A linear time algorithm to remove winding of a simple polygon

Binay Kumar Bhattacharya ${ }^{\text {a }}$, Subir Kumar Ghosh ${ }^{\mathrm{b}, *, 1}$, Thomas Caton Shermer ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Computing Science, Simon Fraser University, Burnaby, BC Canada V5A 1S6
${ }^{\mathrm{b}}$ School of Computer Science, Tata Institute of Fundamental Research, Mumbai 400005, India

Received 29 November 2004; accepted 3 May 2005
Available online 11 August 2005
Communicated by T. Asano

Abstract

In this paper, we present a linear time algorithm to remove winding of a simple polygon P with respect to a given point q inside P. The algorithm removes winding by locating a subset of Jordan sequence that is in the proper order and uses only one stack. © 2005 Elsevier B.V. All rights reserved.

Keywords: Algorithm; Pruning; Revolution; Visibility polygon; Winding

1. Introduction

Determining the visible region of a geometric object from a given source under various constraints is a well-studied problem in computational geometry [1]. Two points of a simple polygon P is said to be visible if the line segment joining them lies inside P. The visibility polygon of a point q in P is the set of all points of P visible to q (see Fig. 1(a)). A similar definition holds in a polygon with holes (see Fig. 1(b)). This problem of computing the visibility polygon $V(q)$ from a point q is an integral part of the rendering process in computer graphics, where it is called hidden line elimination or hidden surface elimination [5].

The problem of computing $V(q)$ inside a simple polygon P of n vertices was first taken up in a theoretical setting by Davis and Benedikt [4], who presented an algorithm that takes $\mathrm{O}\left(n^{2}\right)$ time. Soon thereafter, ElGindy and Avis [6] and Lee [12] gave linear-time algorithms for this problem. For a polygon with h holes of total n vertices, Asano [3] presented $\mathrm{O}(n \log h)$ algorithms for computing the visibility polygon of a point. Around the same time, $\mathrm{O}(n \log n)$ time algorithm for this problem was proposed by Suri and O'Rourke [13], and Asano et al. [2]. Later, Heffernan and Mitchell [8] presented an $\mathrm{O}(n+h \log h)$ time algorithm for this problem.

It has been shown in Joe [10] and Joe and Simpson [11] that both algorithms of ElGindy and Avis, and Lee may fail on some polygons with sufficient winding, i.e., if the revolution number is at least two. For any point $z \in P$, the revolution number of P with respect to z is the number of revolutions that the boundary of P makes about z. Joe and

[^0]

Fig. 1. The visibility polygons of q in a simple polygon and in a polygon with holes.
Simpson [11] suggested a linear time algorithm for computing $V(q)$ which correctly handles winding in the polygon by keeping the count of the number of revolutions around q.

It can be seen that the portion of the boundary of P that makes the revolution number of q more than one is not visible from q. So, it is better to prune P before using the algorithm of ElGindy and Avis or Lee so that (i) the revolution number of the pruned polygon of P with respect to q is one and (ii) the pruned polygon of P contains both q and $V(q)$. In the next section, we discuss in details the need for such pruning in the context of computing $V(q)$. In Section 3, we present our $\mathrm{O}(n)$ time algorithm for pruning P. In Section 4, we conclude the paper with a few remarks.

2. Background

As stated earlier, Lee's algorithm works in general but it may fail on some polygons with sufficient winding as pointed out in Joe [10] and Joe and Simpson [11]. The polygon in Fig. 2(a) is one such polygon. While scanning the

Fig. 2. (a) The algorithms of ElGindy and Avis, and Lee fail for this polygon P. (b) The polygon P can be divided by segments $u_{1} u_{2}, u_{3} u_{4}, u_{5} u_{6}$ and $u_{7} u_{8}$. The shaded region P_{1} contains both q and $V(q)$.
boundary of P (denoted as $b d(P)$) in counterclockwise order starting from s_{0}, Lee's algorithm pushes s_{0} and s_{1} on the stack. Then it looks for the intersection of $b d(P)$ with the ray drawn from q through s_{1} (denoted as $\overrightarrow{q s_{1}}$) and locates the intersection point w_{1}. Since $b d(P)$ has intersected $\overrightarrow{q s_{1}}$ at w_{1} in the opposite direction, w_{1} and the next intersection point w_{2} are ignored. The algorithm correctly accepts the next intersection point w_{3}. It again returns to $\overrightarrow{q s_{1}}$ and locates the intersection point w_{4} on $s_{1} w_{3}$. Then it locates the next intersection point w_{5} by checking intersection of $b d(P)$ with $s_{1} w_{4}$ and pushes w_{5} on the stack. Since then, the algorithm does not compute $V(q)$ correctly. Observe that $\operatorname{bd}(P)$ has intersected $s_{1} w_{4}$ at w_{5} from the opposite direction due to winding.

