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Abstract-Plane and axially symmetric flows of a micropolar fluid, in contact with an infinite plate, and 
fending to potential flow at infinity, with a stagnation point on the plate, are considered. Two different 
boundary conditions for the spin are considered: (a), vanishing spin; and (b), vanishing surface moment. 
The equations of motion are reduced to dimensionless forms which include three dimensionless parameters, 
and integrated numerically by a Runge-Kutta method. Results are presented both in tabular and graphical 
form, and the effects of the values of the parameters on the flow are discussed. 

1. INTRODUCTION AND SUMMARY 

Stagnation flow of a micropolar fluid has been treated by Peddieson and McNitt[l], who 
considered both plane and axisymmetric flows, using boundary layer theory, with the condition 
that the spin should vanish on the solid boundary. Peddieson[2] later applied the micropolar 
model to~turbulent shear flow, and used a boundary condition analogous to the vanishing of the 
eddy viscosity, namely, that the spin should be equal to the velocity gradient. 

Recently Ahmadi[3] obtained self-similar solutions of the boundary layer equations for 
micropolar flow, imposing the restriction that (cc + (1/2)~)j = y and requiring that 24 + u, = 0 on 
the solid boundary (see Section 2 for notation), while allowing the material coefficients y and j 

to vary. The equations obtained contain two parameters, K = K/P., and 1, taken equal to unity. 
Ebert[4] considered boundary layer flow with the condition that the spin should vanish on 

the boundary. 
The correct boundary condition to be applied to the spin is still an open question. Several 

have been proposed in literature (see[S-7]), the most common of which is the vanishing of the 
spin on the boundary; the so-called “strong” interaction. The opposite extreme, the “weak” 
interaction, is the vanishing of the moment stress on the boundary. A third, or “compromise” is 
the vanishing of a linear combination of spin, shearing stress and couple stress, involving some 

friction co-efficients, a particular case of which was the condition used by Peddieson[2]. 
It should be noted that the condition g’(0) = 0 used in Section 3 has implications different 

from the same condition formally used by Ahmadi. The latter is a consequence of the boundary 
layer equations and initial values ([3], 3.10-13). The former derives from the vanishing of the 
moment stress on the boundary, and indeed, the condition m23 = 0 on y = 0 does not imply 
24 + U, = 0 on y = 0 (see Section 6). 

In this paper we follow the classical treatment of stagnation flow ([8], p. 87), assuming 
potential flow with complex potential w = (1/2)az* far from the boundary. The two extreme 
boundary conditions will be considered: (a) the vanishing of the spin, and (b) the vanishing of 
the spin gradient, in the case of steady plane and axisymmetric flows with a stagnation point. In 
Section 2, the basic equations are given. In Section 3, we reduce the equations of motion to two 
nonlinear ordinary differential equations, in dimensionless form, involving three parameters. 
These equations are then integrated numerically, using a fourth-order Runge-Kutta method 
(Section 4). The axially symmetric case is likewise considered (Section 5). Results are presented 
in tabular and graphical form, and discussed in Section 6. 

2. EQUATIONS OF MOTION 

The equations of motion of a micropolar fluid, with isotropic microstructure, are[7] 
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(,i+2/.&+K)V(V’V)-(/L+K)VXVXV 

+KVXU-vVp+pf=pi’, 

(~+P+y)V@.Y)--y(VXVXv)+KVXV 

-2KV+p1=& 

(2.1) 

where v is the velocity, v the micro-rotation, or spin, p the thermodynamic pressure, f and I the 
body-force and -couple per unit mass, p the density and j the micro-inertia; A, p, K, a, p and y 
are material constants, or viscosity coefficients; and the dot signifies material differentiation. 

The constitutive equations giving Ikf, the stress tensor, and mk[, the couple stress tensor are, 
in Cartesian co-ordinates, 

where Sk1 and e,& are the Kronecker delta and the alternating symbol respectively; the 
summation convention has been used; and the comma denotes partial differentiation with 
respect to a space co-ordinate. 

The stress vector, T, and moment stress vector M, across a surface element with unit 
normal n are given by 

Tk = tlknl, hcfk = mlknl. (2.3) 

The material constants must satisfy the inequalities 

3h+2/.~+~~0, 2/.L+K?0, K 20, 

3a+p+y>o, Y 2 IPI; (2.4) 

conditions which are necessary and sufficient to ensure that the rate of dissipation of energy 
should be non-negative. 

