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a b s t r a c t

This paper deals with the existence of positive periodic solutions for the nth-order ordinary
differential equation

u(n)(t) = f (t, u(t), u′(t), . . . , u(n−1)(t) ),

where n ≥ 2, f : R × [0, ∞) × Rn−1
→ R is a continuous function and f (t, x0,

x1, . . . , xn−1) is 2π-periodic in t . Some existence results of positive 2π-periodic solutions
are obtained assuming f satisfies some superlinear or sublinear growth conditions on
x0, x1, . . . , xn−1. The discussion is based on the fixed point index theory in cones.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper,we are concernedwith the existence of positive 2π-periodic solutions for the nth-order ordinary differential
equation

u(n)(t) = f (t, u(t), u′(t), . . . , u(n−1)(t)), (1)

where n ≥ 2 is a positive integer, f : R × [0, ∞) × Rn−1
→ R is a continuous function and f (t, x0, x1, . . . , xn−1) is

2π-periodic with respect to t .
The existence problemof periodic solutions is an important topic in qualitative analysis of ordinary differential equations.

In recent years, the existence of positive periodic solutions of some ordinary differential equations with special forms has
been researched by several authors; see [1–16]. For the second-order equation

u′′(t) + a(t)u(t) = f (t, u(t)), (2)

where a ∈ C(R, R+) is a ω-periodic function, the existence and multiplicity of positive periodic solutions are discussed by
the authors of [1–6]. One of the well-known results is that if f satisfies the superlinear growth or sublinear condition, Eq. (2)
has at least one positive periodic solution; see [1,3,4]. This result is concluded from Krasnoselskii’s fixed point theorem of
cone expansion or compression, and it is improved and extended by more precise theory of the fixed point index in cones;
see [2,5,6]. In [7], Lui, Ge and Gui considered the periodic problem of the second-order equation

−(pu′)′(t) + q(t)u(t) = f (t, u(t)),

where the coefficients p, q ∈ C(R, R+) are ω-periodic and p(t) > 0 for every t ≥ 0. Using Leggett–Williams fixed point
theorem in cones, they obtained the existence result of three positive periodic solutions. This work was recently extended

✩ Research supported by NNSFs of China (10871160, 11061031), the NSF of Gansu Province (0710RJZA103) and Project of NWNU-KJCXGC-3-47.
∗ Corresponding author. Tel.: +86 0931 7972807.

E-mail address: liyxnwnu@163.com (Y. Li).

0898-1221/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2011.06.013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82372421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.camwa.2011.06.013
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:liyxnwnu@163.com
http://dx.doi.org/10.1016/j.camwa.2011.06.013


1716 Y. Li, H. Fan / Computers and Mathematics with Applications 62 (2011) 1715–1722

by Anderson and Avery in [8] to the second-order equation

−(pu′)′(t) − r(t)p(t)u′(t) + q(t)u(t) = f (t, u(t))

and the corresponding discrete version.
The existence of positive periodic solutions of some third-order equations has been discussed in [9–12]. In [10], Chu and

Zhou considered the periodic boundary value problem for the third-order equation

u′′′(t) + ρ3u(t) = f (t, u(t)),

where ρ ∈ (0, 1
√
3
) is a constant and f ∈ C([0, 2π ] × (0, ∞)). Using Krasnoselskii’s fixed point theorem in cones, they

obtained the existence results of positive solutions. Their results extended the one obtained by the Schauder fixed point
theorem in [9]. In [11], by Krasnoselskii’s fixed point theorem in cones, Feng established some existence and multiplicity
results of positive periodic solutions for the third-order equation

u′′′(t) + αu′′(t) + βu′(t) = f (t, u(t)),

where α and β are positive constants and satisfy certain conditions. Recently, these works were extended to the more
general third-order equations by Li in [12].

