
Distributed Event Graphs: Formalizing

Component-based Modelling and Simulation

Juan de Lara1

Escuela Politécnica Superior
Ingenieŕıa Informática

Universidad Autónoma de Madrid
Madrid, Spain

Abstract

In this work an extension to the classical Event Graphs formalism for discrete-event simulation
is presented. The extensions are oriented towards the specification of component-based models.
The abstract syntax has been defined through meta-modelling. Several methodological issues are
discussed, concerning the use of two different meta-modelling levels or collapsing the language into
a single one, where “instance-of” relationships are used between processes and their classes. The
operational semantics have been defined through graph transformation. This formal definition
enables analysis before code is generated from the model. The syntax and semantics of the visual
language have been implemented in the multi-paradigm tool AToM3, together with a code generator
that produces stand-alone applications able to run the analysed models in real-time.

Keywords: Meta-Modelling, Graph Transformation, Modelling and Simulation, Component
Frameworks, Event Graphs.

1 Introduction

Traditionally, simulation has been classified as continuous, discrete or hybrid.
In discrete-event modelling and simulation [13] there is a finite number of
events in a finite time interval. There are several ways (called “world views”)
to describe discrete-event systems. Whereas in the process-interaction view
one describes the life-cycle (the sequence of activities) of the model entities,
in the event-scheduling view events are the basic elements of the model. In

1 Email: Juan.Lara@ii.uam.es

Electronic Notes in Theoretical Computer Science 127 (2005) 145–162

1571-0661 © 2005 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.08.052
Open access under CC BY-NC-ND license. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82372509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Juan.Lara@ii.uam.es
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


the latter approach, event classes are defined with the effects of the event on
the system state and in the future (as new events can be scheduled). One of
the event-scheduling modelling languages is event graphs [11].

Event graph models are graph-like, where nodes represent events. These
specify the actions (changes in the system state) that are executed when the
event occurs. Events are related through transitions, which represent the
scheduling of the target event when the source event occurs. Transitions may
specify an amount of time and a condition for the target event to be scheduled.
Although well-known in the simulation community, this formalism is not suit-
able for object-oriented and component-based simulation, where the system
state is partitioned in components, which implement their own behaviour and
interact via ports. Component-based modelling solves the problem of scaling,
as models become simpler by their partition, one can have many instances
of the defined components and these are more adequate for distribution and
parallelization. In the present work, an extension to event graphs is proposed
in order to consider the communication of processes via events sent through
ports. We call the new formalism distributed event graphs (DEGs).

In this work we use meta-modelling for the definition of DEGs, whereas
the operational semantics are given by means of graph transformation. In
DEGs models, the specification level, where classes of processes and behaviours
are defined, can be distinguished from the executable instance level, where
networks of process instances are built. Two meta-modelling alternatives –
separate meta-levels versus single meta-level – are discussed in order to define
such levels. The formal definition of syntax and semantics enables analysis of
DEGs models using theoretical results of graph transformation [9].

We have used the meta-modelling tool AToM3 [7] for the implementation
of these ideas. AToM3 was built in collaboration with Hans Vangheluwe from
McGill University in Montreal. The tool allows describing the syntax of Visual
Languages by means of meta-modelling, and define and execute graph trans-
formation rules. From these high-level descriptions, customized modelling
environments are automatically generated. We have created a modelling envi-
ronment for DEGs and extended it with a code generator that produces stand
alone applications. In this way, applications are first visually modelled and
analyzed in AToM3, and then code can be generated from them.

The rest of the paper is organized as follows: section 2 introduces meta-
modelling and graph transformation for the definition of Visual Languages;
section 3 defines DEGs syntax by means of meta-modelling; section 4 deals
with the definition of its operational semantics; section 5 presents an exam-
ple, implemented in the AToM3 tool, in which we generate code from the
DEG model after its validation through simulation; section 6 discusses related

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162146



research and finally, section 7 ends with the conclusions and future work.

2 Meta-Modelling and Graph Transformation for the
Definition of Visual Languages

Visual languages have been traditionally described either using meta-models
or graph grammars [9]. Meta-modelling allows the definition of the structure
of admissible models by defining a model of their (usually abstract) syntax.
This model is called a meta-model. When the meta-model is equipped with
additional information – for example, regarding visualization (concrete syntax)
and additional constraints (for example in the form of logic constraints) – tools
can automatically generate modelling environments for the described visual
language [7] [10]. Thus, in a meta-modelling approach, one has several meta-
levels. In each level, models are instances of some model at a higher meta-
level. Moreover, in a strict meta-modelling approach [1], each model element
is an instance of another element in the corresponding model of the definition
language, at a higher meta-level. For example, in the definition of the UML
family of diagrams [12] four meta-levels were defined. In the third meta-
level (M3), one finds models (that is, the meta-models) of different formalisms
(such as DEGs). In the second meta-level there are instances (models) of
the different M3 meta-models. In the M4 level we can put the descriptions
(meta-metamodels) of the formalisms (that we call meta-formalisms) we used
to describe the M3 formalisms. For example, here we can put the descriptions
of the core UML, or the meta-object facility (MOF). Finally, at the M1 level,
we have execution data.

