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The spin-glass q-state Potts model on d-dimensional diamond hierarchical lattices is investigated by an
exact real space renormalization group scheme. Above a critical dimension dl(q) for q > 2, the coupling
constants probability distribution flows to a low-temperature strange attractor or to the high-temperature
paramagnetic fixed point, according to the temperature is below or above the critical temperature
Tc(q,d). The strange attractor was investigated considering four initial different distributions for q = 3
and d = 5 presenting strong robustness in shape and temperature interval suggesting a condensed phase
with algebraic decay.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The q-states Potts model, proposed a long time ago by Domb as
the subject of Potts doctoral thesis [1], has found a wide range of
applicability in many fields of both basic and material sciences.
The Potts model was conceived as a generalization of the Ising
model [2], when q = 2, and the Askin–Teller model (q = 4) [3].
It also mimics the problem of percolation (q = 1) [4,5] and even
the problem of the linear resistor networks (q = 0) [6]. All of
the above mentioned problems were also encompassed by the
random-cluster model introduced by Fortuin and Kasteleyn [7].
Furthermore, the degeneracy of the ground state of the antiferro-
magnetic Potts models was shown to be related with the q-coloring
problem [7]. It is important to emphasize that the most impor-
tant feature of the mathematical structure of the Potts model is
the equivalence between its partition function and Tutte polyno-
mial [8]. Concerning applications, the Potts model has been applied
in many fields, such as biology [9], sociology [10] and material sci-
ence [11]. In the latter, for instance, the technique of Monte Carlo
simulations on the Potts model has been applied to a wide vari-
ety of phenomena, such as diffusion in polycrystalline microstruc-
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tures [12] and the study of viscous instabilities in foam-flow be-
havior [13].

In this Letter, the properties of the q-state Potts model with
random competing interactions are investigated. This model is
called Potts glass in allusion to the particular case when q = 2,
widely known in the literature as the Ising spin-glass model. The
absence of spin-inversion symmetry and a different nature of the
frustration effects distinguish it from its Ising counterpart, exhibit-
ing rather a richer critical behavior in mean-field theory [14–20],
in contrast with the pure and disordered Potts model (without
frustration) and related models, which have been widely inves-
tigated in the past [6,21]. Site and bond diluted versions of the
Ferro and Antiferromagnetic Potts model were also studied by
Monte Carlo simulations on two and three-dimensional regular lat-
tices [22–24] showing signatures of first and second order phase
transitions.

More recently, the nature of phase transitions in the q-state
Potts-glass model has been investigated via Monte Carlo simula-
tion in two and three dimensions for values of the number of
states q = 3 [25], q = 4 [26], q = 5 and 6 [27], q = 7 [28] and
q = 10 [25,29].

The present work focuses on the study of the q-state Potts
model with random frustrated exchange interactions on a fam-
ily of diamond-type hierarchical lattices [30] with scale factor
b = 2. When symmetrical zero-centered random exchange cou-
plings distributions are considered the system undergoes a phase
transition from a paramagnetic high-temperature phase to a low-
temperature condensed phase above some dimension, dl(q). The
phase diagram of the Potts-glass model had been investigated
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before, by the Migdal–Kadanoff (MK) renormalization group (RG)
scheme, indicating the presence of a condensed phase at finite
temperatures when q > 2 and d = 4 [31] as well as in the limit
of large q [32]. In Ref. [31], however, it was assumed (as work-
ing hypothesis) that the initial symmetrical Gaussian probability
distribution of coupling constants with variance σ is transformed
under renormalization into another symmetrical Gaussian distribu-
tion but with variance

√
bd−1σ .

The MK real-space RG method for Bravais lattices is known to
be equivalent to exactly solving the model on diamond-like hi-
erarchical lattices [33,34]. In a recent paper [35], however, the
authors studied the occurrence of phase transitions of the Potts-
glass model using this exact approach by numerically following
the flow of the renormalized probability distribution in an ap-
propriated parameter space. Such space was previously considered
in Ref. [36,37] to study the Ising spin-glass model. The q-state
Potts-glass model was considered on lattices with several frac-
tal dimension, determining the critical temperature and the upper
and lower bounds for the associated lower critical dimension dl(q).
For instance, for q = 3 the lower (upper) bound was found to be
4.46 (4.58), in contrast with the result obtained in Ref. [31], which
founds the transition occurring for d < 4. Here we further explore
the flow of the renormalized probability distribution in the whole
parameter space and investigate the nature of the low-temperature
stable fixed point, which surprisingly appeared like a strange attrac-
tor.

