) nor a(z) couple

and A% (z =+o00) = const 0. (2.16)

to the physical degrees of the system, they can be The requirement that these slopes be asymptotically

neglected.

The coupled differential equations for this system
nominally involves six degrees of freedom (one scalar
and two gauge degrees of freedom for each field).
However, since the andy components of each gauge
field enter quadratically into their respective Higgs
field equations of motion, it is possible to rotate to a
new basisx and y where one only needs keep track
of one component of each gauge field. Note that the
directions perpendicular te@ in which each of the
gauge fieldsA; and A; point are independent. We
therefore have only four degrees of freedom to non-
trivially solve for.

The equations we would like to solve are then

A} =2e2R? Ay, (2.13)
R} = e®A2R1 + 201 R1(R? + RS — v?) + A2R1R3,
(2.14)

and 1< 2. We have suppressed the spatial subscripts

on the gauge fieldsA.

non-zero removes thé; = A> = 0 solution from our
considerations. Eqg. (2.16) allows the constant slopes
for A1 and A2 to be arbitrary. If they are chosen to
be unequal, it implies that the corresponding magnetic
fields B; and By are unequal, leading to a violation
of the symmetry inherent in the problem and this
may also cause dynamical instability of the brane as
will be discussed further in Section 4. Hence, it is
natural to choose the slopes to be equal. However, our
numerical solutions (see Fig. 3) show that even in the
asymmetrical situation, slopes af and A, are very
nearly equal.

The coupled differential equations (2.13) and (2.14)
together with the conditions of Egs. (2.15) and (2.16)
constitute our boundary value problem (BVP).

Since we shall resort to numerics to find solutions
it is convenient to transform from coordinateto u
which is defined on a compact intervale [—1, 1],
via

u =tanh(vy/A12). (2.17)
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With this change of coordinates and the field rescal-
ings

R, — UR,, A, — VA, (2.18)
the equations become
2
(1—u ) o —2u(1— u ) Tn =20 R7A1,
(2.19)
2
n2 d“R1 n dR1

=aAZRy + 2R1(RZ + R5 — 1) + AR1R3, (2.20)

and 1< 2. We have definedr = ¢?/A1 and A =
A2/X1. We see that solutions only depend on two

independent coupling constants and not three. In the

case of the pure Higgs model with= 0 (see Ref. [4]),
if one takes symmetricK1 + R2) and anti-symmetric
(R1 — R2) linear combinations of the fields, then the
differential equations decouple for the special case of
A = 4 with analytic solutions,
R 1

2= 5(1 —u).

Ry= %(l+u), (2.21)

However, this is not the case in our model fo# 0.
We shall also be interested in the energy of the
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for our static solutions and because of our gauge
choice,Ag = 0. Thus, in terms of the coordinateand
the rescaled fields the energy density is given by

202 BuA1@)? | (BuA2()?
= ”)[ 4 4

+ (9 R1(w))? + (auRz(m)z]

Too
Avt

+ @ A1(u)?R1(u)? + a A2(u)Ro(u)?
+ (R1w)? + Ro(u)? — 1)°

+ AR1 (1) Ro(u)?, (2.25)

wherexv? sets the scale.

3. Numerical solutions

The numerical method we employ to solve these
coupled differential equations is the “shooting meth-
od” using the routines from Numerical Recipes in
C++ [9]. One can readily convert our system of four
coupled second order differential equations to a sys-
tem of eight coupled first order differential equations
where the functions areR1, R2, A1, A2, R}, RS, A)

solutions we find, thus we need the stress energy for and A,. This is a boundary value problem with the

this system
3L
’Tl‘v‘) = 2@ - glLUE, (222)

which for our action yields
T;w = _Fl/LaFfv - F2/L0( ng + 2(D11L¢1)*(D11)¢1)
+ 2(D2,¢2)" (D2, ¢2)

1 1
+guv|:z ]/_LvFluv'i' ZHUFZ/M)

4
— (DY ¢1)" (D1.1)

— (D ¢2)" (D2pgp2) + V (1, ¢2)]-

(2.23)
The energy density is then given by thg component
of the stress-energy tensor. This simplifies to

1
Too= ;[ (412)° + (45(2)°] + (R5@))

+ (Ry(@)° + 2A1(2)?R1(2)?

+ ¢?A2(2)?R2(2)% + V (R, R2), (2.24)

functionsR1, R2, A1, A2 specified on two boundaries
but with the functionsr], RS, A, A’ not specified

on either boundary. The way the “shooting method”
works is that one guesses values for the derivative
functions at the left boundary:(= —1), then with

all the functions specified on the left boundary one
can numerically integrate to the right boundary. One
then defines a function which measures how well the
boundary conditions on the right are matched. Us-
ing this goodness of fit function one can then use a
Newton—Raphson procedure to improve the guess on
the left boundary for the derivatives. One can then it-
erate this procedure until the boundary conditions on
both sides are satisfied to the desired accuracy. One
potential difficulty is that if the differential equations
are reasonably complicated (e.g., non-linear) then the
initial guessmight need to be reasonably good in order
for the procedure to converge.