It can be seen that if the winding part of the input polygon P is removed before using Lee's algorithm, it correctly compute $V(q)$. Let $P_{1} \subseteq P$ be a pruned polygon (see Fig. 2(b)) such that P_{1} contains both q and $V(q)$, and the angle subtended at q is no more than 2π while scanning the boundary of P_{1}. Then P_{1} and q can be given as inputs to Lee's algorithm to compute $V(q)$. We start the discussion on pruning with the following lemma.

Lemma 2.1. Let $\left(u_{0}, u_{1}, \ldots, u_{k}\right)$ be the intersection points of $b d(P)$ with the half-line drawn from q to the right of q such that for all $i, u_{i} \in q u_{i+1}$. Then, the segments $u_{1} u_{2}, u_{3} u_{4}, \ldots, u_{k-1} u_{k}$ lie inside P.

Lemma 2.1 suggests that since $\left(u_{0}, u_{1}, \ldots, u_{k}\right)$ is in sorted order along the half-line (Fig. 2(b)), P can be partitioned into several parts by adding the segments $u_{1} u_{2}, u_{3} u_{4}, \ldots, u_{k-1} u_{k}$. Observe that the part containing u_{0} is a pruned polygon P_{1} which contains q as well as $V(q)$. Analogously, remove winding by drawing a horizontal line from q to the left of q by treating P_{1} as P. Since there is no winding now in the new P_{1}, the angle subtended at q cannot be more than 2π while scanning the boundary of the new P_{1} by Lee's algorithm.

Intersection points $u_{0}, u_{1}, \ldots, u_{k}$ can be computed in $\mathrm{O}(n)$ time by checking the intersection of the half-line with every edge of P. Then, intersection points can be sorted along the half-line in $\mathrm{O}(n)$ time using the algorithm of Hoffmann et al. [9]. Note that sorting of n numbers in general is different from sorting of these intersection points ($u_{0}, u_{1}, \ldots, u_{k}$) lying on $b d(P)$. Hence, the overall time complexity of the algorithm for computing $V(q)$ remains $\mathrm{O}(n)$. However, the algorithm of Hoffmann et al. [9] uses involved data structures called Level-linked search trees, which are not easy to implement. In our pruning algorithm, we adopt a different method for computing P_{1}, which uses only one stack.

Observe that if only the segment $u_{1} u_{2}$ or $u_{5} u_{6}$ is added to the polygon in Fig. 2(b), it still removes winding from P. It suggests that winding can be removed by introducing a few selected segments in P. Our pruning algorithm shows that such segments can be identified without sorting all intersection points of $\operatorname{bd}(P)$ with the horizontal line (called Jordan sequence).

3. Pruning algorithm

Pruning algorithm starts by drawing the horizontal line L through q. Let L_{r} and L_{l} denote the portion of L to the right and left of q respectively (see Fig. 3(a)). Let q_{r} (or q_{l}) be the closest point of q among the intersection points of $b d(P)$ with L_{r} (respectively, $\left.L_{l}\right)$. Add the segment $q_{l} q_{r}$ to partition P into polygons P_{a} and P_{b}, where the

Fig. 3. (a) Four procedures identify one subsegment each on L. (b) All pairs of consecutive intersection points on L_{r} are of opposite type.
boundary of P_{a} (or P_{b}) consists of the segment $q_{l} q_{r}$ and the counterclockwise (respectively, clockwise) boundary from q_{r} to q_{l}. There are four types of subsegments of L that are lying inside P : the subsegments formed by pairs of intersection points of (i) L_{r} with $b d\left(P_{a}\right)$, (ii) L_{l} with $b d\left(P_{a}\right)$, (iii) L_{r} with $b d\left(P_{b}\right)$ and (iv) L_{l} with $b d\left(P_{b}\right)$. Our procedure identifies some of these subsegments such that after splitting P_{a} and P_{b} by adding these subsegments, the portion of P_{a} (or P_{b}), whose boundary contains $q_{l} q_{r}$, is above (respectively, below) L. Union of these two portions, one from P_{a} and another from P_{b}, form the polygon P_{1} and it contains both q and $V(q)$.