Graph grammars [9] can also be used to describe a visual language. They
are made of rules, each one of them having graphs in their left and right
hand sides (LHS and RHS). In order to apply a rule to a graph (called host
graph) a morphism has to be found between the LHS of the rule and a part
of the host graph. If such a morphism is found, the elements in the host
graph can be substituted by the elements in the RHS. Rules may also have
negative application conditions (NAC), which are patterns that should not
be found in the host graph for the rule to be applicable. In the algebraic
approach [9], rules are described as pushouts in the Graph category. There
are two main approaches to describe rules: the Double Pushout (DPO) and the
Single Pushout (SPO). In the DPO approach the morphism between the LHS
and the host graph must satisfy the dangling and the identification conditions.
The dangling condition specifies that if an edge is not deleted its source and
target nodes should be preserved. The identification condition specifies that
if two nodes or edges in the LHS are mapped onto a single node or edge in the

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162 147



host graph (via a non-injective morphism), then both should be preserved. In
the SPO approach, a production is represented as a single (partial) mapping
from LHS to RHS. If applied, dangling edges and nodes or edges in conflict
due to the identification condition are deleted. Thus, in the SPO approach
rules may have secondary effects. This is the approach we follow in this article.

N

/
������

n

��������

L
r ��

m

��

l�� ◦ R

m∗
��

G
r∗ ��◦ H

Fig. 1. Application of a Rule to a Graph G in the SPO Approach.

In the graph grammars approach [3] for the definition of Visual Languages,
these are defined by either a generating or a parsing grammar. The first kind
of grammars are able to generate all the valid models of the language. The
second kind of grammars can reduce the valid models of the language into an
initial symbol.

In [2] some initial work regarding the combination of both approaches was
done. The idea is to use in graph transformation rules the information in the
meta-model inheritance hierarchy. In this way, if an abstract node appears in
the LHS of a rule, then the rule (called abstract rule) is equivalent to all rules
resulting from the valid substitutions of the node by the concrete nodes in its
inheritance clan (called concrete rules). This technique greatly simplifies the
rules and is used in the present work in order to specify consistency checking
rules for the language (defined by a meta-model).

3 Meta-Modelling Distributed Event Graphs

In order to describe DEGs, we first need to describe process networks. These
have two levels. In the first one (specification level), classes of processes are
described. In this specification, we include port types (input or output), spec-
ify the allowed connectivity between these ports and the kind of events they
can produce and receive. Later we will define behaviours for process classes
by means of DEGs. In the second level (instance level), we specify processes
(instances of some process classes), their pins (instances of ports) and their
connectivity. An example is shown in Figure 2, where two process classes and
three instances are declared. All ports produce and receive events of type “ar-
rival”. For simplicity, we assume that the connectivity for all pins is “0..*”,
but we could include this information in the ports, at the specification level.

There are two options in order to define this two-level language. The
first one is to put each level in separate meta-levels [1]. The second one is

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162148



<<Process>>
Name: machine 1

<<Process>>
Name: machine 1

EventType
Name: arrival

<
<

in
st

an
ce

_o
f>

>

<
<

in
st

an
ce

_o
f>

>

<
<

in
st

an
ce

_o
f>

>

channel

OutPin InPin

<<Process>>
Name: generator 1

OutPin InPin OutPin
<

<
in

st
an

ce
_o

f>
>

<
<

in
st

an
ce

_o
f>

>

<<instance_of>>

<
<

in
st

an
ce

_o
f>

>

<
<

in
st

an
ce

_o
f>

>

Instance Level

channel

Specification Level

cable<<Process class>>
Name: arrival

<<Process class>>
Name: machine

Name: in_piece
InPort

cable

Name: out_piece
OutPort

Name: arrival
OutPort

Fig. 2. An Example with the Main Elements of Process Nets.

to put both levels in the same meta-level and explicitly relate elements in
both levels by means of “instance-of” relationships. Here we use the second
option, although in the AToM3 tool [7], both approaches are possible. The
second approach is more flexible, as it allows one to modify the specification
level at run-time (possibly using graph transformation rules). Additionally, as
behaviour is defined at the specification level using DEGs, it can be executed
using graph transformation rules.

In both approaches, one must ensure consistency in models at each level
(intra-level consistency) and between the specification and the instance levels
(inter-level consistency). In the latter case for example, we have to ensure
that for a certain process at the instance level, all its pins are instances of the
appropriate ports at the specification level. Additionally, we have to check
that the pin connections at the instance level are permitted at the specifica-
tion level. Whereas with two separate meta-levels, consistency between both
levels is guaranteed by construction, with one meta-level, consistency has to
be ensured by using textual (in the form of OCL for example) or graphical
constraints (in the form of graph transformation rules) that are evaluated
while the user builds the model. For intra-level consistency at the specifica-
tion level, we have to check that input ports cannot receive connections from
output ports that generate events that the input port cannot handle.