In [13] and [14], the author using the fixed point index theory in cones obtained some existence results of positive
solutions for periodic boundary problems of the fourth-order equation

u(4)(t) − βu′′(t) + αu(t) = f (t, u(t))

and the nth-order equation

u(n)(t) + an−1u(n−1)(t) + · · · + a0u(t) = f (t, u(t)),

respectively. The existence of positive periodic solutions for some special higher-order ordinary differential equations was
also considered in [15,16]. The existence of the other periodic solutions for the higher-order ordinary differential equations
was discussed in [17–19]. In [17], Li considered the existence and uniqueness of the nth-order periodic boundary problem.
He presented some new spectral conditions for the nonlinearity f (t, u) to guarantee the existence and uniqueness. In [18],
Li and Mu researched the existence of odd periodic solutions for a 2nth-order ordinary differential equation. Their obtained
some existence results of odd periodic solutions under the nonlinearity respectively satisfies linear, superlinear or sublinear
growth conditions. In [19], Cabada developed a monotone method in the presence of lower and upper solutions for some
higher-order periodic boundary value problems on time scales. In this paper, we are interested in the existence of positive
periodic solutions for higher-order ordinary differential equations.

In the works on the existence of positive periodic solutions mentioned above, the newly discovered positivity of Green
function of the corresponding linear periodic boundary value problems plays an important role. The positivity guarantees
that the integral operators of the periodic problems are cone-preserving in the cone

P = {u ∈ C[0, ω] | u(t) ≥ σ‖u‖, t ∈ [0, ω]} (3)

in the Banach space C[0, ω], where σ is a positive constant. Hence the fixed point theorems of cone mapping can be
applied to these periodic problems. However, all of these works are on the special equations whose nonlinearities contain
no derivative terms, and few researchers consider the existence of positive periodic solutions for the general nth-order
Eq. (1) that nonlinearity f contains the derivative terms u′(t), u′′(t), . . . , u(n−1)(t).

The purpose of this paper is to establish the existence results of positive periodic solutions to the general nth-order
Eq. (1). For the periodic problem of Eq. (1), since the corresponding integral operator has no definition on cone P , the
argument methods used in [1–16] are not applicable. We will use a completely different method to treat Eq. (1). Our main
results will be given in Section 3. Some preliminaries to discuss Eq. (1) are presented in Section 2.

2. Preliminaries

Let C2π (R) denote the Banach space of all continuous 2π-periodic functions with norm ‖u‖C = max0≤t≤2π |u(t)|.
Generally, for m ∈ N, we use Cm

2π (R) to denote the Banach space of all mth-order continuous differentiable 2π-periodic
functions with the norm ‖u‖Cm =

∑m
k=0 ‖u(k)

‖C . Let C+

2π (R) denote the cone of all nonnegative functions in C2π (R).
LetMn be a positive constant given by

Mn =



2 cos

 π

2n

−n
, if n = 2k + 1 for a k ∈ N,

2 cos
π

n

−n
, if n = 4k for a k ∈ N,

2−n, if n = 4k − 2 for a k ∈ N.

(4)

By the maximum principle of the differential operator Lnu = u(n)
+ Mu in periodic boundary condition in [20] or [14] (See

[20, Lemma 2.4], or [14, Lemma 3]), we have the following lemma:
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Lemma 2.1. Let M ∈ (0,Mn) be a constant. Then the linear nth-order boundary value problemu(n)(t) + Mu(t) = 0, t ∈ [0, 2π ],

u(i)(0) = u(i)(2π), i = 0, 1, . . . , n − 2,
u(n−1)(0) − u(n−1)(2π) = 1,

(5)

has a unique solution U ∈ Cn
[0, 2π ]. Moreover, U(t) > 0 for t ∈ [0, 2π ].

Let M ∈ (0,Mn). For h ∈ C2π (R), we consider the existence of 2π-periodic solution of the linear nth-order differential
equation

u(n)(t) + Mu(t) = h(t), t ∈ R. (6)

Hereinafter, we use U(t) to denote the unique solution of the boundary value problem (5).

Lemma 2.2. Let M ∈ (0,Mn). Then for every h ∈ C2π (R), the linear Eq. (6) has a unique 2π-periodic solution u(t) which is
given by

u(t) =

∫ t

t−2π
U(t − s)h(s)ds := Sh(t), t ∈ R. (7)

Moreover, S : C2π (R) → Cn−1
2π (R) is a completely continuous linear operator.