The subsegments of type (i) on L_{r} can be identified by scanning $b d\left(P_{a}\right)$ in counterclockwise order from q_{r} to q_{l}. This procedure is denoted as $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$. Analogously, procedures for identifying the subsegments of types (ii), (iii) and (iv) are denoted as $\operatorname{CS}\left(P_{a}, q_{l}, q_{r}, L_{l}\right), \operatorname{CS}\left(P_{b}, q_{r}, q_{l}, L_{r}\right)$ and $\operatorname{CCS}\left(P_{b}, q_{l}, q_{r}, L_{l}\right)$ respectively. For the simple polygon in Fig. 3(a), $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$ identifies the subsegment $w_{1} w_{2}, \operatorname{CS}\left(P_{a}, q_{l}, q_{r}, L_{l}\right)$ identifies $w_{3} w_{4}$, $\operatorname{CS}\left(P_{b}, q_{r}, q_{l}, L_{r}\right)$ identifies $w_{7} w_{8}$ and $\operatorname{CCS}\left(P_{b}, q_{l}, q_{r}, L_{l}\right)$ identifies $w_{5} w_{6}$. Since these procedures are analogous, we present here only the procedure $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$.

As stated above, $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$ scans $b d\left(P_{a}\right)$ in counterclockwise order from q_{r} to q_{l} and locate subsegments on L_{r} lying inside P_{a}. Let w be an intersection point of L_{r} with $b d\left(P_{a}\right)$. If the next counterclockwise vertex of w on $b d\left(P_{a}\right)$ is below (or above) L_{r}, then w is called a downward (respectively, upward) intersection point. Note that q_{r} is an upward intersection point by definition. If two intersection points are both downward or upward, they are called the same type of intersection points. Otherwise, they are called the opposite type of intersection points. In Fig. 3(a), (w_{1}, w_{2}) is a pair of opposite type as w_{1} and w_{2} are downward and upward intersection points respectively. We have the following properties on the pairs of intersection points of L_{r} with $b d\left(P_{a}\right)$.

Lemma 3.1. Let u and w be two intersection points of L_{r} with $b d\left(P_{a}\right)$. If u and w are same type of intersection points, the segment uw does not lie inside P_{a}.

Proof. Since u and w are same type of intersection points and P_{a} is a closed and bounded region, there are odd number of intersection points of $b d\left(P_{a}\right)$ with L_{r} that are lying on the segment $u w$. Hence, the segment $u w$ does not lie inside P_{a}.

Lemma 3.2. Let u and w be two intersection points of L_{r} with $b d\left(P_{a}\right)$. If the segment $u w$ lies inside P_{a}, then u and w are opposite type of intersection points.

Proof. If u and w are the same type of intersection points, then the segment $u w$ does not lie inside P_{a} by Lemma 3.1, a contradiction.

Corollary 3.1. If u is a downward (or upward) intersection point, w is an upward (respectively, downward) intersection point and $u w$ lies inside P_{a}, then $u \in q w$ (respectively, $w \in q u$).

Lemma 3.3. Let u and w be two intersection points of L_{r} with $b d\left(P_{a}\right)$. Assume that u and w are downward and upward intersection points respectively and $u \in q w$, or vice versa. If the segment $u w$ does not lie inside P_{a}, then there exists another pair of intersection points $\left(u^{\prime}, w^{\prime}\right)$ of opposite type lying on the segment $u w$.

Proof. Since u and w are intersection points of opposite type and the segment $u w$ does not lie inside P_{a}, there are even number of intersection points of $b d\left(P_{a}\right)$ with the segment $u w$ excluding the points u and w. So, there exists at least a pair of intersection points $\left(u^{\prime}, w^{\prime}\right)$ of opposite type lying on the segment $u w$.

Above lemma suggests that in order to locate subsegments of L_{r} that are lying inside P_{a}, it is necessary to locate the pairs of intersection points of opposite type on L_{r} and then test whether the segment formed by any such pair contains another pair of opposite type. Let $W=\left(w_{0}, w_{1}, \ldots, w_{m}\right)$ be the order of intersection points of $b d\left(P_{a}\right)$ with L_{r} while $b d\left(P_{a}\right)$ is traversed in counterclockwise order starting from q_{r}, where $q_{r}=w_{0}$ (see Fig. 3(b)). Let w_{i-1} be a point of W such that for any two consecutive points w_{k} and w_{k+1} in $\left(w_{0}, w_{1}, \ldots, w_{i-1}\right),\left(w_{k}, w_{k+1}\right)$ form a pair of opposite type and $w_{k} \in q w_{k+1}$. We say that points in $\left(w_{0}, w_{1}, \ldots, w_{i-1}\right)$ are in the proper order up to w_{i-1}. It can be seen that if the points in W are in the proper order up to w_{m}, then the segments connecting alternate pairs of points in W lie inside P_{a}. Note that if there is winding in P_{a}, points in W are not in the proper order.