2. Renormalization procedure in disordered systems

For pure systems, the renormalization procedure consists in
finding the equivalent exchange interaction for a pair of spins af-
ter eliminating several spins in the lattice. For a disordered sys-
tem, however, the renormalization procedure will affect the whole
distribution of coupling constants, the renormalized distribution,
P ′( J ), is related with the previous (non-renormalized) distribution,
P ( J ), by,

P ′( J ) =
∫

· · ·
∫ ∏

〈i j〉
P ( J i j)d J i jδ

(
K − K ′(K )

)
, (1)

where K = β J is a reduced coupling constant, K ′(K ) is the renor-
malization equation, and the product runs over all the pairs of
spins 〈i j〉.

Eq. (1) should be iterated until the renormalized distribution
reaches a fixed point distribution, characteristic of the thermody-
namic phase. A zero-centered Dirac-delta distribution, for instance,
indicates a paramagnetic phase. The procedure adopted in this
work is to produce a sample of random coupling constants from an
initial probability density function, feed the renormalization equa-
tion to find a sample of the same size of renormalized coupling
constants, estimating the physical quantities numerically from the
samples. The process is repeated until the fixed point distribution
is reached.

3. The Potts Hamiltonian and the renormalization equation

The Potts Hamiltonian is written as

H = −
∑
〈i j〉

q J i jδσi σ j , (2)

where the sum is taken over all bonds in the lattice, the Kro-
necker δ symbol takes the values 1 if σi = σ j or 0 otherwise, and
σi = 1,2, . . . ,q are the q-states Potts spins variables, located at
each site of a diamond-type hierarchical lattice with p branches
and scale factor b. The basic unit of such lattice is illustrated in
Fig. 1. Renormalization group scheme on the d f dimension diamond-type hierarchi-
cal lattice with p branches and scaling factor b = 2.

Fig. 1, where μ and μ′ are called external sites and the set {σi}
represents the internal sites [30]. Ki and Li are reduced coupling
constants, Ki ≡ β Jμσi and Li ≡ β Jμ′σi . The lattice generations or
hierarchies are successively built by replacing each connection of
the basic unit by the basic unit itself, yielding to a graph with
fractal dimension,

d f = 1 + ln p

ln 2
.

The exact renormalization process on a n-generation lattice
consists in partially tracing the partition function along all the
internal sites introduced in the nth generation leading to a
(n − 1)-generation lattice with a set of effective reduced coupling
constants {K ′

i } given by

K ′ = 1

q

p∑
i=1

[
(q − 1) + exp (q Ki + q Li)

(q − 2) + exp (q Ki) + exp (q Li)

]
. (3)

Eq. (3) is the local renormalization equation. The right-hand side
of Eq. (3) receives values for the reduced coupling constants calcu-
lated from the n-generation of the coupling constant distribution,
P ( J ), resulting in one of the possible values of the renormalized
reduced coupling constant of the (n −1)-generation. The renormal-
ization procedure starts from the thermodynamic limit (generation
n → ∞) where the coupling constants are assumed to have a well-
known distribution, actually, Gaussian, delta-bimodal, uniform, or
exponential, and well-defined temperature T .

3.1. Probability distribution renormalization flow

For each n-generation lattice we can define a set of thermal
transmissivities variables {ti j}, each one associated with the respec-
tive bond, i.e.,

ti j ≡ 1 − exp (−qβ J i j)

1 + (q − 1)exp (−qβ J i j)
. (4)

Thermal transmissivity ti j represents the pair correlation function
Γi j between sites i j [21].

A system with a probability distribution of coupling constants
P ( J ) ≡ P ({ J i j}) yields a thermal transmissivity variance,

Δ2 ≡ [(
ti j − [ti j] J

)2]
J , (5)

where [· · ·] J means the average over the probability distribution,
P ( J ).
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Fig. 2. Δ2 behavior for distinct probabilities distributions against temperature for
the q = 3 case.

Every fixed probability distribution has a signature in the dia-
gram Δ2 × T when the temperature is varied. In the case of the
initial probability distributions considered in this work such rep-
resentation can be seen in Fig. 2 for the case q = 3. Notice that
the T → 0 limit is the same for all cases indicating an universal
zero-temperature behavior. Such universal point (Δ�2, T = 0) can
be analytically obtained in the case of the bimodal distribution,
P ( J i j) = [δ( J i j − 1) + δ( J i j + 1)]/2, i.e.

Δ� 2 =
[

q

2(q − 1)

]2

. (6)

Note that for q = 2, the Ising limit case, Δ� → 1 is recovered as
seen in [36].

For each application of the renormalization equation, an effec-
tive temperature proportional to the inverse of the square root of
the reduced coupling variance may be defined, i.e.

Tr ∝ 1√
[(Kij − [Kij] J )2] J

. (7)

In this work, the flow of the renormalized probability distribu-
tions is followed numerically in the parameter space Δ2 × Tr , each
point representing a stage of the renormalization process.