3. TWO-DIMENSIONAL STAGNATION FLOW 

Consider two-dimensional steady flow in the upper half-plane y >O. Ideal fluid flow, with a 
stagnation point at the origin is given by the complex potential w = (1/2)azZ, the speed being 
4 = a (x2 + y’)“* and the pressure p = p. - (1/2)pa*(x* + y*). When the fluid is oiscous, bounded 

below by the infinite plate y = 0, and when the flow tends to the potential flow just mentioned as 
y + 00, we write (see [8], pp. 88-89) 

u =-$(y), lJ = -f(Y) (3.1) 

satisfying the condition of incompressibility. Then it is found that 

u = adz’(q), u = - (av)“*h(n) (3.2) 

where n = (a/v)“*y, v = (P/P), f(y) = V(av)h(q), and h(n) satisfies Hiemenz’ equation 

hm(q)+h(q)hw(q)-h’*(q)+ 1 =o (3.3) 

where the prime denotes differentiation with respect to q, with boundary conditions 

h(0) = h’(O) = 0, h’(m) = 1. (3.4) 

It has been found that the solution is such that h”(0) = 1.2326. 
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Consider now the steady incompressible flow of a micropolar fluid in the upper half plane, 
bounded by the plate y = 0, which tends to the flow with potential w = (1/2)az* as y + m. 

Let 

v = (UC& Yh 4% Y), O), 

v = (0, 074 (x7 Y )), 

then (2.1) reduce to 

(/.L + K)v*U + Kt#$ -px = p(u& + uu,) 

(/.L + K)v'U - KC#Jx - py = p(uu, + uu,) 

rv2~+K(U,-UUy)-2K~=pj(U~~++~y) 

u, + u, = 0. 

The subscripts x and y signify partial derivatives and V2 = (a/%~)~ + (a/a~)~. 
Let 

u = AxF’(y), u = - AF(y), 4 = BWY), 

(3.5) 

(3.6) 

(3.7) 

then it is found from (3.6) that p,/x and pr are functions of y only, and that 

y AF”’ + A2(FF” - Ff2) + ; BG’ = c (3.8) 

cx2 - A2FZ] - 
Y 

G(s) ds (3.9) 

yBG”- KAF” - ~KBG = pjAB[F’G - FG’] (3.10) 

where the prime denotes differentiation with respect to y, p. is the stagnation pressure, and c is 
a constant. 

The condition u = u = 0 on y = 0 requires that 

F(0) = F’(0) = 0. (3.11) 

The right hand side of (3.9) tends to the potential flow value - (l/2) a2(x2 + y2) as y --f m 
provided that 

c=-(g and F’(m) = a. (3.12) 

Equations (3.8) and (3.10) can be expressed in terms of dimensionless parameters and 
variable as follows. 

Let 

where 

v=; and A2_cL+K 

Pa . 

Equations (3.8) and (3.10) reduce to the forms: 

p1(17)+f(17)f1(17)-f’2(77)+g’(~7)+ 1 =o 
g”(v) - C*f”(B) - 2c2d77) = c~(f’(~)g(77)--f(~l)g’(~l)) 

(3.14) 

(3.15) 
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where the prime denotes differentiation with respect to 7, and 

2 

c,=-lf-, 

w 

c2 _ (CL + K)K 

w ’ 

c3 _ (CL + K)j 

Y 

The constants cl, c2, c3 and the variables 7, f(q), f’(q) and g(q) are dimensionless.? The 
boundary conditions, assuming that u = v = 0 on y = 0, and potential flow as y + m, are 

f(O) = f’(O) = 0, f’(m) = 1, g(m) = 0. (3.17) 

An additional condition is required. That most commonly adopted has been the vanishing of the 
spin on a solid boundary (see [7]), namely 

g(0) = 0. (3.18) 

Others which have been proposed (see [5,6]) are (a) the vanishing of the spin gradient, and 
hence the tangential component of the moment stress on the boundary; in this case g’(0) = 0, 
and (b) a compromise condition of the form 

g(O) + m’(O) + @P(O) = 0 

where p and q are friction coefficients, a particular case of which has been considered by 
Peddieson[2] by setting C$ = u, on y = 0, deduced from an analogy with the vanishing of eddy 
viscosity on the boundary in turbulent shear flow. We consider here the cases g(0) = 0 and 
g’(0) = 0. 