The procedure $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$ tests whether the points in W are in the proper order starting from w_{1}. If it encounters a point that violates the proper order up to the last point tested, it discards some points of W and restores the proper order. In this process, the procedure $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$ identify the subsegments of L_{r} that are lying inside P_{a}. In the following lemmas, we explicitly state the properties of the proper order on a subset of points in W.

Lemma 3.4. Assume that the points in W are in the proper order up to w_{i-1}. If w_{i} preserves the order, then $w_{i} \notin q w_{i-1}$ and $\left(w_{i-1}, w_{i}\right)$ is a pair of opposite type.

Lemma 3.5. Assume that the points in W are in the proper order up to w_{i-1}. If w_{i} violates the order, then $w_{i} \in q w_{i-1}$ or $\left(w_{i-1}, w_{i}\right)$ is a pair of same type.

Lemma 3.6. Assume that the points in W are in the proper order up to w_{i-1}. If there is a point w_{j} of W lies on the segment $w_{k} w_{k+1}$, where $k<i-1$, then w_{j} is a subsequent point of w_{i-1} in W.

Assume that the procedure $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$ has tested points in W up to w_{i-1} and they are in the proper order (see Fig. 3(b)). It means that $w_{0}, w_{2}, w_{4}, \ldots, w_{i-1}$ are upward intersection points and $w_{1}, w_{3}, w_{5}, \ldots, w_{i-2}$ are downward intersection points. We also assume that the procedure has pushed alternate pairs of opposite type $\left(w_{1}, w_{2}\right)$, $\left(w_{3}, w_{4}\right), \ldots,\left(w_{i-2}, w_{i-1}\right)$ on the stack, where $\left(w_{i-2}, w_{i-1}\right)$ is on the top of the stack. Note that the segments $w_{0} w_{1}$, $w_{2} w_{3}, \ldots, w_{i-3} w_{i-2}$ do not lie inside P_{a}. The procedure checks whether the next point w_{i} satisfies the order. We have the following cases.

Case 1. The point w_{i} is a downward intersection point and $w_{i} \notin q w_{i-1}$ (see Fig. 3(b)).
Case 2. The point w_{i} is a downward intersection point and $w_{i} \in q w_{i-1}$ (see Fig. 5(a)).
Case 3. The point w_{i} is an upward intersection point and $w_{i} \in q w_{i-1}$ (see Fig. 5(b)).
Case 4. The point w_{i} is an upward intersection point and $w_{i} \notin q w_{i-1}$ (see Fig. 7(b)).
Consider Case 1. Since w_{i} is a downward intersection point and $w_{i} \notin q w_{i-1}, w_{i}$ is in the proper order by Lemma 3.4. The procedure checks whether $\left(w_{i}, w_{i+1}\right)$ is the next pair of opposite type. If $w_{i} \in q w_{i+1}$, then $\left(w_{i}, w_{i+1}\right)$ is the next pair (see Fig. 3(b)). If $w_{i+1} \in q w_{i}$ (see Fig. 4(a)), then w_{i+1} violates the proper order by Lemma 3.5. Scan W starting from w_{i+2} till a point w_{k} is found such that $w_{i} \in q w_{k}$. So, $\left(w_{i}, w_{k}\right)$ is the next pair and points $\left(w_{i+1}, \ldots, w_{k-1}\right)$ are removed. Without loss of generality, we assume that $\left(w_{i}, w_{i+1}\right)$ is the next pair. If w_{i+1} is an upward intersection point (see Fig. 3(b)), then (w_{i}, w_{i+1}) is the next pair of opposite type, and the points in $\left(w_{0}, w_{1}, \ldots, w_{i}, w_{i+1}\right)$ are in the proper order by Lemma 3.4. Therefore, $\left(w_{i}, w_{i+1}\right)$ is pushed on the stack. Otherwise, $\left(w_{i}, w_{i+1}\right)$ is the first pair of same type because both w_{i} and w_{i+1} are downward intersection points (see Fig. 4(b)). By Lemma 3.5, w_{i+1} has violated the proper order. It can be seen that the counterclockwise boundary of

Fig. 4. (a) The points w_{i} and w_{k} form the next pair. (b) The points w_{i} and w_{j} form the next pair.
P_{a} from w_{i} to w_{i+1} (denoted as $\left.b d\left(w_{i}, w_{i+1}\right)\right)$ has winded around q. Scan W starting from w_{i+2} till a point w_{j} is found such that $w_{j} \in w_{i} w_{i+1}$. Since w_{j} is an upward intersection point, (w_{i}, w_{j}) becomes the next pair of opposite type by Lemma 3.4. Remove all points of W that do not belong to the segment $q w_{i+1}$ as L_{r} is now restricted to $q w_{i+1}$. The pair $\left(w_{i}, w_{j}\right)$ is pushed on the stack. Note that if the segment $w_{i} w_{j}$ lies inside P_{a}, the winding in $b d\left(w_{i}, w_{i+1}\right)$ can be removed from P_{a} by adding the segment $w_{i} w_{j}$ to P_{a}. Otherwise, there exists another pair of opposite type in W by Lemma 3.3 (see Fig. 4(b)) that lies on the segment $w_{i} w_{j}$, which will be detected subsequently as stated in Lemma 3.6.

