
o

.

-studied
t

ibility
called

ing
6]
]

an and

ee may
Computational Geometry 33 (2006) 165–173

www.elsevier.com/locate/comge

A linear time algorithm to remove winding of a simple polygon

Binay Kumar Bhattacharyaa, Subir Kumar Ghoshb,∗,1, Thomas Caton Shermera

a School of Computing Science, Simon Fraser University, Burnaby, BC Canada V5A 1S6
b School of Computer Science, Tata Institute of Fundamental Research, Mumbai 400005, India

Received 29 November 2004; accepted 3 May 2005

Available online 11 August 2005

Communicated by T. Asano

Abstract

In this paper, we present a linear time algorithm to remove winding of a simple polygonP with respect to a given pointq inside
P . The algorithm removes winding by locating a subset ofJordan sequence that is in the proper order and uses only one stack
 2005 Elsevier B.V. All rights reserved.

Keywords: Algorithm; Pruning; Revolution; Visibility polygon; Winding

1. Introduction

Determining the visible region of a geometric object from a given source under various constraints is a well
problem in computational geometry [1]. Two points of a simple polygonP is said to bevisible if the line segmen
joining them lies insideP . The visibility polygon of a pointq in P is the set of all points ofP visible to q (see
Fig. 1(a)). A similar definition holds in a polygon with holes (see Fig. 1(b)). This problem of computing the vis
polygonV (q) from a pointq is an integral part of the rendering process in computer graphics, where it is
hidden line elimination or hidden surface elimination [5].

The problem of computingV (q) inside a simple polygonP of n vertices was first taken up in a theoretical sett
by Davis and Benedikt [4], who presented an algorithm that takes O(n2) time. Soon thereafter, ElGindy and Avis [
and Lee [12] gave linear-time algorithms for this problem. For a polygon withh holes of totaln vertices, Asano [3
presented O(n logh) algorithms for computing the visibility polygon of a point. Around the same time, O(n logn)

time algorithm for this problem was proposed by Suri and O’Rourke [13], and Asano et al. [2]. Later, Heffern
Mitchell [8] presented an O(n + h logh) time algorithm for this problem.

It has been shown in Joe [10] and Joe and Simpson [11] that both algorithms of ElGindy and Avis, and L
fail on some polygons with sufficient winding, i.e., if the revolution number is at least two. For any pointz ∈ P , the
revolution number of P with respect toz is the number of revolutions that the boundary ofP makes aboutz. Joe and

* Corresponding author.
E-mail addresses: binay@cs.sfu.ca (B.K. Bhattacharya), ghosh@tifr.res.in (S.K. Ghosh), shermer@cs.sfu.ca (T.C. Shermer).

1 A part of this work was done when the author visited Simon Fraser University and was supported by NSERC grants.
0925-7721/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2005.05.001



166 B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165–173

n

the

rks.

ing as
ning the
Fig. 1. The visibility polygons ofq in a simple polygon and in a polygon with holes.

Simpson [11] suggested a linear time algorithm for computingV (q) which correctly handles winding in the polygo
by keeping the count of the number of revolutions aroundq.

It can be seen that the portion of the boundary ofP that makes the revolution number ofq more than one is
not visible fromq. So, it is better to pruneP before using the algorithm of ElGindy and Avis or Lee so that (i)
revolution number of the pruned polygon ofP with respect toq is one and (ii) the pruned polygon ofP contains both
q andV (q). In the next section, we discuss in details the need for such pruning in the context of computingV (q). In
Section 3, we present our O(n) time algorithm for pruningP . In Section 4, we conclude the paper with a few rema

2. Background

As stated earlier, Lee’s algorithm works in general but it may fail on some polygons with sufficient wind
pointed out in Joe [10] and Joe and Simpson [11]. The polygon in Fig. 2(a) is one such polygon. While scan

Fig. 2. (a) The algorithms of ElGindy and Avis, and Lee fail for this polygonP . (b) The polygonP can be divided by segmentsu1u2, u3u4, u5u6
andu7u8. The shaded regionP1 contains bothq andV (q).