3.2. Strange attractor

Four distinct initial symmetrical probability distribution were
considered, namely the Gaussian, the delta-bimodal, the uniform
and the exponential ones. For lattices with dimension greater than
dl(q) and independently of the nature of the initial distribution,
the renormalization flow displays the following same features: the
paramagnetic phase is characterized by a fixed point at infinity
renormalized temperature and zero transmissivity variance, while
the low-temperature phase is characterized by a strange attractor in
the renormalization flux for q � 3 – or a fixed point Δ = 1, Tr = 0
for q = 2 as previously reported [36] for the Ising SG. The obser-
vation of such strange attractor, which is located in a region of low
but finite temperatures, is the main result to be reported in the
present work.

Chaotic renormalization group trajectories were observed in the
Ising SG model a long time ago [38] in a distinct family of hierar-
chical lattices. However, the signature of the existence of a strange
attractor in the Potts-glass model on the diamond family of hier-
archical lattices was first reported by Banavar and Bray [39]. These
authors observed an unusual behavior in the renormalization of
Fig. 3. Renormalization flow in the Δ2 × T parameter space for the (q = 3)-Potts
model in d = 5 dimensions for an initial symmetric Gaussian distribution. Dot-
ted curve indicates the low-temperature flow while continuous one illustrates the
high-temperature flow, according to the arrows. Inset magnifies the flow bifurcation
region.

[Kij] J and its standard deviation in the case d = 5 and scale fac-
tor b = 2 (present case). In their words these quantities “wanders
chaotically in a smallish region around [Kij] J ∼ 14. . . (persisting)
for thousands of iterations and happens for a wide range of start-
ing temperatures”. Furthermore, they did not give a clear expla-
nation of this behavior but speculated that the delicate balance
between energy and entropy causes that wandering phase in d = 5.

This study uses the same methodology used in Refs. [36,39], i.e.
the successive construction of large pools of renormalized constant
couplings, calculated using Eq. (3) starting from an initial probabil-
ity distribution and fixed temperature.

Fig. 3 illustrates the renormalization flow diagram in the Δ2 × T
space for the q = 3 case in d = 5 dimensions, starting from a Gaus-
sian distribution of the exchange couplings in two temperatures.
For initial temperatures below ∼ 3.0 the renormalized distribution
of interactions (solid triangles) flows to the strange attractor lo-
cated in a finite region of the parameter space, for high initial tem-
peratures (T ∼ 3.5), the renormalized distribution of interactions
(solid circles) flows to high temperatures and zero thermal trans-
missivity variance, characterizing the paramagnetic phase. Fig. 4
displays the strange attractor constructed with 105 steps of renor-
malization, lying in the interval (0.15,0.35) starting from two dis-
tinct initial distributions, (a) the delta-bimodal and (b) the Gaus-
sian ones.

In Ref. [35], some of the present authors, using the same
methodology, found the critical temperatures of the model for sev-
eral lattices, indicating the ones where the transition may occurs
for appropriated values of d and q.

The fractal dimension of the attractor was estimated by box
counting, yielding to,

D = 1.66(1),

for every initial distribution and for the case q = 3 and d = 5.
A proper analysis of the attractor is taking place at the moment, by
estimating its Lyapunov exponents by the Wolf method [40] with
various values of q and d.

The strange attractor describing the condensed phase occurs at
a non-zero temperature interval probably due to the existence of
residual entropy, such as the unusual algebraic phase previously
studied [41–43] for the anti-ferromagnetic Potts model. Detailed
studies of the correlation functions and the local magnetization
are under development in order to determine the nature of such
condensed phase. Preliminary studies of the present model on lat-
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Fig. 4. Attractor for two distinct initial distribution, (a) bimodal and (b) Gaussian.

tices with scale factor b = 3, which corresponds to bipartite lat-
tices, indicates however the absence of the strange attractor in any
dimension. Moreover, the condensed phase which occurs above
a certain lower critical dimension dl(q) does not presents charac-
teristics of spin-glass phase [44].

4. Conclusions

The q-state spin-glass Potts model undergoes a phase transition
whenever d � dl(q), from a high-temperature paramagnetic phase
to a low-temperature condensed phase, characterized by strange
attractors. These strange attractors are superimposed in the same
region of parameter space independently of the initial distribution
of coupling constants and initial temperatures below Tc , even if
this initial temperature is chosen close to zero, below the attractor
region. Such strange attractors, however, change in shape and po-
sition for distinct (q,d) models in lattices with scale factor b = 2.
The occurrence of the strange attractor in a finite non-zero tem-
perature interval suggests a condensed phase with algebraic decay
of the correlation function.
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