Consider Case 2. Since w_{i} is a downward intersection point and $w_{i} \in q w_{i-1}$, w_{i} has violated the proper order by Lemma 3.5 (see Fig. 5(a)). It can be seen that w_{i} lies on a segment formed by a pair (say, $\left(w_{k}, w_{k+1}\right)$) which is already in the stack. Pop the stack till $\left(w_{k}, w_{k+1}\right)$ is on the top of the stack. We know from Lemma 3.3 that there exists another pair of opposite type in W that lies on the segment $w_{k} w_{k+1}$. Scan W from w_{i+1} till a point w_{j} is found such that $w_{j} \in w_{k} w_{i}$. Observe that w_{j} is an upward intersection point and (w_{k}, w_{j}) is a pair of opposite type. Hence, the points in $\left(w_{0}, w_{1}, \ldots, w_{k}, w_{j}\right)$ are in the proper order by Lemma 3.4. Pop $\left(w_{k}, w_{k+1}\right)$ from the stack and push $\left(w_{k}, w_{j}\right)$ on the stack.

Consider Case 3. Since w_{i} is an upward intersection point and $w_{i} \in q w_{i-1}, w_{i}$ has violated the proper order by Lemma 3.5 (see Figs. 5(b) and 6(a)). It can be seen that w_{i} belongs to the subsegment of L_{r} whose corresponding pair is not in the stack. Scan W from w_{i} till two consecutive points $w_{j-1} \in q w_{i-1}$ and $w_{j} \in q w_{i-1}$ are found such that they are both downward intersection points (see Fig. 5(b)). Remove all points (w_{i}, \ldots, w_{j-1}) from W. Treating w_{j} as new w_{i}, Case 2 is executed to update the stack. If no such vertices w_{j-1} and w_{j} exist (see Fig. 6(a)), it means that $b d\left(w_{i}, w_{m}\right)$ has not intersected any segment formed by a pair in the stack and therefore, these segments are added to partition P_{a}. In the process, the stack becomes empty.

It can be seen that P_{a} still has winding in $b d\left(w_{i-1}, w_{i}\right)$ (see Fig. 6(a)) which is to be removed. The procedure $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$ now locates the subsegments of $q w_{i}$ (from w_{i} towards q) using the same stack that are lying inside P_{a}. Let $U=\left(u_{0}, u_{1}, \ldots, u_{p}\right)$ be the order of intersection points of $b d\left(w_{i}, q\right)$ with $q w_{i}$ while $b d\left(P_{a}\right)$ is traversed in counterclockwise order starting from w_{i}, where $w_{i}=u_{0}$ (see Fig. 6(a)). Observe that any two consecutive points u_{k-1} and u_{k} in U are of opposite type though there may be winding in P_{a}. However, u_{k} may not always lie on $q u_{k-1}$ for all k and therefore, the points in U may not be in the proper order in the direction from u_{0} towards q. We have the following lemmas on the proper order of U, which are analogous to Lemmas 3.4, 3.5 and 3.6.

Lemma 3.7. Assume that the points in U are in the proper order from u_{0} to u_{k-1}. If u_{k} preserves the order, then $u_{k} \notin u_{0} u_{k-1}$.

Lemma 3.8. Assume that the points in U are in the proper order from u_{0} to u_{k-1}. If u_{k} violates the order, then $u_{k} \in u_{0} u_{k-1}$.

Fig. 5. (a) The downward intersection point w_{i} lies on the segment $w_{k} w_{k+1}$. (b) The upward intersection point w_{i} belongs to the segment whose corresponding pair is not in the stack.

Fig. 6. (a) The next pair $\left(u_{k}, u_{k+1}\right)$ is in the proper order. (b) The next pair in the proper order is $\left(u_{k}, u_{j}\right)$.

Fig. 7. (a) The next pair in the proper order is $\left(u_{j}, u_{r}\right)$. (b) P_{a} is partitioned using the segments corresponding to the pairs $\left(u_{0}, u_{1}\right)$ and $\left(u_{2}, u_{5}\right)$.

Lemma 3.9. Assume that the points in U are in the proper order from u_{0} to u_{k-1}. If there is a point u_{j} of U lies on the segment $u_{t} u_{t+1}$, where $t<k-1$, then u_{j} is a subsequent point of u_{k-1} in U.