4. NUMERICAL INTEGRATION OF EQUATIONS 

Equations (3.15), generalisations of Hiemenz’ equation, being nonlinear, do not lend them- 
selves readily to analytical solution. A fourth-order Runge-Kutta method was used (see [9], pp. 
87-88), writing the equations as a system of five first-order equations. The boundary conditions, 
being divided between 0 and ~0, necessitated the use of a “shooting” method. Three pairs of 
values of f”(0) and g’(0) (or g(0)) were assumed in addition to the known values f(0) = f’(0) = 0, 
and g(0) = 0 (or g’(0) = 0), and values of f’(m) and g(m) obtained. It was found that v= m + 4). It was 
then assumed that f’(m) and g(a) were linearly dependent on the initial values, and inverse 
interpolation used to find values of f”(0) and g’(O) (or g(0)) which would make f’(m) = 1 and 
g(m) = 0. The method was then repeated until a preassigned accuracy was attained. 

5. AXIALLY SYMMETRIC FLOW 

Using cylindrical polar co-ordinates, and assuming flow symmetric about the z-axis, with 

ur = U(T, z), uz = w(c z), &7 = 4(c 2) 

(2.1) reduce to: 

a2u 1 au u a2u (“+‘d(~+;$-;i+z)- 

(/L+K)($+;-$+$) +K -$t; -z=p (” ‘) a’ ( U$+W$ 
) 

Y(~+~~-~+~)+K(~-~)-2K~=pj(U~+W~) 

(5.1) 

(5.2) 

(5.3) 

tThe dimensions of the parameters involved are as follows: 

I/.&, K] = MPT-‘, [y] = Mu-‘, [a] = T-‘, [il = L’, [pl = ML-’ 
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(5.4) 

We seek solutions such that v, = v, = 0 on z = 0, v. = 0 on z = 0, and such that the flow tends 
to one with potential (1/2)a(r*- 2z2) as z-+00, with a consequent pressure distribution p = 
po- (1/2)pa2(rz+ 4z*). Following the method used in Section 3, we set 

v=;, **_P+K 

Pa 
(5.5) 

lJ = w?(s), w = - 2&f(q), 4= Pa*A 
~e7) (5.6) 

then (5.1) and (5.3) reduce to 

f”‘(a) + 2f(7?vY77) -f’*(T) - g’(77) + 1 = 0 

g”(77) + Clf1(77) - 2C28(7?$ = mYvM77) - 2f(77k’(77)) 

where, as previously, 

K2 
Cl = - 

(/-‘+K)K 
w ’ 

cq = ~ 
wa ’ 

c3 _ (CL + K)j 
Y . 

(5.7) 

(5.8) 

(5.9) 

The boundary conditions are 

f(O) = f’(0) = 0, f’(m) = 1, g(m) = 0 

and (a) s(0) = 0 (5.10) 

OR (b) g’(0) = 0. 

Equations (5.7) and (5.8) were integrated, using the Runge-Kutta method, as outlined in 
Section 4, with boundary conditions (5.10a) or (5.10b). 

6. DISCUSSION OF RESULTS 

Equations (3.15) and (5.7-8) were integrated numerically, using boundary conditions (3.18) 

and 

OR 
g(0) = 0 (strong interaction) 

g’(0) = 0 (weak interaction). (6.1) 

The values of the parameters? were chosen to represent possibly typical values of the 
material constants as follows: 

Cl = 0.1, 0.25, 0.5, 

Cz= 0.75, 1.0, 1.5, 

c3 = 0.1, 0.25, 0.5. 

tThe parameters used by Peddieson and McNitt [ I] were 

(6.2) 

where I = j in the notation of our paper, and U = aL. These parameters are related to ours as follows: 

c, = Av/& c2 = (1 t A)u/A, cj=(ltA)/h. 