B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165–173 167

n

tly

’s

ith
f
oints

s,

s

n

boundary ofP (denoted asbd(P )) in counterclockwise order starting froms0, Lee’s algorithm pushess0 ands1 on the
stack. Then it looks for the intersection ofbd(P ) with the ray drawn fromq throughs1 (denoted as−−→qs1) and locates
the intersection pointw1. Sincebd(P ) has intersected−−→qs1 atw1 in the opposite direction,w1 and the next intersectio
pointw2 are ignored. The algorithm correctly accepts the next intersection pointw3. It again returns to−−→qs1 and locates
the intersection pointw4 on s1w3. Then it locates the next intersection pointw5 by checking intersection ofbd(P )

with s1w4 and pushesw5 on the stack. Since then, the algorithm does not computeV (q) correctly. Observe thatbd(P )

has intersecteds1w4 atw5 from the opposite direction due to winding.
It can be seen that if the winding part of the input polygonP is removed before using Lee’s algorithm, it correc

computeV (q). Let P1 ⊆ P be a pruned polygon (see Fig. 2(b)) such thatP1 contains bothq andV (q), and the angle
subtended atq is no more than 2π while scanning the boundary ofP1. ThenP1 andq can be given as inputs to Lee
algorithm to computeV (q). We start the discussion on pruning with the following lemma.

Lemma 2.1. Let (u0, u1, . . . , uk) be the intersection points of bd(P ) with the half-line drawn from q to the right of q

such that for all i, ui ∈ qui+1. Then, the segments u1u2, u3u4, . . . , uk−1uk lie inside P .

Lemma 2.1 suggests that since(u0, u1, . . . , uk) is in sorted order along the half-line (Fig. 2(b)),P can be partitioned
into several parts by adding the segmentsu1u2, u3u4, . . . , uk−1uk . Observe that the part containingu0 is a pruned
polygonP1 which containsq as well asV (q). Analogously, remove winding by drawing a horizontal line fromq to
the left ofq by treatingP1 asP . Since there is no winding now in the newP1, the angle subtended atq cannot be
more than 2π while scanning the boundary of the newP1 by Lee’s algorithm.

Intersection pointsu0, u1, . . . , uk can be computed in O(n) time by checking the intersection of the half-line w
every edge ofP . Then, intersection points can be sorted along the half-line in O(n) time using the algorithm o
Hoffmann et al. [9]. Note that sorting ofn numbers in general is different from sorting of these intersection p
(u0, u1, . . . , uk) lying on bd(P ). Hence, the overall time complexity of the algorithm for computingV (q) remains
O(n). However, the algorithm of Hoffmann et al. [9] uses involved data structures calledLevel-linked search tree
which are not easy to implement. In our pruning algorithm, we adopt a different method for computingP1, which uses
only one stack.

Observe that if only the segmentu1u2 or u5u6 is added to the polygon in Fig. 2(b), it still removes winding fromP .
It suggests that winding can be removed by introducing a few selected segments inP . Our pruning algorithm show
that such segments can be identified without sorting all intersection points ofbd(P ) with the horizontal line (called
Jordan sequence).

3. Pruning algorithm

Pruning algorithm starts by drawing the horizontal lineL throughq. Let Lr andLl denote the portion ofL to
the right and left ofq respectively (see Fig. 3(a)). Letqr (or ql) be the closest point ofq among the intersectio
points ofbd(P ) with Lr (respectively,Ll). Add the segmentqlqr to partitionP into polygonsPa andPb, where the

Fig. 3. (a) Four procedures identify one subsegment each onL. (b) All pairs of consecutive intersection points onLr are of opposite type.



168 B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165–173

ary
irs

the
,

ypes

, we

ts

called
),
have

odd

t

e
pair

ts in
boundary ofPa (or Pb) consists of the segmentqlqr and the counterclockwise (respectively, clockwise) bound
from qr to ql . There are four types of subsegments ofL that are lying insideP : the subsegments formed by pa
of intersection points of (i)Lr with bd(Pa), (ii) Ll with bd(Pa), (iii) Lr with bd(Pb) and (iv)Ll with bd(Pb). Our
procedure identifies some of these subsegments such that after splittingPa andPb by adding these subsegments,
portion ofPa (or Pb), whose boundary containsqlqr , is above (respectively, below)L. Union of these two portions
one fromPa and another fromPb, form the polygonP1 and it contains bothq andV (q).