Proof. Making derivative for the expression (7) and using the boundary condition of U(t), we obtain that

u(i)(t) =

∫ t

t−2π
U (i)(t − s)h(s)ds, i = 1, 2, . . . , n − 1, (8)

and

u(n)(t) = (U (n−1)(0) − U (n−1)(2π))h(t) +

∫ t

t−2π
U (n)(t − s)h(s)ds

= h(t) − M
∫ t

t−2π
U(t − s)h(s)ds

= h(t) − Mu(t).

Therefore, u(t) satisfies Eq. (6). Let τ = s + 2π , from (7) and the periodicity of h it follows that

u(t) =

∫ t+2π

t
U(t + 2π − τ)h(τ − 2π)dτ

=

∫ t+2π

t
U(t + 2π − τ)h(τ )dτ = u(t + 2π).

Hence, u(t) is a 2π-periodic solution of Eq. (6). The existence implies that u(t) is the unique 2π-periodic solution of Eq. (6).
Clearly, S : C2π (R) → Cn−1

2π (R) is completely continuous. �

Let M ∈ (0,Mn). Then the solution of Eq. (5) U(t) > 0 for every t ∈ [0, 2π ]. If h ∈ C+

2π (R) and h(t) ≢ 0, by (7) the
2π-periodic solution of Eq. (6) u(t) > 0 for every t ∈ R, and it is called positive 2π-periodic solution. This positivity is
important for our discussion. Define positive constants σ and C1, . . . , Cn−1 by

σ =

min
t∈I

U(t)

max
t∈I

U(t)
, Ci =

max
t∈I

|U (i)(t)|

min
t∈I

U(t)
(i = 1, . . . , n − 1), (9)

where I = [0, 2π ]. Choose a cone K in Cn−1
2π (R) by

K = {u ∈ Cn−1
2π (R) | u(t) ≥ σ‖u‖C , |u(i)(t)| ≤ Ciu(t), i = 1, 2 · · · , n − 1, t ∈ R}. (10)

We have the following lemma.

Lemma 2.3. Let M ∈ (0,Mn). Then for every h ∈ C+

2π (R), the 2π-periodic solution of Eq. (6) u = Sh ∈ K. Namely,
S(C+

2π (R)) ⊂ K .
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Proof. Let h ∈ C+

2π (R), u = Sh. For every t ∈ R, from the expression (7) and the periodicity of h it follows that

u(t) =

∫ t

t−2π
U(t − s)h(s)ds ≤ max

τ∈I
U(τ )

∫ t

t−2π
h(s)ds

= max
τ∈I

U(τ )

∫ 2π

0
h(s)ds,

and therefore,

‖u‖C ≤ max
τ∈I

U(τ )

∫ 2π

0
h(s)ds.

Using (7) again, we obtain that

u(t) =

∫ t

t−2π
U(t − s)h(s)ds ≥ min

τ∈I
U(τ )

∫ t

t−2π
h(s)ds

= min
τ∈I

U(τ )

∫ 2π

0
h(s)ds ≥ σ‖u‖C .

By the expression (8) we obtain that

|u(i)(t)| ≤

∫ t

t−2π
|U (i)(t − s)|h(s)ds ≤ max

τ∈I
|U (i)(τ )|

∫ t

t−2π
h(s)ds

= max
τ∈I

|U (i)(τ )|

∫ 2π

0
h(s)ds

= Ci min
τ∈I

U(τ )

∫ 2π

0
h(s)ds ≤ Ciu(t), i = 1, . . . , n − 1.

Hence, u ∈ K . �

Now we consider the nonlinear equation (1). Hereinafter, we assume that the nonlinearity f satisfies the following
hypothesis:

(F0) There exists a positive constantM ∈ (0,Mn) such that

f (t, x0, x1, . . . , xn−1) + Mx0 ≥ 0

for every x0 ∈ [0, +∞) and t, x1, . . . , xn−1 ∈ R.
Let

f1(t, x0, x1, . . . , xn−1) = f (t, x0, x1, . . . , xn−1) + Mx0,

then f1(t, x0, x1, . . . , xn−1) ≥ 0 for x ≥ 0 and t, x1, . . . , xn−1 ∈ R, and Eq. (1) is rewritten to

u(n)(t) + Mu(t) = f1(t, u(t), u′(t), . . . , u(n−1)(t)), t ∈ R. (11)