However, we have used A differently elsewhere as defined in (3.14). 
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The consequent values of f”(0) and g’(O), or g(O), respectively, for all 108 runs, are given in 
Table 1. Numerical values of f’(n), f”(n) and g(v) are given in Tables 2 and 3, for a particular 
set of values of c,, cz and c3, and compared with the solution for classical viscous flow ([S], p. 
90). Typical sets of solutions, showing the effects of the parameters c,, c2, c3, varying one at a 
time, are given in graphical form in Figs. l-24. In Figs. 13-15, it was found convenient to 
multiply the vertical difference between the central graph and those above and below by a 
factor of 10, as indicated in the figures. 

For all values of cl, c2 and c3 considered, it was found that the profile of g(q) was 

(1) raised as cl was increased and 
(2) lowered as c2 or c3 were increased regardless of whether the boundary condition was 

g(0) = 0 or g’(0) = 0. 
On the other hand, the profile of f1(n) was affected diferentfy depending on the boundary 

condition. In particular the profile of f’(~) was 
(la) lowered for small values of 7, but raised for larger values of 77 as cI was increased, 

when g(0) = 0, but 
(lb) raised for all values of 7, as ci was increased, when g’(0) = 0. 

(2a) raised for small values of 77, but lowered for larger values of 77 as c2 was increased, 
when g(0) = 0, but 

(2b) lowered for all values of 7, as c2 was increased, when g’(0) = 0. 
(3) raised for small values of 7, but lowered for large values of 9, as c3 was increased, 

regardless of whether the boundary condition was g(O)= 0 or g’(0) = 0. 
Comparative profiles of f1(n) for micropolar flow, with g(0) = 0 and g’(0) = 0, and for 

classical viscous flow ([8], p. 90) are shown graphically in Figs. 25 and 26.. 

Table 1. g(0) = 0, g’(0) = 0 

PLANE FLOW AXISYMMETRIC FLOW PLANE FLOW AXISYMMETRIC FLOW 

Cl / c2 I c3 f"(0) S'(O) f"(0) S'(O) f"(0) / g(O) f"(0) g(O) 

1.1 0.75 0.1 1.22186 -0.05315 1.30136 0.05583 
1.24523 

'-0.04298 
1.32568 0.04480 

0.25 1.22239 -0.05229 1.30207 0.05470 1.24534 -0.04126 1.32588 i 0.04243 
0.5 1.22315 -0.05101 1.30303 0.05306 1.24541 ,-0.03880 1.32596, 0.03917 

il.0 0.1 1.22323 -0.04955 1.30262 0.05226 1.24338 -0.03486 1.32370 0.03657 
0.25 1.22360 -0.04893 1.30314 0.05144 1.24349 1.32388 0.03514 
0.5 1.22416 -0.04798 

,-0.03384 
1.30386 0.05021 1.24358 ;-0.03232 1.32401 0.03309 

1.5 0.1 1.22503 -0.04439 
'-0.04402 

1.30433 '0.04705 1.24108 '-0.02560 1.32122 0.02704 
0.25 1.22526 1.30464 0.04656 1.24116 l-0.02513 1.32134 0.02638 
0.5 1.22559 -0.04343 1.30509 0.04579 1.24125 -0.02440 

1.25'0.75 0.1 1.20559 ' -0 13289 
~ -0:13075 

1.28534 0.13961 1.26474 i-0 

1.32148 0.02537 

10873 1.34686 0.11322 
0.25 1.20695 1.28715 0.13681 1.26501 '-0:10432 1.34734 j 0.10715 
0.5 1.20887 -0.12757 1.28956 0.13271 1.26517 -0.09802 i 1.34752 0.09883 

11.0 0.1 1.20905 -0.12389 1.28852 0.13067 1.26000 -0.08808 1.34178 0.09231 
0.25 1.21001 -0.12235 1.28983 0.12865 1.26024 -0.08547 1.34221 0.08868 
0.5 1.21142 -0.12000 1.29166 0.12559 1.26048 -0.08159 1.34254 0.08344 

il.5 0.1 1.21360 -0.11099 1.29280 0.11765 1.25409 1-0.06456 1.33540 0.06817 
I 0.25 1.21417 

0.5 1.21503 
/ -0.11006 1.29359 0.11643 1.25428 i-O.06336 1.33572 0.06649 
I-0.10860 1.29475 0.11452 1.25450 -0.06150 1.33607 0.06392 