The differential equations, (2.19) and (2.20), have
poles atu = +1 when one expresses the equations as
dX/du = (1—u®~2x -... Since we cannot evalu-
ate these equations at= +1, we set the boundaries



J.S Rozowsky et al. / Physics Letters B 580 (2004) 249-256

atu; = -1+ ¢ andus = 1 — €. However, because
now our boundaries are not at= +1 (z = £o0) we
need to know the asymptotic behavior of our func-
tions in order to set up the boundary conditions cor-
rectly? For the special case of = 0 andi = 4 the
analytic solution, Eqg. (2.21), is known from Ref. [4].
While these are not the correct solutions for general
and, they do exhibit the correct asymptotic behavior
asu — +1. But as long ag is sufficiently small the
correct asymptotic behavior is obtained numerically.
When we solve our boundary value problem numeri-
cally we shall use Eq. (2.21) to set the boundary condi-
tions for R1 andR,. We also need to know the asymp-

totic behavior of the gauge fields near the boundaries.

SubstitutingA = (1 — «?)”? into the differential equa-
tion for A (EqQ. (2.19)), we can solve fg#, the scaling
behavior in the vicinity of the boundary. Thus

Ar~ L — )V~ VU2 sy 5 upy=1—c¢,

3.1
Ap ~ (1+u)m~em asu > uy1=—-1+e.
(3.2)

The values ofA1(x1) and A>(u») are not constrained
by any of the differential equations and are therefore
left as free parameters.

As mentioned before when solving a boundary
value problem using the “shooting method”, conver-

4 -
gence may depend on a reasonably accurate guess of

the initial conditions on the left boundary. This is the
case for our set of differential equations since they
have an explicit pole ai = 1. This sensitivity gets
worse ag approaches zero. The method we employed
to address this issue involved starting with a relatively
large value ok (¢ = 0.5) and incrementally reducing

it to its desired value using as the initial guess for the
values of the derivativesRy, R5, A} and A%) on the
left boundary for each step the solution of the previous
step.

In Figs. 1, 2 and 3 we see numerical solutions to
these differential equations for a variety of couplings,
a, A and boundary condition$ (#1) andA2(u2). We
observe that the gauge fields andA, become linear
functions of tanh (1) asu — w1 andu — uo, respec-
tively. This implies that asymptotically these gauge

2 For numerical reasons we cannot just sRf(uq) = 0,
Ry(up) =1,....
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06

02 |

Fig. 1. Plot of Ry, A1, Ry, A> and Ry + Ro against
tanh‘l(u) for « =1, A = 4. The free boundary conditions are
A1(—=1+¢€) = Ap(1 —¢) =1 for e = 0.005 which corresponds to
left and right boundaries at tanf(u) = +3. R1+ R2 is nearly con-
stant for this pair of parameters.

1.4 T T T T T

1.2
TR
0.8

0.6

0.2

0 — J
R -2 1 o . . |

Fig. 2. Plot of Ry, A1, Ry, A2 and Ry + Ry against tanfil(u) for
a=1,1=1 HereAi(—1+¢)=A»(1—¢)=1fore=0.005.

fields become linear functions gfwhich corresponds
to a constant magnetic field in the direction perpendic-
ular to bothz andx (the direction in which the gauge
field points),

Bjs ~ 9;Az(z) = const (3.3)

Thus the asymptotic solution (actually tanhti need
only be of the order oft:2 to be in the asymptotic
regime for a typical configuration) on either side
of the domain wall is a constant magnetic field
corresponding to thd/(1) fields, which point in
uncorrelated directions parallel to the domain wall.
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0.8 ; 1 |
06 | Ay J
\\\ " A2
04 \\~ |
02 |
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.3 -2 —1 0

Fig. 3. Plot of Ry, A1, Ro, Ay and Ry + R, against tanhl(x)
fora =1, =4.HereA1(—1+¢)=1andA>(1—¢) =0.5 for

€ =0.005. The principal effect of the asymmetrical BC’s is to shift
the center of the brane to the right.

These solutions have non-zero energy density away 15

from the domain wall and thus are infinite energy
configurations. The solutions where the magnetic
fields are both zero corresponds to the choice ef0
(i.e., noU (1) gauge fields).

In Figs. 1 and 2, we have sdt;(u; = —0.995)=
Az(up = 0.995) = 1. With this set of symmetric
boundary conditions the domain wall is centered at
u = 0. In Fig. 3 we see that the effect of asymmetric
BC’s is to shift the location of the domain wall.
While not apparent in the figure the magnitudes of
the uniform magnetic field far from either side of
the domain wall do not exactly match. The choice
of ¢ = 0.005 (ande = 0.001 for Figs. 5 and 6)
corresponds to boundaries at tempr! = +3 (and
+3.8). While ¢ can be made smaller at the expense
of longer computing time, these values are sufficiently
small for our purposes.