For every u ∈ K , set

F(u)(t) := f1(t, u(t), u′(t), . . . , u(n−1)(t)), t ∈ R. (12)

Then F : K → C+

2π (R) is a continuous mapping. We define the integral operator A acting on cone K by

Au(t) =

∫ t

t−2π
U(t − s)f1(s, u(s), u′(s), . . . , u(n−1)(s))ds = (S ◦ F)(t). (13)

From Assumption (F0) and Lemma 2.3, we easily obtain that

Lemma 2.4. A(K) ⊂ K, and A : K → K is completely continuous.

By the definition of operator S, a positive 2π-periodic solution of Eq. (1) is equivalent to a nonzero fixed point of A. We
will find the nonzero fixed point of A by using the fixed point index theory in cones.

We recall some concepts and conclusions on the fixed point index in cones in [21,22]. Let E be a Banach space and K ⊂ E
be a closed convex cone in E. AssumeΩ is a bounded open subset of E with boundary ∂Ω , and K∩Ω ≠ ∅. Let A : K∩Ω → K
be a completely continuous mapping. If Au ≠ u for every u ∈ K ∩ ∂Ω , then the fixed point index i(A, K ∩ Ω, K) is well
defined. One important fact is that if i(A, K ∩ Ω, K) ≠ 0, then A has a fixed point in K ∩ Ω . The following two lemmas are
needed in our argument.
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Lemma 2.5 ([22]). Let Ω be a bounded open subset of E with θ ∈ Ω , and A : K ∩ Ω → K a completely continuous mapping. If
λAu ≠ u for every u ∈ K ∩ ∂Ω and 0 < λ ≤ 1, then i(A, K ∩ Ω, K) = 1.

Lemma 2.6 ([22]). Let Ω be a bounded open subset of E and A : K ∩ Ω → K a completely continuous mapping. If there exists
an v ∈ K \ {θ} such that u − Au ≠ τv for every u ∈ K ∩ ∂Ω and τ ≥ 0, then i(A, K ∩ Ω, K) = 0.

3. Main results

We consider the existence of positive 2π-periodic solutions of Eq. (1). Let f ∈ C(R × [0, ∞) × Rn−1) satisfy Assumption
(F0) and f (t, x0, x1, . . . , xn−1) be 2π-periodic in t. Let C1, . . . , Cn−1 be the positive constants defined by (9) and I = [0, 2π ].
To be convenient, we introduce the notations

f0 = lim inf
x0→0+

min
t∈I,|xi|≤Cix0,i=1,...,n−1

f (t, x0, x1, . . . , xn−1)

x0
,

f 0 = lim sup
x0→0+

max
t∈I,|xi|≤Cix0,i=1,...,n−1

f (t, x0, x1, . . . , xn−1)

x0
,

f∞ = lim inf
x0→+∞

min
t∈I,|xi|≤Cix0,i=1,...,n−1

f (t, x0, x1, . . . , xn−1)

x0
,

f ∞
= lim sup

x0→+∞

max
t∈I,|xi|≤Cix0,i=1,...,n−1

f (t, x0, x1, . . . , xn−1)

x0
.

Our main results are as follows:

Theorem 3.1. Suppose that f : R×[0, ∞)×Rn−1
→ R is continuous and f (t, x0, x1, . . . , xn−1) is 2π-periodic in t. If f satisfies

Assumption (F0) and the condition

(F1) f 0 < 0, f∞ > 0,

then Eq. (1) has at least one positive 2π-periodic solution.

Theorem 3.2. Suppose that f : R×[0, ∞)×Rn−1
→ R is continuous and f (t, x0, x1, . . . , xn−1) is 2π-periodic in t. If f satisfies

Assumption (F0) and the condition

(F2) f0 > 0, f ∞ < 0,

then Eq. (1) has at least one positive 2π-periodic solution.

In Theorem 3.1, the condition (F1) allows that f (t, x0, x1, . . . , xn−1) may be superlinear in x0, x1, · · ·, xn−1. For the
application, see Example 3.1 below. In Theorem 3.2, the condition (F2) allows that f (t, x0, x1, . . . , xn−1) may be sublinear in
x0, x1, · · ·, xn−1; see Example 3.2 below.