/ 

1.5 '0.75 0.1 1.17808 -0.26583 1.25833 0.27933 1.29889 -0.22190 1.38377 0.23059 
0.25 1.18087 ,-0.26162 1.26201 0.27381 1.29941, -0.21269 1.38471 0.21797 
0.5 1.18479 l-0.25531 1.26691 0.26568 1.29967 -0.19957 1.38494 0.20072 

I 
1.0 0.1 1.18511 -0.24783 1.26477 0.26145 1.28891 -0.17935 1.37316 0.18770 

0.25 1.18708 -0.24480 1.26743 0.25747 1.28939 -0.17394 1.37402 0.18019 
0.5 1.18995 * -0.24014 1.27114 IO.25139 1.28983 -0.16589 1.37460 0.16934 

1.5 0.1 1.19435 -0.22201 1.27343 0.23537 1.27654 -0.13104 1.35986 0.13825 
0.25 1.19551 -0.22019 1.27503 0.23299 1.27691 -0.12857 1.36050 0.13479 
0.5 1.19725 -0.21731 1.27738 0.22920 1.27736 -0.12474 1.36118 0.12952 

Classical Flow 1.2326 1.3120 
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Table 2. Plane flow: c, = 0.5, c2 = 0.75, c, = 0.1 

T Micropolar: g'(O) = 0 Micropolar: g(O) - 0 

t 

f’(n) j f” (n) 1 -g(n) 