Figure 3 shows the meta-model for process networks. Process classes may
have a number of behaviours, but only one is active at a certain moment. Pro-
cesses change the behaviour they execute when they receive a special event
(called “INVOKE”) with the name of the new behaviour. An event queue
stores the generated events during the simulation execution. Events in the
queue are ordered by execution time. The current and the final time are kept
by a unique entity of type “GlobalTime”. A simulator for DEGs consumes

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162 149



Event

InputPin

OutputPin

Port

Pin

+ time: Float

GlobalTime

+ finalTime: Float

+ name: String

Process

OutputPort

ProcessClass

+ name: String

InputPort

EventQueue
+ name: String
+ time: Float

+ name: String

+ name: String

+ name: String

DynamicModel

EventType

0..*

0..* 0..*

1 1

1..*

0..*

0..*

0..*

1..* 1..*

1..*

1

current
behaviour

receiver_process

< cable

1..* 1..*

<<instance_of>>

<<instance_of>>

channel 1..*

1..*

<<instance_of>>

1

first

0..1

0..1

0..*

0..1

0..1

next

<
<

in
st

an
ce

_o
f>

>

0..*

1

1

1

0..*

1

1

0..*

0..*

Port_Type

Fig. 3. Meta-Model for Process Nets

events in the queue and creates new events according to the behaviour spec-
ification. This is a standard procedure in discrete-event simulation. Events
also have a pointer to the process instance that receives the event.

Figure 4 shows the consistency rules mentioned before. The first three rules
are inter-level consistency rules and check if pins are correctly instantiated
(regarding type and number) and connected. All the rules produce an error if
the consistency check fails (that is, if the rule can be applied). The first two
rules are abstract rules, as we are interested in checking pins and ports, without
considering whether they are input or output. For example, the first rule
checks whether pins are correct instances of ports. As stated in the previous
section, this abstract rule is equivalent to two concrete rules, resulting from the
valid substitutions of abstract classes pin and port in their inheritance clan [2].
The second rule checks that a process has at least one pin for each port.
Again, for simplicity we allow several pins for each port, although restrictions
regarding minimum and maximum values could be set in the specification
level. Finally the third rule checks that pins are correctly connected. The
fourth rule is an intra-level consistency rule, that checks if in the specification
level there is some input port receiving a connection which may produce non-
allowed events. The graph transformation rules can be executed by the user
at any time during the modelling phase, and they stop their execution as
soon as one of the rules can be applied (that is, when a consistency error is
found). Note how in AToM3, this checking could also be done by means of

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162150



textual constraints. These are pre- and post- conditions that allow or deny
the execution of user events (create, edit, connect, etc.)

ErrorEvent

<<Process class>>
Name: c1

<<instance_of>>

Name: y
<<Process>>

port
LHS

<<Process class>>
Name: c1

<<instance_of>>

Name: y
<<Process>>

port
RHS

msg="Missing pin in process "+y

ErrorEvent

Name: y
<<Process>>

NAC

pin

<<instance_of>>

port
1

2

1

1

2 2

CheckPinInstances−Number

<<Process class>>
Name: c1

<<Process class>>
Name: c2

<<Process>>
Name: x

<<Process>>
Name: x

LHS
InPort

OutPort

<<instance_of>>

<<instance_of>>

OutPin InPin

<<instance_of>>
<<instance_of>>

1 2
<<Process class>>

Name: c1
<<Process class>>

Name: c2

<<Process>>
Name: x

<<Process>>
Name: x

msg="Pins cannot be connected"

ErrorEvent

OutPort InPort

Name: ET

EventType

Name: ET

EventType

OutPort InPort

LHS

1
2

3

4 Name: ET

EventType

<<Process class>>
Name: c1

<<Process class>>
Name: c2

<<instance_of>>

Name: y
<<Process>>

pin

<<instance_of>>

port
LHS

<<Process class>>
Name: c1

<<Process class>>
Name: c2

msg=y+" is not an instance of "+c2

ErrorEvent

NAC

1 2

InPort
OutPort

<<instance_of>>

<<instance_of>>
<<instance_of>>

<<instance_of>>

1 2

RHS

OutPin InPin

CheckPinConnectivity

CheckPortConnectivity

msg="Port cannot receive events of Type"+ET

OutPort InPort

NAC

1
2

3

4

1
3

OutPort InPort

RHS

4

<<instance_of>>

Name: y
<<Process>>

pin

port
RHS

CheckPinInstances−Type

CONDITION c1 != c2

Fig. 4. Some Consistency Rules

In principle, the language for the specification of behaviours is left open
(even we could have components specified with different languages), but in
Figure 6 we define DEGs for this purpose. The main elements of a regular
event graph are shown in Figure 5. Events are represented as nodes in the
graph, which depict between brackets the state change (usually variable as-
signments) that should occur when the event takes place. Events are related
through transitions, which can have a time expression and a condition. This
means that when the event source of the transition occurs, if the condition is
met, the target event is scheduled after the specified time.