In Fig. 4 we see the energy density of a solution
plotted as a function of the transverse direction. We

J.S Rozowsky et al. / Physics Letters B 580 (2004) 249-256
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Fig. 4. Plot of the energy density against tatw) fora =1,A=1.
We have used the boundary conditiofg(—1+¢) = Ap(1—¢) =1
wheree = 0.005.

T T T T T T T

16 [

T

1.4

13
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11 |
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09 |

0.8 1 1 1 L L 1 1

Fig. 5. Plot of the “renormalized” surface energy density against
A for @ =0.25,0.5, 1.0, 2.0 (from top to bottom). We have used the
boundary conditiongl; (—1+¢) = A2(1—¢€) = 1 wheree = 0.001.

1 at ¢ = 0.001). Observe that this “renormalized”
surface energy density is only weakly dependent on
the value of the gauge coupling constantin Fig. 6

we show the subtracted energy density corresponding

see that the energy density is peaked at the center ofto the constant magnetic field as a function.andc.

the domain wall. If we treat the asymptotic constant
magnetic field on either side of the domain wall as

a background, then we can compute the energy per

unit surface area of the domain wall by subtracting
off the infinite energy associated with the magnetic
field. In Fig. 5 the surface energy density is plotted
as a function ofr for a variety of values ofx
(boundary conditions arg1(—1+¢€) = A2(1 —¢€) =

In both Figs. 5 and 6 we omit values bf< 1 as they
require a significantly smaller value fer

Our solutions are all plotted in units of taph—!
and notz since u is the natural variable in our
system of equations, (2.19) and (2.20). The length
scale tantu) 1 is dimensionless and can be converted
into a physical length by dividing by./A1. The
thickness of the domain wall is typically 4/v+/A1
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0.025 T T T T T T T

0.015 |

0.005

0 1 2 3 4 5 6 7 8

Fig. 6. Plot of the energy density of the uniform magnetic field
against for « = 0.25,0.5, 1.0, 2.0 (from bottom to top). We have
used the boundary conditions; (—1+ ¢) = A2(1 — ¢) = 1 where

€ =0.001.

(see Fig. 4) which can be made arbitrarily small by
choosingu/A1 > 1.
4. Discussion

The numerical solutions displayed above have a
natural interpretation in terms of superconductivity.
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for dynamically generating the magnetic fields. On
the side of the wall wher&; # 0, the corresponding
magnetic field is seen to decay exponentially, which
is simply a Meissner effect. On the other side of the
wall, where R; is tending exponentially quickly to
zero, we find the magnetic fiel@; tending towards

a finite, uniform configuration pointing in the plane
of the wall. This is consistent with the domain wall
carrying a uniform sheet of current density pointing
in the (0, A;,, A;,,0) direction, as per Eq. (4.3).
Our configurations have infinite energy because the
domain wall is of infinite extent, with current densities
uniformly distributed on it.

The stability or otherwise of our solutions is an im-
portant concern. While a complete stability analysis is
beyond the scope of this Letter, the above considera-
tions suggest that the geometrically symmetric solu-
tions such as in Figs. 1 and 2 could be stable, whereas
asymmetric configurations such as those of Fig. 3 are
not. Let current/; pointin thex-direction in the plane
of the wall. Then Eqg. (4.3) implies that; also points
in the same direction, s®; is directed along the
y-axis. The Lorentz force on the type 1 charge carri-
ers lies in the negativedirection. For sector 2, similar
reasoning shows that the corresponding Lorentz force
on type 2 charge carriers points in the positiwdirec-

Consider, for instance, the currents associated with thetion. For symmetric boundary conditions, these forces

U (1) gauge groups,

i =ie[d] @upi) — (0u87)$i] + 26 A i ¢,

(4.1)
wherei = 1, 2. In terms of the amplitude and phase of
¢i, the currents are given by

Jip = —2eR?3,0; + 2¢?A; , R?. (4.2)

For our configurations, which depend only gnand

for which Eq. (2.10) holds, it is clear that only the
and y-components are non-vanishing. They evaluate
to

Jixy(2) = 26%A; 1y (2)R2(2). (4.3)

These steady;-dependent current densities are uni-
form supercurrent densities localized to the domain
wall, with the charged boson fields as the current car-
riers.

Eq. (4.3) shows that the currents are non-zero
only when the gauge field configurations are non-

are equal in magnitude as well as opposite in direction.
This is a necessary condition for stability. For asym-
metric boundary conditions, they are unequal, strongly
suggesting that such configurations are unstable.

5. Conclusions

In order to further explore the idea of the “clash of
symmetries” from [4], we have considered a model in
which two scalar fields are coupled to their respective
gauge fields in a Lagrangian which h&igl) x U (1)
symmetry. We find consistent static solutions for field
configurations with the vacuum conditions for the
scalar fields specified by Eq. (2.7) and the implied
boundary conditions for the gauge fields, Eq. (2.15).
We obtain the expected kink-like solutions for the
scalar fields while the two gauge fields diverge linearly
on either side of the domain wall.

When we consider the idealized configuration of

zero and vice versa, so these currents are responsiblean infinitely thin domain wall, we have solutions
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