The subsegments of type (i) onLr can be identified by scanningbd(Pa) in counterclockwise order fromqr to ql .
This procedure is denoted asCCS(Pa, qr , ql,Lr). Analogously, procedures for identifying the subsegments of t
(ii), (iii) and (iv) are denoted asCS(Pa, ql, qr ,Ll), CS(Pb, qr , ql,Lr) andCCS(Pb, ql, qr ,Ll) respectively. For the
simple polygon in Fig. 3(a),CCS(Pa, qr , ql,Lr) identifies the subsegmentw1w2, CS(Pa, ql, qr ,Ll) identifiesw3w4,
CS(Pb, qr , ql,Lr) identifiesw7w8 andCCS(Pb, ql, qr ,Ll) identifiesw5w6. Since these procedures are analogous
present here only the procedureCCS(Pa, qr , ql,Lr).

As stated above,CCS(Pa, qr , ql,Lr) scansbd(Pa) in counterclockwise order fromqr to ql and locate subsegmen
onLr lying insidePa . Let w be an intersection point ofLr with bd(Pa). If the next counterclockwise vertex ofw on
bd(Pa) is below (or above)Lr , thenw is called adownward (respectively,upward) intersection point. Note thatqr

is an upward intersection point by definition. If two intersection points are both downward or upward, they are
the same type of intersection points. Otherwise, they are called theopposite type of intersection points. In Fig. 3(a
(w1,w2) is a pair of opposite type asw1 andw2 are downward and upward intersection points respectively. We
the following properties on the pairs of intersection points ofLr with bd(Pa).

Lemma 3.1. Let u and w be two intersection points of Lr with bd(Pa). If u and w are same type of intersection points,
the segment uw does not lie inside Pa .

Proof. Sinceu andw are same type of intersection points andPa is a closed and bounded region, there are
number of intersection points ofbd(Pa) with Lr that are lying on the segmentuw. Hence, the segmentuw does not
lie insidePa . �
Lemma 3.2. Let u and w be two intersection points of Lr with bd(Pa). If the segment uw lies inside Pa , then u and
w are opposite type of intersection points.

Proof. If u andw are the same type of intersection points, then the segmentuw does not lie insidePa by Lemma 3.1,
a contradiction. �
Corollary 3.1. If u is a downward (or upward) intersection point, w is an upward (respectively, downward) intersec-
tion point and uw lies inside Pa , then u ∈ qw (respectively, w ∈ qu).

Lemma 3.3. Let u and w be two intersection points of Lr with bd(Pa). Assume that u and w are downward and
upward intersection points respectively and u ∈ qw, or vice versa. If the segment uw does not lie inside Pa , then there
exists another pair of intersection points (u′,w′) of opposite type lying on the segment uw.

Proof. Sinceu andw are intersection points of opposite type and the segmentuw does not lie insidePa , there are
even number of intersection points ofbd(Pa) with the segmentuw excluding the pointsu andw. So, there exists a
least a pair of intersection points(u′,w′) of opposite type lying on the segmentuw. �

Above lemma suggests that in order to locate subsegments ofLr that are lying insidePa , it is necessary to locat
the pairs of intersection points of opposite type onLr and then test whether the segment formed by any such
contains another pair of opposite type. LetW = (w0,w1, . . . ,wm) be the order of intersection points ofbd(Pa) with
Lr while bd(Pa) is traversed in counterclockwise order starting fromqr , whereqr = w0 (see Fig. 3(b)). Letwi−1 be
a point ofW such that for any two consecutive pointswk andwk+1 in (w0,w1, . . . ,wi−1), (wk,wk+1) form a pair of
opposite type andwk ∈ qwk+1. We say that points in(w0,w1, . . . ,wi−1) are in theproper order up towi−1. It can be
seen that if the points inW are in the proper order up towm, then the segments connecting alternate pairs of poin
W lie insidePa . Note that if there is winding inPa , points inW are not in the proper order.



B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165–173 169

in

r

e

y

.5.
s

in
h-
ee
ary of
The procedureCCS(Pa, qr , ql,Lr) tests whether the points inW are in the proper order starting fromw1. If it
encounters a point that violates the proper order up to the last point tested, it discards some points ofW and restores
the proper order. In this process, the procedureCCS(Pa, qr , ql,Lr) identify the subsegments ofLr that are lying
insidePa . In the following lemmas, we explicitly state the properties of the proper order on a subset of pointsW .

Lemma 3.4. Assume that the points in W are in the proper order up to wi−1. If wi preserves the order, then wi /∈ qwi−1
and (wi−1,wi) is a pair of opposite type.

Lemma 3.5. Assume that the points in W are in the proper order up to wi−1. If wi violates the order, then wi ∈ qwi−1
or (wi−1,wi) is a pair of same type.