As in regular Event Graphs, DEGs are made of events (called DEGEvent-
Type in the meta-model) in which actions can be specified. In AToM3 ac-

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162 151



(condition)

{State Change}

Event 1 Event 2

{State Change}

time

Fig. 5. Main Elements of an Event Graph

tions are specified as Python code and can access variables that can be public
(shared between all processes) or private. Transitions are similar to the ones
of event graphs, but they may also specify a port. In this case the target
event is called external and is sent through the port. Otherwise it is internally
generated to the own process. A consistency rule must ensure that the port
specified in the transition is either None or a valid port. Another rule should
verify that in each behaviour there is at most one event of type initial. All
the initial events of the current behaviour of all the processes are scheduled
at time zero. When a process changes its behaviour, its initial event is also
scheduled at the current time. It is possible for several outgoing transitions
from an event to meet their conditions. In that case, all the target events
are scheduled. As next section shows, during simulation an auxiliary entity
of type “ExecutionPointer” will be created. This element points to the event
that is consumed (by means of relationship “event to process”) and to all
events that are scheduled (by means of relationship “next event”). A precise
specification of the simulator behaviour is given in next section by means of
graph transformation rules.

ExecutionPointer

+ name: String

(from Process Meta−model)
DynamicModel

+ portName: String

source

0..*

0..* target

DEvent Graph

+ condition: ConditionExpression

+ port_name: String

Transition

+ isInitial: Boolean

DEG Event Type

+ name: String

(from Process Meta−model)
Process

+ name: String

(from Process Meta−model)
EventType

+ isExternal: Boolean
+ action: ActionExpression

+ time: TimeExpression

0..*

receiver

1

next_event

event_to_process
0..1 0..1

0..*

0..1

0..1

0..*

Fig. 6. Meta-Model for Distributed Event Graphs

Figure 7 shows an example model built using the AToM3 tool, once a
concrete syntax is given to the elements in the meta-model. The upper part
of the model shows the specification part, where “Arrival” and “Machine”
process classes have been defined. Machines have two ports, the input port

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162152



(“In Piece”) can receive “Arrival” events either from arrival processes or from
machines. The DEG of the arrival process specifies that arrival events are to
be generated at fixed time intervals of 10 through port Arrival. The DEG
of the machine specifies that each machine has two local variables: idle (that
signals whether the machine is idle or not) and queue which stores the number
of pieces waiting to be processed. Both variables are initialised in the initial
event (Init) of the behaviour. On the arrival of a piece the queue is increased
and if the machine is idle, it schedules a Start Proc event to occur at the current
time. When the Start Proc occurs, the state is changed to busy and the queue
is decreased. After 10 time steps an End Proc is scheduled. When this event
occurs, an arrival event is generated immediately through the Out Piece port
and if the queue is not zero, a Start Proc is immediately scheduled. Several
instances of these process classes are defined below, and are related to them
through relationships “instance-of”, which are depicted as dotted arrows. A
global event queue, shared by all the processes is shown at the bottom of the
picture. This queue always has at least two events (Bottom and Top) which
mark the beginning and the end of the simulation and are kept in order to
make the specification of the simulator easier. Machine named “machine 2”
has no connection in its output pin, so the arrival events generated by the
process are lost.

Fig. 7. An Example Model

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162 153



4 Simulating Distributed Event Graphs

In this section, we model a simulator for DEGs using graph transformation
rules. There are two steps in the simulation, which are modelled in separate
graph transformation. The first one is the initialization, where the initial
events of the current behaviour of each process are scheduled at time 0. The
model shown in Figure 7 is the result of the application of this initialization
grammar.

The second transformation is the main simulation loop and some of its rules
are shown in Figure 8. The first rule consumes the first event in the queue
(the one after the “bottom” event) and advances the current time. The rule
also creates an “execution pointer” that marks the process which receives the
event and the event specification in the DEG describing the current behaviour.
When the rule is applied, the action specified (using Python) in the DEG event
is performed. The rule is not applicable if there is already an execution pointer.
As stated in the previous section, the action can reference shared (global) or
local variables. The name of the former variables are preceded by %glob%
and a single variable is created for all processes in the model. A hand-coded
parser (called by function parse) executes the state actions. A similar rule to
this one was created to remove events from the queue for which there is no
DEGEventType in the DEG specification.

The second rule searches all the outgoing transitions departing from the
event that was last executed. If the transition condition is true, then a new
event is scheduled and placed in the event queue. The transition specifies
the pin from which the event should be generated. The newly scheduled
event points to the process receiving it. In case there are several processes
connected to the output pin of the process producing the event, the rule selects
one randomly. This is a design decision when defining the language. Other
choice could have been to generate one event for each connected process. A
similar rule to this one was defined in order to discard events sent through
unconnected pins.

Rule 3 is similar to the previous one, but is executed when no port is
specified in the transition. In this case, the event is directed to the process
that generated it. This is a notation convenience, as one could have a process
with one of its output pins connected to one of its input pins and use rule 2
for internal event generation.