Proof of Theorem 3.1. Choose working space E = Cn−1
2π (R). Let K ⊂ Cn−1

2π (R) be the closed convex cone in Cn−1
2π (R) defined

by (10) and A : K → K be the completely continuous operator defined by (13). Then the positive 2π-periodic solution of
Eq. (1) is equivalent to nonzero fixed point of A. Let 0 < r < R < +∞ and set

Ω1 = {u ∈ E | ‖u‖Cn−1 < r}, Ω2 = {u ∈ E | ‖u‖Cn−1 < R}. (14)

We show that the operator A has a fixed point in K ∩ (Ω2 \ Ω1) when r is small enough and R large enough.
By the assumption of f 0 < 0 and the definition of f 0, there exist ε ∈ (0,M) and δ > 0, such that

f (t, x0, x1, . . . , xn−1) ≤ −εx0, for t ∈ I, |xi| ≤ Cix0, i = 1, . . . , n − 1, 0 ≤ x0 ≤ δ. (15)

Choose r ∈ (0, δ). We prove that A satisfies the condition of Lemma 2.5 in K ∩ ∂Ω1, namely λAu ≠ u for every u ∈ K ∩ ∂Ω1
and 0 < λ ≤ 1. In fact, if there exist u0 ∈ K ∩ ∂Ω1 and 0 < λ0 ≤ 1 such that λ0Au0 = u0, then by the definition of A and
Lemma 2.2, u0 ∈ Cn

2π (R) satisfies the differential equation

u0
(n)(t) + Mu0(t) = λ0f1(t, u0(t), u0

′(t), . . . , u0
(n−1)(t)), t ∈ R. (16)

Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, we have

|u0
(i)(t)| ≤ Ciu0(t), i = 1, . . . , n − 1,

0 < σ‖u0‖C ≤ u0(t) ≤ ‖u0‖C ≤ ‖u0‖Cn−1 = r < δ, t ∈ R.
(17)

Hence from (15) it follows that

f (t, u0(t), u0
′(t), . . . , u0

(n−1)(t)) ≤ −εu0(t), t ∈ I.
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By this inequality, (16) and the definition of f1 we have

u0
(n)(t) + Mu0(t) ≤ λ0(Mu0(t) − εu0(t)) ≤ (M − ε)u0(t), t ∈ I.

Integrating both sides of this inequality on I and using the periodicity of u0, we obtain that

M
∫ 2π

0
u0(t)dt ≤ (M − ε)

∫ 2π

0
u0(t)dt.

Since
 2π
0 u0(t)dt ≥ 2πσ‖u0‖C > 0, it follows thatM ≤ M − ε, which is a contradiction. Hence A satisfies the condition of

Lemma 2.5 in K ∩ ∂Ω1. By Lemma 2.5 we have

i(A, K ∩ Ω1, K) = 1, (18)

On the other hand, since f∞ > 0, by the definition of f∞, there exist ε1 > 0 and H > 0 such that

f (t, x0, x1, . . . , xn−1) ≥ ε1x0, for t ∈ I, |xi| ≤ Cix0, i = 1, . . . , n − 1, x0 ≥ H. (19)

Choose R > max{ 1+C1+···+Cn−1
σ

H, δ} and let v(t) ≡ 1. Clearly, v ∈ K \ {θ}. We show that A satisfies the condition of
Lemma 2.6 in K ∩∂Ω2, namely u−Au ≠ τv for every u ∈ K ∩∂Ω2 and τ ≥ 0. In fact, if there exist u1 ∈ K ∩∂Ω2 and τ1 ≥ 0
such that u1 − Au1 = τ1v, since u1 − τ1v = Au1, by definition of A and Lemma 2.2, u1 ∈ Cn

2π (R) satisfies the differential
equation

u1
(n)(t) + M(u1(t) − τ1) = f1(t, u1(t), u1

′(t), . . . , u1
(n−1)(t)), t ∈ R. (20)

Since u1 ∈ K ∩ ∂Ω2, by the definition of K , we have

u1(t) ≥ σ‖u1‖C , |u1
(i)(t)| ≤ Ciu1(t), i = 1, . . . , n − 1, t ∈ R. (21)

By the latter inequalities of (21), we have

‖u(i)
1 ‖C ≤ Ci‖u1‖C , i = 1, . . . , n − 1.