Assume that the procedure $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$ has tested points in U up to u_{k-1} and they are in proper order (see Fig. 6(a)). We also assume that the procedure has pushed alternate pairs of opposite type (u_{0}, u_{1}), $\left(u_{2}, u_{3}\right), \ldots,\left(u_{k-2}, u_{k-1}\right)$ on the stack. Recall that u_{0} is an upward intersection point. If $u_{k} \notin u_{0} u_{k-1}$, then the point u_{k} is in the proper order by Lemma 3.7. The procedure checks whether $\left(u_{k}, u_{k+1}\right)$ is the next pair of opposite type. If $u_{k+1} \notin u_{0} u_{k}$ (see Fig. 6(a)), then u_{k+1} is also in the proper order by Lemma 3.7. So, $\left(u_{k}, u_{k+1}\right)$ is the next pair of opposite type and (u_{k}, u_{k+1}) is pushed on the stack. Otherwise, u_{k+1} belongs to $u_{0} u_{k}$ (see Fig. $6(\mathrm{~b})$) and u_{k+1} has violated the proper order by Lemma 3.8. Scan U starting from u_{k+2} till a point u_{j} is found such that $u_{j} \notin u_{0} u_{k}$. So, points in $\left(u_{0}, u_{1}, \ldots, u_{k}, u_{j}\right)$ are in the proper order by Lemma 3.7. Therefore, $\left(u_{k}, u_{j}\right)$ is the next pair of opposite type and (u_{k}, u_{j}) is pushed on the stack. Consider the other situation when $u_{k} \in u_{0} u_{k-1}$ (see Fig. 7(a)). So, u_{k} has violated the proper order by Lemma 3.8. It can be seen that u_{k} lies on the segment formed by a pair (say, $\left(u_{j}, u_{j+1}\right)$) which is already in the stack. Pop the stack till $\left(u_{j}, u_{j+1}\right)$ is on the top of the stack. We know from Lemma 3.3 that there exists another pair of opposite type in U that lies on the segment $u_{j} u_{j+1}$. Scan U from u_{k+1} till a point u_{r} is found such that $u_{r} \in u_{j} u_{k}$. Observe that u_{r} is a downward intersection point and points $\left(u_{0}, u_{1}, \ldots, u_{j}, u_{r}\right)$ are in the proper order by Lemma 3.7. Hence, $\left(u_{j}, u_{r}\right)$ is a pair of opposite type. Pop $\left(u_{j}, u_{j+1}\right)$ from the stack and push (u_{j}, u_{r}) on the stack.

Consider Case 4. Since w_{i} is an upward intersection point and $w_{i} \notin q w_{i-1}$, w_{i} has violated the proper order by Lemma 3.5 (see Fig. 7(b)). It can be seen that $b d\left(w_{i-1}, w_{i}\right)$ has winded around q. Let $U=\left(u_{0}, u_{1}, \ldots, u_{p}\right)$ be the order of intersection points of $b d\left(w_{i}, q\right)$ with the segment $w_{i-1} w_{i}$ while $b d\left(P_{a}\right)$ is traversed in counterclockwise order starting from w_{i}, where $w_{i}=u_{0}$. Pop the stack till the stack becomes empty. Using the same method stated above for U, locate all pairs of opposite type in U (from w_{i} towards w_{i-1}) that are in proper order. Add the segments corresponding to the pairs in the stack to partition P_{a}. After partition, the portion of P_{a} that contains q on its boundary becomes new P_{a}. Let W denote only the intersection points of the boundary of new P_{a} and $q w_{i-1}$. With new P_{a} and new $W, \operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$ is executed again. Note that Case 4 cannot occur again and therefore, $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$ terminates after the second round. In the following steps, we formally present the procedure $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$.