Lemma 3.6. Assume that the points in W are in the proper order up to wi−1. If there is a point wj of W lies on the
segment wkwk+1, where k < i − 1, then wj is a subsequent point of wi−1 in W .

Assume that the procedureCCS(Pa, qr , ql,Lr) has tested points inW up to wi−1 and they are in the prope
order (see Fig. 3(b)). It means thatw0,w2,w4, . . . ,wi−1 are upward intersection points andw1,w3,w5, . . . ,wi−2 are
downward intersection points. We also assume that the procedure has pushed alternate pairs of opposite type(w1,w2),
(w3,w4), . . . , (wi−2,wi−1) on the stack, where(wi−2,wi−1) is on the top of the stack. Note that the segmentsw0w1,
w2w3, . . . ,wi−3wi−2 do not lie insidePa . The procedure checks whether the next pointwi satisfies the order. W
have the following cases.

Case 1. The pointwi is a downward intersection point andwi /∈ qwi−1 (see Fig. 3(b)).
Case 2. The pointwi is a downward intersection point andwi ∈ qwi−1 (see Fig. 5(a)).
Case 3. The pointwi is an upward intersection point andwi ∈ qwi−1 (see Fig. 5(b)).
Case 4. The pointwi is an upward intersection point andwi /∈ qwi−1 (see Fig. 7(b)).

Consider Case 1. Sincewi is a downward intersection point andwi /∈ qwi−1, wi is in the proper order b
Lemma 3.4. The procedure checks whether(wi,wi+1) is the next pair of opposite type. Ifwi ∈ qwi+1, then(wi,wi+1)

is the next pair (see Fig. 3(b)). Ifwi+1 ∈ qwi (see Fig. 4(a)), thenwi+1 violates the proper order by Lemma 3
ScanW starting fromwi+2 till a point wk is found such thatwi ∈ qwk . So, (wi,wk) is the next pair and point
(wi+1, . . . ,wk−1) are removed. Without loss of generality, we assume that(wi,wi+1) is the next pair. Ifwi+1 is
an upward intersection point (see Fig. 3(b)), then(wi,wi+1) is the next pair of opposite type, and the points
(w0,w1, . . . ,wi,wi+1) are in the proper order by Lemma 3.4. Therefore,(wi,wi+1) is pushed on the stack. Ot
erwise,(wi,wi+1) is the first pair of same type because bothwi andwi+1 are downward intersection points (s
Fig. 4(b)). By Lemma 3.5,wi+1 has violated the proper order. It can be seen that the counterclockwise bound

Fig. 4. (a) The pointswi andwk form the next pair. (b) The pointswi andwj form the next pair.



170 B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165–173

ite

ype
d in

y

other
t
nts

y
ir
t

at
added to

ure
ng

ints

se
Pa from wi to wi+1 (denoted asbd(wi,wi+1)) has winded aroundq. ScanW starting fromwi+2 till a point wj is
found such thatwj ∈ wiwi+1. Sincewj is an upward intersection point,(wi,wj ) becomes the next pair of oppos
type by Lemma 3.4. Remove all points ofW that do not belong to the segmentqwi+1 asLr is now restricted toqwi+1.
The pair(wi,wj ) is pushed on the stack. Note that if the segmentwiwj lies insidePa , the winding inbd(wi,wi+1)

can be removed fromPa by adding the segmentwiwj to Pa . Otherwise, there exists another pair of opposite t
in W by Lemma 3.3 (see Fig. 4(b)) that lies on the segmentwiwj , which will be detected subsequently as state
Lemma 3.6.

Consider Case 2. Sincewi is a downward intersection point andwi ∈ qwi−1, wi has violated the proper order b
Lemma 3.5 (see Fig. 5(a)). It can be seen thatwi lies on a segment formed by a pair (say,(wk,wk+1)) which is already
in the stack. Pop the stack till(wk,wk+1) is on the top of the stack. We know from Lemma 3.3 that there exists an
pair of opposite type inW that lies on the segmentwkwk+1. ScanW from wi+1 till a point wj is found such tha
wj ∈ wkwi . Observe thatwj is an upward intersection point and(wk,wj ) is a pair of opposite type. Hence, the poi
in (w0,w1, . . . ,wk,wj ) are in the proper order by Lemma 3.4. Pop(wk,wk+1) from the stack and push(wk,wj ) on
the stack.