Rule 4 handles the event for changing the behaviour of a process. The rule
schedules (at the current time) the initial event of the behaviour. A similar
rule was defined for the case in which the behaviour does not have an initial
event. Finally rule 5 deletes the execution pointer. The rule makes use of

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162154



Name: S

<<Process class>>
Name: x

Time=t1
Final=Tf

LHS

Execution
Pointer

RHS

BOTTOM
−1 t2

S1

<<Process class>>
Name: x

Time=Tact
Final=Tf

Name: S1

Do: Action2

t2
S3S2

t1

Time=Tact
Final=Tf

<<Process class>>
Name: x

Name: S1

Do: Action2

Name: y
<<Process>>

t2
S3

Time=Tact
Final=Tf

<<Process class>>
Name: x

Name: S1

Do: Action2

Name: y
<<Process>>

Name: z
<<Process>>

t2
S3

<<Process class>>
Name: x

Name: S1

Do: Action2

Name: y
<<Process>>

Name: z
<<Process>>

t2
S3S2

t1

Time=Tact
Final=Tf

Time=Tact
Final=Tf

Execution
Pointer

Name: S1

Do: Action2

NAC

Execution
Pointer

Name: S1

Do: Action2

<<Process class>>
Name: x

Name: y
<<Process>>

<<instance_of>>

Behaviour: B

BOTTOM
−1 t2

S1

Pointer
Execution

NAC

<<Process class>>
Name: x

Name: y
<<Process>>

<<instance_of>>

Behaviour: B Behaviour: B1

BOTTOM
−1 t2

S1

<<Process class>>
Name: x

Name: y
<<Process>>

<<instance_of>>

Behaviour: B Behaviour: B1

BOTTOM
−1 t2

S1INVOKE B1
t1

isInitial: True isInitial: True

Name: y
<<Process>>

Name: S
Behaviour: B

Behaviour
Current

Do: Action

RHS

Pointer
Execution

<<instance_of>><<instance_of>>

exec parse(Action)
Action

Pointer

Name: y
<<Process>>

Name: S
Behaviour: B

Behaviour
Current

Do: Action

LHS

Behaviour
Current

Name: S

Do: Action1
THROUGH

AFTER t
IF c

Execution
Pointer

LHS

Behaviour: B

Behaviour
Current

Name: S

Do: Action1
THROUGH

AFTER t
IF c

<<instance_of>>

Execution
Pointer

S2
t1

S1
Tact+t

RHS

Behaviour: B

Behaviour
Current

Name: S

Do: Action1
THROUGH port

AFTER t
IF c

OutPort
port

<<instance_of>>

<
<

in
st

an
ce

_o
f>

>

Execution
Pointer

RHS

S2
t1

S1
Tact+t

Behaviour: B

Behaviour
Current

Name: S

Do: Action1
THROUGH port

AFTER t
IF c

LHS
OutPort
port

<<instance_of>>

<
<

in
st

an
ce

_o
f>

>

Execution
Pointer

1
2

1
2

1

2

Rule 2.− GenerateEvent

Condition
(t1 <= Tact+t <= t2) AND eval(c)

1 2 1
2

1

2

NAC

Condition
(t1 <= Tact+t <= t2) AND eval(c)

Condition
(t1 <= Tf)

Rule 3.− GenerateEventInternal

Rule 5.− Delete

S
t1

Rule 1.− ConsumeEvent

isExternal: False isExternal: False

t1

LHS RHS

S

Rule 4.− ChangeBehaviour

NAC

Pointer
Execution

Do: Action

Name: S

Do: Action

Fig. 8. Rules for the Simulation of DEGs

the property of SPO rewriting (regarding dangling edges) that deletes all the
incoming and outgoing edges of the pointer.

Figure 9 shows some steps in the execution of the model in Figure 7. In
the first step, the arrival event was consumed and the execution pointer was
created. In the second step an arrival event was generated, and finally, in the
third step the execution pointer was deleted. The simulation continues by

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162 155



processing the first init event in the queue.

(External)

BOTTOM
−1

Arrival
0 0

Init Init
0

TOP
100.0

OUT IN

<<Process>>
Name: machine 2

Arrival

IF: idle
AFTER: 0.0
THROUGH

IF: true
AFTER: 0.0
THROUGH Out_Piece

IF: queue>0
AFTER: 0
THROUGH

IF: true
AFTER: 10.0
THROUGH

IF: true
AFTER: 0
THROUGH Arrival

IF: true
AFTER: 10.0
THROUGH

<<Process class>>
Name: Machine

Out_Piece
OutPort

OutPort
Arrival In_Piece

InPort

<<Process class>>
Name: Arrival

Name: Arrival

<<Process>>
Name: arrival

<<Process>>
Name: machine 1

OUT IN OUT

End_Proc

Start_Proc
queue=0

DO:

Machine
Behaviour

Arrival Process

Behaviour
Current

Current
Behaviour

DO:queue−−

Time=0
Final=100

Current
Behaviour

DO: idle=1

idle=0

queue++

DO:idle=1Behaviour

Arrival
(External)