Step 1. Traverse $b d\left(q_{r}, q_{l}\right)$ in counterclockwise order starting from q_{r} and compute the intersection points $W=$ $\left(w_{0}, w_{1}, \ldots, w_{m}\right)$ of L_{r} with $b d\left(P_{a}\right)$ where $w_{0}=q_{r} ; h:=0 ; i:=1$;
Step 2. If w_{i} is a downward intersection point and $w_{i} \notin q w_{h}$ (see Case 1) then
Step 2a. Assign $i+1$ to k; while $w_{k} \in q w_{i}, k:=k+1$;
Step 2b. If w_{k} is an upward intersection point then begin push (w_{i}, w_{k}) on the stack; $i:=k+1$ end else begin $j:=k+1$; while $w_{j} \notin w_{i} w_{k}, j:=j+1$; push (w_{i}, w_{j}) on the stack; $i:=j+1$ end;
Step 2c. Assign $i-1$ to h; if $i \neq m+1$ then goto Step 2 else goto Step 10;
Step 3. If w_{i} is a downward intersection point and $w_{i} \in q w_{h}$ (see Case 2) then
Step 3a. Let $\left(w_{k}, w_{r}\right)$ denote the pair on the top of the stack. While $w_{i} \notin w_{k} w_{r}$ pop the stack; $j:=i+1$; while $w_{j} \notin w_{k} w_{i}, j:=j+1$; pop the stack and push $\left(w_{k}, w_{j}\right)$ on the stack;
Step 3b. Assign $j+1$ to $i ; h:=i-1$; if $i \neq m+1$ then goto Step 2 else goto Step 10;
Step 4. If w_{i} is an upward intersection point and $w_{i} \in q w_{h}$ (see Case 3) then
Step 4a. Assign $i+1$ to j;
Step 4b. If $j=m$ then goto Step 4d;
Step 4c. If w_{j+1} and w_{j} are downward intersection points and both of them belong to $q w_{h}$ then $i:=j+1$ and goto Step 3 else $j:=j+1$ and goto Step 4b;
Step 4d. While stack is not empty, add the segment corresponding to the pair on the top of the stack to P_{a} and pop the stack;
Step 4e. Traverse $b d\left(w_{i}, q_{l}\right)$ in counterclockwise order starting from w_{i} and locate the intersection points $U=\left(u_{0}, u_{1}, \ldots, u_{p}\right)$ of $q w_{i}$ with $b d\left(w_{i}, q_{l}\right)$ where $u_{0}=w_{i} ;$ goto Step 6 ;
Step 5. If w_{i} is an upward intersection point and $w_{i} \notin q w_{h}$ (see Case 4) then
Step 5a. Traverse $b d\left(w_{i}, q_{l}\right)$ in counterclockwise order starting from w_{i} and compute the intersection points $U=\left(u_{0}, u_{1}, \ldots, u_{p}\right)$ of $w_{h} w_{i}$ with $b d\left(w_{i}, q_{l}\right)$ where $u_{0}=w_{i}$;
Step 5b. Clear the stack;
Step 6. Push $\left(u_{0}, u_{1}\right)$ on the stack; $k:=2$;
Step 7. If $u_{k} \notin u_{0} u_{k-1}$ then begin $j:=k+1$; while $u_{j} \in u_{0} u_{k}, j:=j+1$; push (u_{k}, u_{j}) on the stack; $k:=j+1$; goto Step 9 end;
Step 8. If $u_{k} \in u_{0} u_{k-1}$ then
Step 8a. Let $\left(u_{j}, u_{t}\right)$ denote the pair on the top of the stack. While $u_{k} \notin u_{j} u_{t}$, pop the stack; $r:=k+1$;
Step 8b. While $u_{r} \notin u_{j} u_{k}, r:=r+1$; pop the stack and push $\left(u_{j}, u_{r}\right)$ on the stack; $k:=r+1$;
Step 9. If $k \neq p+1$ then goto Step 7;
Step 10. While stack is not empty, add the segment corresponding to the pair on the top of the stack to P_{a} and pop the stack;
Step 11. STOP.
Lemma 3.10. The procedure $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$ correctly removes winding from P_{a}.
Proof. Consider any pair of intersection points (w_{i}, w_{j}) of W in the stack at the time of executing Step 4 d or Step 10. We show that the segment $w_{i} w_{j}$ lies inside P_{a}. We know that $\left(w_{i}, w_{j}\right)$ is pushed on the stack either in Step 2 b or in Step 3a. It can be seen from Steps 2 and 3 that (i) w_{i} is a downward intersection point, (ii) w_{j} is an upward intersection point, (iii) $w_{i} \in q w_{j}$ and (iv) points of W belonging to the pairs in the stack are in the proper order up to w_{j}. So, the segment $w_{i} w_{j}$ lies inside P_{a} provided no subsequent point w_{k} of w_{j} in W belongs to $w_{i} w_{j}$. If such point w_{k}
exists, then Steps 3 and 4 c ensure that $\left(w_{i}, w_{j}\right)$ cannot remain on the stack. Hence, the segment $w_{i} w_{j}$ lie inside P_{a}. Analogous arguments show that any segment, which corresponds to a pair of intersection points of U in the stack at the time of executing Step 10, lies inside P_{a}.