Consider Case 3. Sincewi is an upward intersection point andwi ∈ qwi−1, wi has violated the proper order b
Lemma 3.5 (see Figs. 5(b) and 6(a)). It can be seen thatwi belongs to the subsegment ofLr whose corresponding pa
is not in the stack. ScanW from wi till two consecutive pointswj−1 ∈ qwi−1 andwj ∈ qwi−1 are found such tha
they are both downward intersection points (see Fig. 5(b)). Remove all points(wi, . . . ,wj−1) from W . Treatingwj

as newwi , Case 2 is executed to update the stack. If no such verticeswj−1 andwj exist (see Fig. 6(a)), it means th
bd(wi,wm) has not intersected any segment formed by a pair in the stack and therefore, these segments are
partitionPa . In the process, the stack becomes empty.

It can be seen thatPa still has winding inbd(wi−1,wi) (see Fig. 6(a)) which is to be removed. The proced
CCS(Pa, qr , ql,Lr) now locates the subsegments ofqwi (from wi towardsq) using the same stack that are lyi
insidePa . LetU = (u0, u1, . . . , up) be the order of intersection points ofbd(wi, q) with qwi while bd(Pa) is traversed
in counterclockwise order starting fromwi , wherewi = u0 (see Fig. 6(a)). Observe that any two consecutive po
uk−1 anduk in U are of opposite type though there may be winding inPa . However,uk may not always lie onquk−1
for all k and therefore, the points inU may not be in the proper order in the direction fromu0 towardsq. We have the
following lemmas on the proper order ofU , which are analogous to Lemmas 3.4, 3.5 and 3.6.

Lemma 3.7. Assume that the points in U are in the proper order from u0 to uk−1. If uk preserves the order, then
uk /∈ u0uk−1.

Lemma 3.8. Assume that the points in U are in the proper order from u0 to uk−1. If uk violates the order, then
uk ∈ u0uk−1.

Fig. 5. (a) The downward intersection pointwi lies on the segmentwkwk+1. (b) The upward intersection pointwi belongs to the segment who
corresponding pair is not in the stack.



B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165–173 171

r-

.

e

hat

h

Fig. 6. (a) The next pair(uk,uk+1) is in the proper order. (b) The next pair in the proper order is(uk,uj ).

Fig. 7. (a) The next pair in the proper order is(uj ,ur ). (b) Pa is partitioned using the segments corresponding to the pairs(u0, u1) and(u2, u5).

Lemma 3.9. Assume that the points in U are in the proper order from u0 to uk−1. If there is a point uj of U lies on
the segment utut+1, where t < k − 1, then uj is a subsequent point of uk−1 in U .

Assume that the procedureCCS(Pa, qr , ql,Lr) has tested points inU up to uk−1 and they are in proper o
der (see Fig. 6(a)). We also assume that the procedure has pushed alternate pairs of opposite type(u0, u1),
(u2, u3), . . . , (uk−2, uk−1) on the stack. Recall thatu0 is an upward intersection point. Ifuk /∈ u0uk−1, then the point
uk is in the proper order by Lemma 3.7. The procedure checks whether(uk, uk+1) is the next pair of opposite type
If uk+1 /∈ u0uk (see Fig. 6(a)), thenuk+1 is also in the proper order by Lemma 3.7. So,(uk, uk+1) is the next pair of
opposite type and(uk, uk+1) is pushed on the stack. Otherwise,uk+1 belongs tou0uk (see Fig. 6(b)) anduk+1 has
violated the proper order by Lemma 3.8. ScanU starting fromuk+2 till a point uj is found such thatuj /∈ u0uk . So,
points in(u0, u1, . . . , uk, uj ) are in the proper order by Lemma 3.7. Therefore,(uk, uj ) is the next pair of opposit
type and(uk, uj ) is pushed on the stack. Consider the other situation whenuk ∈ u0uk−1 (see Fig. 7(a)). So,uk has
violated the proper order by Lemma 3.8. It can be seen thatuk lies on the segment formed by a pair (say,(uj , uj+1))
which is already in the stack. Pop the stack till(uj , uj+1) is on the top of the stack. We know from Lemma 3.3 t
there exists another pair of opposite type inU that lies on the segmentujuj+1. ScanU from uk+1 till a point ur is
found such thatur ∈ ujuk . Observe thatur is a downward intersection point and points(u0, u1, . . . , uj , ur) are in
the proper order by Lemma 3.7. Hence,(uj , ur) is a pair of opposite type. Pop(uj , uj+1) from the stack and pus
(uj , ur) on the stack.