This implies that

‖u1‖Cn−1 =

n−1−
i=0

‖u(i)
‖C ≤ (1 + C1 + · · · + Cn−1)‖u1‖C .

Consequently,

‖u1‖C ≥
1

1 + C1 + · · · + Cn−1
‖u1‖Cn−1 . (22)

By (22) and the former inequality of (21), we have

u1(t) ≥ σ‖u1‖C ≥
σ

1 + C1 + · · · + Cn−1
‖u1‖Cn−1

=
σR

1 + C1 + · · · + Cn−1
> H, t ∈ I.

From this, the latter inequalities of (21) and (19), it follows that

f (t, u1(t), u1
′(t), . . . , u1

(n−1)(t)) ≥ ε1u1(t), t ∈ I.

By this inequality, (20) and the definition of f1, we have

u1
(n)(t) + M(u1(t) − τ1) ≥ (M + ε1)u1(t), t ∈ I.

Integrating this inequality on I and using the periodicity of u1, we get that

M
∫ 2π

0
u1(t)dt − 2πMτ1 ≥ (M + ε1)

∫ 2π

0
u1(t)dt.

Since
 2π
0 u1(t)dt ≥ 2πσ‖u1‖C > 0, form this inequality it follows that M ≥ M + ε1, which is a contradiction. This means

that A satisfies the condition of Lemma 2.6 in K ∩ ∂Ω2. By Lemma 2.6,

i(A, K ∩ Ω2, K) = 0, (23)

Now by the additivity of fixed point index, (18) and (23) we have

i(A, K ∩ (Ω2 \ Ω1), K) = i(A, K ∩ Ω2, K) − i(A, K ∩ Ω1, K) = −1.

Hence A has a fixed point in K ∩ (Ω2 \ Ω1), which is a positive 2π-periodic solution of Eq. (1). �
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Proof of Theorem 3.2. Let Ω1, Ω2 ⊂ Cn−1
2π (R) be defined by (14). We prove that the operator A defined by (13) has a fixed

point in K ∩ (Ω2 \ Ω1) if r is small enough and R large enough.
By the assumption of f0 > 0 and the definition of f0, there exist ε > 0 and δ > 0, such that

f (t, x0, x1, . . . , xn−1) ≥ εx0, for t ∈ I, |xi| ≤ Cix0, i = 1, . . . , n − 1, 0 ≤ x0 ≤ δ. (24)

Choose r ∈ (0, δ) and v(t) ≡ 1. We prove that A satisfies the condition of Lemma 2.6 in K ∩ ∂Ω1, namely u − Au ≠ τv for
every u ∈ K ∩∂Ω1 and τ ≥ 0. In fact, if there exist u0 ∈ K ∩∂Ω1 and τ0 ≥ 0 such that u0 −Au0 = τ0v, since u0 −τ0v = Au0,
by definition of A and Lemma 2.2, u0(t) ∈ Cn

2π (R) satisfies the differential equation

u0
(n)(t) + M(u0(t) − τ0) = f1(t, u0(t), u0

′(t), . . . , u0
(n−1)(t)), t ∈ R. (25)

Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, u0 satisfies (17). From (17) and (24) it follows that

f (t, u0(t), u0
′(t), . . . , u0

(n−1)(t)) ≥ εu0(t), t ∈ I.

By this inequality, (25) and the definition of f1, we have

u0
(n)(t) = f (t, u0(t), u0

′(t), . . . , u0
(n−1)(t)) + Mτ0 ≥ εu0(t), t ∈ I.