Consider any point z on $b d\left(P_{a}\right)$ such that $b d\left(w_{0}, z\right)$ has winded around q. We show that the procedure $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$ has removed z from P_{a}. Assume on the contrary that z is not removed from P_{a} by the procedure $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$. So, there is a polygonal path from q to z such that the path does not intersect the segment corresponding to any pair in the stack at the time of executing Step 4d or Step 10. So, there exists another pair ($v^{\prime}, v^{\prime \prime}$) of intersection points of W or U such that v^{\prime} and $v^{\prime \prime}$ are in the proper order along with the points of the pairs in the stack. It means that $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right)$ has not considered all points of W and U, which is not possible. Hence, z is removed from P_{a}.

After P_{a} is modified by $\operatorname{CCS}\left(P_{a}, q_{r}, q_{l}, L_{r}\right), P_{a}$ is further modified by $\operatorname{CS}\left(P_{a}, q_{l}, q_{r}, L_{l}\right)$ and the new P_{a} forms the portion of P_{1} above the line L. Similarly, after the execution of procedures $C S\left(P_{b}, q_{r}, q_{l}, L_{r}\right)$ and $\operatorname{CCS}\left(P_{b}, q_{l}, q_{r}, L_{l}\right)$, the new P_{b} forms the portion of P_{1} below L. So, the union of P_{a} and P_{b} gives the pruned polygon P_{1}. It can be seen that the pruning algorithm runs in $\mathrm{O}(n)$ time. We state the result in the following theorem.

Theorem 3.1. Given a point q inside an n-sided simple polygon P, a polygon $P_{1} \subseteq P$ can be constructed in $\mathrm{O}(n)$ time such that (i) P_{1} contains both q and the visibility polygon of P from q, and (ii) the boundary of P_{1} does not wind around q.

4. Concluding remarks

In Section 2, we have discussed the need for pruning algorithm in the context of computing $V(q)$. Consider the problem of computing the weak visibility polygon $V(p q)$ of P from a given internal segment $p q$. A point $z \in P$ is said to be weakly visible from $p q$ if z is visible from any point of $p q$. Draw the line L passing through p and q, and remove the winding of P using our pruning algorithm. It can be seen that the pruned polygon contains p, q and $V(p q)$. Therefore, the pruned polygon can be used as the input polygon to the algorithm of Guibas et al. [7] for compute $V(p q)$. We feel that such pruning can reduce the size of the input polygon significantly for polygons with a large number of vertices.

Acknowledgements

The authors wish to thank Chinmoy Dutta and Partha Goswami for suggesting improvements to original paper.

References

[1] T. Asano, S.K. Ghosh, T. Shermer, Visibility in the plane, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, NorthHolland, Amsterdam, 2000, pp. 829-876.
[2] Ta. Asano, Te. Asano, L.J. Guibas, J. Hershberger, H. Imai, Visibility of disjoint polygons, Algorithmica 1 (1986) 49-63.
[3] Te. Asano, Efficient algorithms for finding the visibility polygons for a polygonal region with holes, Trans. IECE Japan E68 (1985) 557-559.
[4] L. Davis, M. Benedikt, Computational models of space: Isovists and isovist fields, Comput. Graph. Image Process. 11 (1979) 49-72.
[5] S.E. Dorward, A servey of object-space hidden surface removal, Internat. J. Comput. Geom. Appl. 4 (1994) 325-362.
[6] H. ElGindy, D. Avis, A linear algorithm for computing the visibility polygon from a point, J. Algorithms 2 (1981) $186-197$.
[7] L.J. Guibas, J. Hershberger, D. Leven, M. Sharir, R.E. Tarjan, Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons, Algorithmica 2 (1987) 209-233.
[8] P.J. Heffernan, J.S.B. Mitchell, An optimal algorithm for computing visibility in the plane, SIAM J. Comput. 24 (1) (1995) 184-201.
[9] K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, R.E. Tarjan, Sorting Jordan sequences in linear time using level-linked search trees, Inform. Control 68 (1986) 170-184.
[10] B. Joe, On the correctness of a linear-time visibility polygon algorithm, International J. Comput. Math. 32 (1990) $155-172$.
[11] B. Joe, R.B. Simpson, Corrections to Lee's visibility polygon algorithm, BIT 27 (1987) 458-473.
[12] D.T. Lee, Visibility of a simple polygon, Comput. Vis. Graph. Image Process. 22 (1983) 207-221.
[13] S. Suri, J. O'Rourke, Worst-case optimal algorithms for constructing visibility polygons with holes, in: Proceedings of the 2nd Annual ACM Symposium on Computational Geometry, 1986, pp. 14-23.

[^0]: * Corresponding author.

 E-mail addresses: binay@cs.sfu.ca (B.K. Bhattacharya), ghosh@tifr.res.in (S.K. Ghosh), shermer@cs.sfu.ca (T.C. Shermer).
 ${ }^{1}$ A part of this work was done when the author visited Simon Fraser University and was supported by NSERC grants.