Arrival
(Initial)

Init
(Initial) Arrival

(External)

OUT IN

<<Process>>
Name: machine 2

Arrival

IF: idle
AFTER: 0.0
THROUGH

IF: true
AFTER: 0.0
THROUGH Out_Piece

IF: queue>0
AFTER: 0
THROUGH

IF: true
AFTER: 10.0
THROUGH

IF: true
AFTER: 0
THROUGH Arrival

IF: true
AFTER: 10.0
THROUGH

BOTTOM
−1

OUT IN

<<Process>>
Name: machine 2

Arrival

IF: idle
AFTER: 0.0
THROUGH

IF: true
AFTER: 0.0
THROUGH Out_Piece

IF: queue>0
AFTER: 0
THROUGH

IF: true
AFTER: 10.0
THROUGH

IF: true
AFTER: 10
THROUGH Arrival

IF: true
AFTER: 10.0
THROUGH

BOTTOM
−1 0

Init Init
0 10

Arrival TOP
100.010

Arrival

Execution
Pointer

<<Process class>>
Name: Machine

Out_Piece
OutPort

OutPort
Arrival In_Piece

InPort

<<Process class>>
Name: Arrival

Name: Arrival

<<Process>>
Name: arrival

<<Process>>
Name: machine 1

OUT IN OUT

End_Proc

Start_Proc
queue=0

DO:

Machine
Behaviour

Arrival Process

Behaviour
Current

Current
Behaviour

DO:queue−−

Time=0
Final=100

Current
Behaviour

DO: idle=1

idle=0

queue++

DO:idle=1Behaviour

Arrival
(External)

Arrival
(Initial)

Init
(Initial) Arrival

(External)

OUT IN

<<Process>>
Name: machine 2

Arrival

IF: idle
AFTER: 0.0
THROUGH

IF: true
AFTER: 0.0
THROUGH Out_Piece

IF: queue>0
AFTER: 0
THROUGH

IF: true
AFTER: 10.0
THROUGH

IF: true
AFTER: 10
THROUGH Arrival

IF: true
AFTER: 10.0
THROUGH

BOTTOM
−1 0

Init Init
0 10

Arrival TOP
100.010

Arrival

C
on

su
m

eE
ve

nt

G
en

er
at

eE
ve

nt

D
el

et
eP

oi
nt

er

Execution
Pointer

<<Process class>>
Name: Machine

Out_Piece
OutPort

OutPort
Arrival In_Piece

InPort

<<Process class>>
Name: Arrival

Name: Arrival

<<Process>>
Name: arrival

<<Process>>
Name: machine 1

OUT IN OUT

End_Proc

Start_Proc
queue=0

DO:

Machine
Behaviour

Arrival Process

Behaviour
Current

Current
Behaviour

DO:queue−−

Time=0
Final=100

Current
Behaviour

DO: idle=1

idle=0

queue++

DO:idle=1Behaviour

Arrival
(External)

Arrival
(Initial)

Init
(Initial) Arrival

(External)

0
Init Init

0
TOP
100.0

G
en

er
at

eE
ve

nt
In

te
rn

al

<<Process class>>
Name: Machine

Out_Piece
OutPort

OutPort
Arrival In_Piece

InPort

<<Process class>>
Name: Arrival

Name: Arrival

<<Process>>
Name: arrival

<<Process>>
Name: machine 1

OUT IN OUT

End_Proc

Start_Proc
queue=0

DO:

Machine
Behaviour

Arrival Process

Behaviour
Current

Current
Behaviour

DO:queue−−

Time=0
Final=100

Current
Behaviour

DO: idle=1

idle=0

queue++

DO:idle=1Behaviour

Arrival
(External)

Arrival
(Initial)

Init
(Initial) Arrival

Fig. 9. Some Steps in the Execution of a Model

5 An Example in AToM3: Code Generation

This section shows a further example of the usefulness of the newly defined
formalism and its implementation in the AToM3 tool [7]. As stated before,
AToM3 allows the definition of visual languages by means of meta-modelling
and their manipulation by means of graph transformation rules. The graph
rewriting engine can be configured to work in the DPO or SPO approaches
and is able to apply parallel rules [8] (in the sense of amalgamation with shar-
ing). Figure 10 shows AToM3 in the process of editing rule “ConsumeEvent”.
Mappings from LHS to RHS are given by labelling the graph elements with
numbers. In the RHS, we can include Python code to specify attribute values,
or copy them from preimage elements in LHS.

In AToM3, we can take advantage of the interpreted nature of Python,
the implementation language of the tool. In the generated DEGs modelling
environment (like the one in Figure 7), we can include Python code in the

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162156



Fig. 10. Editing a Graph Grammar Rule in AToM3.

DEGEventType actions that are executed when the event occurs. In this way,
the DEGs formalism can be used to visually model applications in the style of
(textual) event-driven progamming environments such as Visual Basic. This
permits, for example, building (by hand) a user interface for each component
in the initial event and to modify it in other events. In this way, the user
interface of the model is driven by the simulator, inside AToM3.