172 B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165–173

y

e
stated
nts

k to

ts

ts

10.
r in
n

Consider Case 4. Sincewi is an upward intersection point andwi /∈ qwi−1, wi has violated the proper order b
Lemma 3.5 (see Fig. 7(b)). It can be seen thatbd(wi−1,wi) has winded aroundq. Let U = (u0, u1, . . . , up) be the
order of intersection points ofbd(wi, q) with the segmentwi−1wi while bd(Pa) is traversed in counterclockwis
order starting fromwi , wherewi = u0. Pop the stack till the stack becomes empty. Using the same method
above forU , locate all pairs of opposite type inU (from wi towardswi−1) that are in proper order. Add the segme
corresponding to the pairs in the stack to partitionPa . After partition, the portion ofPa that containsq on its boundary
becomes newPa . Let W denote only the intersection points of the boundary of newPa andqwi−1. With newPa and
newW , CCS(Pa, qr , ql,Lr) is executed again. Note that Case 4 cannot occur again and therefore,CCS(Pa, qr , ql,Lr)

terminates after the second round. In the following steps, we formally present the procedureCCS(Pa, qr , ql,Lr).

Step 1. Traversebd(qr , ql) in counterclockwise order starting fromqr and compute the intersection pointsW =
(w0,w1, . . . ,wm) of Lr with bd(Pa) wherew0 = qr ; h := 0; i := 1;

Step 2. If wi is a downward intersection pointand wi /∈ qwh (see Case 1)then
Step 2a. Assigni + 1 to k; while wk ∈ qwi , k := k + 1;
Step 2b.If wk is an upward intersection pointthen begin push(wi,wk) on the stack;i := k + 1 end else

begin j := k + 1; while wj /∈ wiwk , j := j + 1; push(wi,wj ) on the stack;i := j + 1 end;
Step 2c. Assigni − 1 toh; if i �= m + 1 then goto Step 2else goto Step 10;

Step 3. If wi is a downward intersection pointand wi ∈ qwh (see Case 2)then
Step 3a. Let(wk,wr) denote the pair on the top of the stack.While wi /∈ wkwr pop the stack;j := i + 1;

while wj /∈ wkwi , j := j + 1; pop the stack and push(wk,wj ) on the stack;
Step 3b. Assignj + 1 to i; h := i − 1; if i �= m + 1 then goto Step 2else goto Step 10;

Step 4. If wi is an upward intersection pointand wi ∈ qwh (see Case 3)then
Step 4a. Assigni + 1 to j ;
Step 4b.If j = m then goto Step 4d;
Step 4c.If wj+1 andwj are downward intersection points and both of them belong toqwh theni := j + 1

andgoto Step 3else j := j + 1 and goto Step 4b;
Step 4d.While stack is not empty, add the segment corresponding to the pair on the top of the stacPa

and pop the stack;
Step 4e. Traversebd(wi, ql) in counterclockwise order starting fromwi and locate the intersection poin

U = (u0, u1, . . . , up) of qwi with bd(wi, ql) whereu0 = wi ; goto Step 6;
Step 5. If wi is an upward intersection pointand wi /∈ qwh (see Case 4)then

Step 5a. Traversebd(wi, ql) in counterclockwise order starting fromwi and compute the intersection poin
U = (u0, u1, . . . , up) of whwi with bd(wi, ql) whereu0 = wi ;

Step 5b. Clear the stack;
Step 6. Push(u0, u1) on the stack;k := 2;
Step 7. If uk /∈ u0uk−1 then begin j := k + 1; while uj ∈ u0uk , j := j + 1; push(uk, uj ) on the stack;k := j + 1;

goto Step 9end;
Step 8. If uk ∈ u0uk−1 then

Step 8a. Let(uj , ut ) denote the pair on the top of the stack.While uk /∈ ujut , pop the stack;r := k + 1;
Step 8b.While ur /∈ ujuk , r := r + 1; pop the stack and push(uj , ur) on the stack;k := r + 1;

Step 9. If k �= p + 1 then goto Step 7;
Step 10.While stack is not empty, add the segment corresponding to the pair on the top of the stack toPa and pop the

stack;
Step 11. STOP.

Lemma 3.10. The procedure CCS(Pa, qr , ql,Lr) correctly removes winding from Pa .