Integrating this inequality on I and using the periodicity of u0, we obtain that
 2π
0 u0(t)dt ≤ 0. But by the definition of K , 2π

0 u0(t)dt ≥ 2πσ‖u0‖C > 0, this is a contradiction. Hence A satisfies the condition of Lemma 2.6 in K∩∂Ω1. By Lemma 2.6
we have

i(A, K ∩ Ω1, K) = 0. (26)

Since f ∞ < 0, by the definition of f ∞, there exist ε1 ∈ (0,M) and H > 0 such that

f (t, x0, x1, . . . , xn−1) ≤ −ε1x0, for t ∈ I, |xi| ≤ Cix0, i = 1, . . . , n − 1, x0 ≥ H. (27)

Choosing R > max{ 1+C1+···+Cn−1
σ

H, δ}, we show that A satisfies the condition of Lemma 2.5 in K ∩ ∂Ω2, namely λAu ≠ u
for every u ∈ K ∩ ∂Ω2 and 0 < λ ≤ 1. In fact, if there exist u1 ∈ K ∩ ∂Ω2 and 0 < λ1 ≤ 1 such that λ1Au1 = u1, then by
definition of A and Lemma 2.2, u1 ∈ Cn

2π (R) satisfies the differential equation

u1
(n)(t) + Mu1(t) = λ1f1(t, u1(t), u1

′(t), . . . , u1
(n−1)(t)), t ∈ R. (28)

Since u1 ∈ K ∩ ∂Ω2, by the definition of K , u1 satisfies (21). From (21) we easily prove that u1 satisfies (22). By the former
inequality of (21) and (22), we have

u1(t) ≥ σ‖u1‖C ≥
σ

1 + C1 + · · · + Cn−1
‖u1‖Cn−1

=
σR

1 + C1 + · · · + Cn−1
> H, t ∈ I.

From this, (21) and (27) it follows that

f (t, u1(t), u1
′(t), . . . , u1

(n−1)(t)) ≤ −ε1u1(t), t ∈ I.

By this and (28), we have

u1
(n)(t) + Mu1(t) ≤ λ1(Mu1(t) − ε1u1(t)) ≤ (M − ε1)u1(t), t ∈ I.

Integrating this inequality on I and using the periodicity of u1, we obtain that

M
∫ 2π

0
u1(t)dt ≤ (M − ε1)

∫ 2π

0
u1(t)dt.

Since
 2π
0 u1(t)dt ≥ 2πσ‖u1‖C > 0, from this inequality it follows that M ≤ M − ε1, which is a contradiction. This means

that A satisfies the condition of Lemma 2.5 in K ∩ ∂Ω2. By Lemma 2.5,

i(A, K ∩ Ω2, K) = 1. (29)

Now, from (26) and (29) it follows that

i(A, K ∩ (Ω2 \ Ω1), K) = i(A, K ∩ Ω2, K) − i(A, K ∩ Ω1, K) = 1.

Hence A has a fixed point in K ∩ (Ω2 \ Ω1), which is a positive 2π-periodic solution of Eq. (1). �
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Example 1. Consider the superlinear nth-order ordinary differential equation

u(n)
= a(t)u +

n−1−
i=0

bi(t)(u(i))2, t ∈ R. (30)

where a(t), b0(t), b1(t), . . . , bn−1(t) ∈ C2π (R). Assume that

− Mn < a(t) < 0, bi(t) > 0 (i = 0, 1, . . . , n − 1), t ∈ R. (31)

ChooseM = −mint∈I a(t). It is easy to verify that the nonlinearity

f (t, x0, x1, . . . , xn−1) = a(t)x +

n−1−
i=0

bi(t)xi2

satisfies the conditions (F0) and (F1). Hence, by Theorem 3.1, Eq. (30) has at least one positive 2π-periodic solution.

Example 2. Consider the sublinear nth-order differential equation

u(n)
= a(t)u +

n−1−
i=0

bi(t)
3√

u(i), t ∈ R. (32)

where a(t), b0(t), b1(t), . . . , bn−1(t) ∈ C2π (R) and satisfy the Assumption (30). Let M = −mint∈I a(t), then the
nonlinearity

f (t, x0, x1, . . . , xn−1) = a(t)x +

n−1−
i=0

bi(t) 3
√
xi

satisfies the Assumption (F0). It is easily to see that the condition (F2) holds. Hence, by Theorem 3.2, Eq. (32) has at least one
positive 2π-periodic solution.
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