Alternatively, we have built a code generator that produces Python code
from the DEG models. In this way, models can be run outside AToM3 and inte-
grated with further code, to form a full application. We use some hand-coded
base classes for processes and for the DEGs simulator. Note how the formal
(and visual) definition of the simulator as graph transformation rules served
as an executable specification for the simulator written in Python. The gener-
ated classes inherit from these base classes. AToM3 creates a Python class for
each process class. This class has structures to store the different ports (and
the connected processes), the behaviours and the events that the component
can handle. For each (non-external) event class, a method is created in the
generated class. The method is invoked when an event of the corresponding
type is consumed by the component. Another Python class is generated for
the model. This class creates and connects the process instances and runs the
simulation. There are two ways to run the simulation. In the first one, the
simulation is run “as fast as possible”, in such a way that timing in events do
not represent real time. In the second one, the simulation is run in “real time”,
in such a way that the timing of events is used to drive the execution. That

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162 157



is, if after executing an event, the next one is in 10 seconds, the execution
is suspended for 10 seconds. It is easy to modify the produced code in order
to make the user actions in the interface of the generated application pro-
duce events that are included in the event queue, directed to the appropriate
component (by invoking the appropriate event method in each process).

In this way, one can follow the next sequence of steps in order to generate
an application and verify its correctness. The first step is to model the appli-
cation components in AToM3 as shown for example in Figure 7. In this step
one still does not include information about the user interface in the states
actions (“DO” attribute). Once the model is finished, in the second step, we
can simulate the model, which corresponds to the main application logic. In
the future, further analysis techniques will be implemented (see conclusions
section). In the third step, one can include Python code in the “DO” event
attributes in order to perform additional actions, such as building the user
interface. In the fourth step, it is possible to simulate the model (with the
user interface) inside AToM3. Finally, the application can be generated and
further code can be added, for example to link user interface events with the
model events. The automation of this task is up to future work.

Figure 11 shows an example (only the specification level) in which we have
defined two components, a Cell which has an attribute named colour and
four behaviours: idle (does nothing), shift (on receiving an event, changes the
colour and forwards the event with a delay), drain (changes colour but does
not forward the event) and delay (forwards the event but does not change
colour). A cell component is associated with a controller component (which
later will be linked to a button in the user interface) that is able to change the
cell behaviour. Additionally, the model has an instance level, where we have
connected five cells (the last is connected to the first) and their respective
controllers.

The resulting application is shown in Figure 12. We have associated a
variable colour canvas with the cell components. The canvas also shows the
name of the component current behaviour. We have bound the mouse click
event with the method that generates the change event. We have associated
a button (labelled as “Change!”) with each controller component and bound
the mouse click with the method generating the CLICK event. In total, the
amount of code added by hand (in the state actions in the model, and after
code generation) was negligible.

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162158



Fig. 11. Modelling the “Shifter Cells” application in AToM3.

Fig. 12. The generated “Shifter Cells” application.

6 Related work

With respect to the formalism, there have been some approaches for extend-
ing event graphs. In [4] two extensions are reported: cancelling edges, and
parameter passing. In [5], event graphs are used to describe behaviour of sin-
gle components, but there is no mechanism to express event passing between
components via specific ports. To the author knowledge no extension has been
proposed to adapt event graphs to component-based simulation.

The defined framework is somewhat similar to DEVS (Discrete Event Sys-
tem Specification) [13]. In DEVS, atomic models are specified by defining
transition functions for internal and external events, as well as output func-
tions and a time advance function that sets the amount of time to be spent
at each state (if no external event occurs). Atomic DEVS can be coupled
via ports to form composite DEVS. In this case there are functions to trans-
late event names from output to input ports. This allows an easier reuse of

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162 159



components. In our framework, this translation can be done by including
two-port components (“translators”) that on the arrival of one event produce
the appropriate event in the output port. We also allow components to have
different behaviours and do not restrict the kind of simulation language used
to specify each component (which could be different for each component), if its
semantics are based on graph transformation. The use of theoretical results of
graph transformation allows the investigation of properties of multi-formalism
models.

This work has also certain similarities with the concept of components in
UML 2.0 [12]. In this new version of UML, components have ports, each one
of them can declare required and provided interfaces, which specify the kind
of messages the component can send and receive.

With respect to the techniques for the definition of the formalism, graph
transformation has been widely used for the definition of operational semantics
of formalisms. We can find two main approaches. In the first one, both
structure and behaviour are specified with some visual language and graph
grammars are used to “interpret” such behaviour. The present work is an
example of this approach. In the second approach, structure is described with
a visual language as before, but behaviour is directly implemented by means
of graph rewriting rules. That is, there is nothing in the model that tells us
something about the behaviour: all the information is in the rules. Examples
of this approach can be found for example in [6], where process nets with ports
are represented with a visual language and their behaviour using context-free
grammars.