0 
0.2266 

0.4145 

0.5663 

0.6859 

0.7779 

1.2326 

1.0345 

0.8463 

0.6752 

0.5251 

0.3980 

0 1.178081 

0.220284 1.022179 

0.408317 0.857851 

0.563663 0.697011 

0.687932 0.548259 

0.784146 0.417142 

0 

0.042370 

0.066788 

0.078066 

o.080175 

o.0762g8 

f’ (n) 
~- 

0 
0.239494 
0.438295 
0.598074 
0.722350 

0.815763 

1.298887 

1.095313 

0.894162 

0.706630 

0.540053 

0.398419 

0.221902 

0.216251 

0.201831 

0.181970 

0.159364 

0.136084 

1.2 0.856159 0.306524 0.068896 0.883463 0.282917 0.113625 

1.4 0.908167 0.217032 0.059795 0.930608 0.192563 0.092976 

1.6 0.944310 0.147581 0.050272 0.961997 0.124835 0.074699 

1.8 0.968385 0.095916 0.041160 0.981821 0.076302 0.059023 

2.0 0.983668 0.059139 0.032943 0.993544 0.043181 0.045932 

0.8467 0.2938 

0.8968 0.2110 

0.9323 0.1474 

0.9568 0.1000 

0.9732 / 0.0658 

2.2 

2.4 

2.6 

2.8 

3.0 

0.992826 0.034160 0.025844 

0.997921 0.018044 0.019911 

1.000459 0.008237 0.015075 

1.001486 0.002675 O.Oll.208 

1.001691 -0.000199 0.008154 

0.999873 0.021786 0.035244 0.9839 0.0420 

1.002811 0.008832 0.026682 0.9905 0.0260 

1.003769 0.001611 0.019928 0.9946 0.0156 

1.003679 -0.001957 0.016659 0.9970 0.0090 

1.003111 -0.003369 0.010577 0.9984 0.0051 

0.005754 1.002388 

0.003863 1.001677 

0.002352 1.001037 

0.001113 1.000484 

o .000054 1.000001 

3.2 

3.4 

3.6 

3.8 

4.0 

1.001495 I -0.001485 
1.001138 j -0.001912 
1.000737 / -0.001933 

1.000354 j -0.001805 
l.OOOOOO 1 -0.001663 1 

Table 3. Axisymmetric flow: c, = 0.5, cz = 0.75, C~ = 0.1 

Micropolar: g(0) = 0 

n f'h) 1 f”0-d 

0 0 1.258327 

0.2 0.236467 1.102731 

0.4 0.439915 0.929578 

0.6 0.607786 0.748825 

0.8 0.739726 0.572322 

1.0 0.837792 0.411919 

1.2 

1.4 

1.6 

1.8 

2.0 

0.906201 

0.950623 

0.977208 

0.276987 

0.172446 

0.098207 

0.991655 0.050146 0.033063 

0.998593 0.022001 j 0.025110 
I 

2.2 

2.4 

2.6 

2.8 

3.0 

3.2 

3.4 

3.6 

3.8 

4.0 1 

1.001343 0.007300 

1.002031 0.000659 

1.001868 -0.001719 

1.001452 -0.002152 

1.001036 -0.001870 

1.000697 -0.001433 

1.000443 -0.001048 

1.000255 -0.000763 

1.000114 ; -0.000571 
1.000006 1 -0.000449 

-0.003630 0.007416 0.9992 0.0028 

-0.003367 0.004951 0.9996 0.0014 

-0.002939 0.002996 0.9998 0.0007 

-0.002532 0.001400 0.9999 0.0004 

-0.002225 0.000040 1.0000 0.0002 

T l- Classical Micropolar: g'(O) - o 

f 

I 

g(n) f’ (0) .- 

0 
0.256332 

0.470585 

0.642219 

0.772875 

0.866536 

f”(rl) g(n) f’ (rl) f”ol) 

0 
0.044283 

0.069113 

0.079502 

0.079786 

0.073635 

1.383765 0.230586 0 1.3120 

1.177707 0.224351 0.1755 1.1705 

0.964332 0.208228 0.3311 1.0298 

0.753364 0.185747 0.4669 0.8910 

0.556551 0.159987 0.5833 0.7563 

0.385536 0.133514 0.6811 0.6283 

0.064012 

0.053142 

0.042534 

0.929130 0.246781 0.108301 0.7614 

0.967646 0.144291 0.085672 0.8258 

0.989070 0.075051 0.066334 0.8761 

0.999470 0.032839 0.050470 0.9142 

1.003488 0.010015 0.037889 0.9422 

0.5097 

0.4031 

0.3100 

0.2315 

0.1676 

0.018721 1.004275 -0.000518 0.028183 0.9622 0.1175 

0.013749 1.003716 -0.004219 0.020861 0.9760 0.0798 

0.009962 1.002783 -0.004672 0.015438 0.9853 0.0523 

0.007118 1.001960 -0.003901 0.011490 0.9912 0.0331 

0.004995 1.001221 -0.002878 0.008666 0.9949 0.0202 

0.003410 1.000732 -0.001977 0.006695 0.9972 0.0120 

0.002220 1.000401 -0.001286 0.005370 0.9985 0.0068 

0.001313 1.000189 -0.000785 0.004540 0.9992 0.0037 

0.000603 1.000061 -0.000425 0.004095 0.9996 0.0020 

0.000027 1.000000 -0.000163 0.003961 0.9998 0.0010 I .t 
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As might be expected, Figs. l-12 are qualitatively similar to Figs. 1-6 of Peddieson and 
McNitt [ I]. When c, is sufficiently large, in particular c, 2 0.5, it is found that the graph of f’(v) 
exceeds unity and then levels out with f)(m) = 1; a result which is also apparent in ([l], Fig. 3). 
The horizontal shearing stress, in plane flow, from (2.2) and (3.13) is 

tz1 = t/J + Klux [f”(q) + g(q)l. 
A 

(6.3) 

In the case considered in Table 2, it is clear that the shearing stress changes sign about 
77 = 2.3, when g(0) = 0, and about 7 = 1.9, when g’(0) = 0. Thus there is a reversal of shearing 
stress in plane flow when c, is large enough. Similar considerations apply to axisymmetric flow. 

In all cases, the maximum value of g(q) attained when g’(0) = 0 was greater than that when 

g(0) = 0. The ratio of the two varied from as little as 1.2 to as much as 5. 
When g’(0) = 0, it is easily seen that (24 + u?)~=~ = 2((c,/c,)g(O) - f”(0)). The value obtained 

from Table 2, for example, is 0.9660. 
Lastly, we remark on the ratio of spin to vorticity. In plane flow it follows from (3.13) that 

(6.4) 

where w = u, - U, and (p + K)/K = (CT/CI). 

In axisymmetric flow the value is the same, but the sign is positive. 
From Tables 2 and 3, it appears that 4 and w are of the same order of magnitude in most of 

the flow. 

7. CONCLUSION 

The numerical results obtained may serve to determine, in conjunction with experiments, 
which, if either, of the extreme boundary conditions is the more appropriate to apply to a real 
fluid exhibiting micropolar behaviour. 
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