7 Conclusions

In this work we have extended classical event graphs for their use in component-
based models. The definition of the language has been done formally by means
of meta-modelling and graph transformation. The language has a specifica-
tion level – where process classes, ports and behaviour are defined – and an
instance level, where the different classes are instantiated. Rules are defined
in order to check the intra- and inter-level consistency.

The combination of a formal definition of a language (by means of meta-
modelling and graph transformation) and code generation allows the analysis
of the model before the application is generated. In our case, we have only
implemented a simulator with graph transformation, but further model prop-
erties could be investigated using the theoretical results of graph transforma-
tion. These include the analysis of parallelism, deadlock, non-determinism,
functional behaviour, etc.

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162160



In the future, we plan to extend the present work to model distributed
discrete-event simulation. For this purpose private event queues are neces-
sary, as well as models (in the form of rules) of protocols. Further planned
extensions include for example, the possibility to test the port from which
an event reached a component, sending an event through several ports and
the definition of hierarchies of events. The latter possibility allows including
abstract events in the specification in order to make it more compact. Finally,
other extensions of the framework to make it more suitable for agent-based
simulation are also under consideration. For this application domain, it is
needed a way to change the model structure at run-time. This includes cre-
ating and deleting new components, and changing their connections.

Acknowledgement

I’d like to thank the three anonymous referees for their comments, and the
sponsors of this work: the Spanish Ministry of Science and Technology (TIC2002-
01948) and the Santander Central Hispano Bank.

References

[1] Atkinson, C., Kühne, T. 2002. Rearchitecting the UML infrastructure. ACM Transactions on
Modeling and Computer Simulation, Vol 12(4), pp.: 290-321.

[2] Bardohl, R., Ehrig, H., de Lara J., and Taentzer, G. 2004. Integrating Meta Modelling with
Graph Transformation for Efficient Visual Language Definition and Model Manipulation. In
proceedings of ETAPS/FASE’04, LNCS 2984, pp.: 214-228.

[3] Bardohl, R. 2002. A Visual Environment for Visual Languages. Science of Computer
Programming 44,pp.: 181-203. See also the GENGED home page: http://tfs.cs.tu-berlin.de/
∼genged/.

[4] Buss, A. 2001. Basic Event Graph Modeling Simulation News Europe, Issue 31, Technical Note.
pp.: 1-6.

[5] Buss, A. 2000. Component-Based Simulation Modeling Proc. of the 2000 Winter Simulation
Conference, pp.: 964-971.

[6] Degano, P., Montanari, U. 1987. A Model for Distributed Systems Based on Graph Rewriting
Journal of the ACM, 34(2), April, pp.: 411-449.

[7] de Lara, J., Vangheluwe, H. 2002. AToM3: A Tool for Multi-Formalism Modelling and Meta-
Modelling. In Proc. FASE’02, Springer LNCS 2306, pp. 174 - 188. See also the AToM3 home
page, http://atom3.cs.mcgill.ca

[8] de Lara, J., Ermel, C., Taentzer, G., Ehrig, K. 2004. Parallel Graph Transformation for Model
Simulation applied to Timed Transition Petri Nets. In Graph Transformation-Visual Modeling
Techniques (GT-VMT04), Barcelona.

[9] Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. 1999. Handbook of Graph Grammars and
Computing by Graph Transformation. (1). World Scientific.

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162 161

http://tfs.cs.tu-berlin.de/~genged/
http://tfs.cs.tu-berlin.de/~genged/
http://tfs.cs.tu-berlin.de/~genged/
http://atom3.cs.mcgill.ca
http://atom3.cs.mcgill.ca
http://atom3.cs.mcgill.ca


[10] Lédczi, A., Bakay, A., Marói, M., Vögyesi, P., Nordstrom, G., Sprinkle, J., Karsai, G.
Composing Domain-Specific Design Environments. IEEE Computer, Nov. 2001, pp.: 44-51.
See also the GME home page:
http://www.isis.vanderbilt.edu/Projects/gme/default.html.

[11] Schruben, L. W. 1983. Simulation modeling with event graphs. Communications of the ACM,
26:957-963.

[12] UML2.0 infrastructure and superstructure specification at the OMG’s home page: http://www.
omg.org/technology/documents/modeling spec catalog.htm#UML

[13] Zeigler, B. P., Praehofer, H., Kim, T. G. 2000. Theory of Modeling and Simulation 2nd Edition.
Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press.

J. de Lara / Electronic Notes in Theoretical Computer Science 127 (2005) 145–162162

http://www.isis.vanderbilt.edu/Projects/gme/default.html
http://www.isis.vanderbilt.edu/Projects/gme/default.html
http://www.isis.vanderbilt.edu/Projects/gme/default.html
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#UML

	Introduction
	Meta-Modelling and Graph Transformation for the Definition of Visual Languages
	Meta-Modelling Distributed Event Graphs
	Simulating Distributed Event Graphs
	An Example in AToM3: Code Generation
	Related work
	Conclusions
	Acknowledgement 
	References