Proof. Consider any pair of intersection points(wi,wj ) of W in the stack at the time of executing Step 4d or Step
We show that the segmentwiwj lies insidePa . We know that(wi,wj ) is pushed on the stack either in Step 2b o
Step 3a. It can be seen from Steps 2 and 3 that (i)wi is a downward intersection point, (ii)wj is an upward intersectio
point, (iii) wi ∈ qwj and (iv) points ofW belonging to the pairs in the stack are in the proper order up towj . So,
the segmentwiwj lies insidePa provided no subsequent pointwk of wj in W belongs towiwj . If such pointwk



B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165–173 173

re

ent
ir
the

. [7] for
with a

aper.

, North-

7–559.
2.

triangu-

, Inform.

al ACM
exists, then Steps 3 and 4c ensure that(wi,wj ) cannot remain on the stack. Hence, the segmentwiwj lie insidePa .
Analogous arguments show that any segment, which corresponds to a pair of intersection points ofU in the stack at
the time of executing Step 10, lies insidePa .

Consider any pointz on bd(Pa) such thatbd(w0, z) has winded aroundq. We show that the procedu
CCS(Pa, qr , ql,Lr) has removedz from Pa . Assume on the contrary thatz is not removed fromPa by the proce-
dureCCS(Pa, qr , ql,Lr). So, there is a polygonal path fromq to z such that the path does not intersect the segm
corresponding to any pair in the stack at the time of executing Step 4d or Step 10. So, there exists another pa(v′, v′′)
of intersection points ofW or U such thatv′ andv′′ are in the proper order along with the points of the pairs in
stack. It means thatCCS(Pa, qr , ql,Lr) has not considered all points ofW andU , which is not possible. Hence,z is
removed fromPa . �

After Pa is modified byCCS(Pa, qr , ql,Lr), Pa is further modified byCS(Pa, ql, qr ,Ll) and the newPa forms the
portion ofP1 above the lineL. Similarly, after the execution of proceduresCS(Pb, qr , ql,Lr) andCCS(Pb, ql, qr ,Ll),
the newPb forms the portion ofP1 belowL. So, the union ofPa andPb gives the pruned polygonP1. It can be seen
that the pruning algorithm runs in O(n) time. We state the result in the following theorem.

Theorem 3.1. Given a point q inside an n-sided simple polygon P , a polygon P1 ⊆ P can be constructed in O(n)

time such that (i) P1 contains both q and the visibility polygon of P from q , and (ii) the boundary of P1 does not wind
around q .

4. Concluding remarks

In Section 2, we have discussed the need for pruning algorithm in the context of computingV (q). Consider the
problem of computing the weak visibility polygonV (pq) of P from a given internal segmentpq. A point z ∈ P

is said to beweakly visible from pq if z is visible from any point ofpq. Draw the lineL passing throughp and
q, and remove the winding ofP using our pruning algorithm. It can be seen that the pruned polygon containsp, q

andV (pq). Therefore, the pruned polygon can be used as the input polygon to the algorithm of Guibas et al
computeV (pq). We feel that such pruning can reduce the size of the input polygon significantly for polygons
large number of vertices.

Acknowledgements

The authors wish to thank Chinmoy Dutta and Partha Goswami for suggesting improvements to original p

References

[1] T. Asano, S.K. Ghosh, T. Shermer, Visibility in the plane, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry
Holland, Amsterdam, 2000, pp. 829–876.

[2] Ta. Asano, Te. Asano, L.J. Guibas, J. Hershberger, H. Imai, Visibility of disjoint polygons, Algorithmica 1 (1986) 49–63.
[3] Te. Asano, Efficient algorithms for finding the visibility polygons for a polygonal region with holes, Trans. IECE Japan E68 (1985) 55
[4] L. Davis, M. Benedikt, Computational models of space: Isovists and isovist fields, Comput. Graph. Image Process. 11 (1979) 49–7
[5] S.E. Dorward, A servey of object-space hidden surface removal, Internat. J. Comput. Geom. Appl. 4 (1994) 325–362.
[6] H. ElGindy, D. Avis, A linear algorithm for computing the visibility polygon from a point, J. Algorithms 2 (1981) 186–197.
[7] L.J. Guibas, J. Hershberger, D. Leven, M. Sharir, R.E. Tarjan, Linear-time algorithms for visibility and shortest path problems inside

lated simple polygons, Algorithmica 2 (1987) 209–233.
[8] P.J. Heffernan, J.S.B. Mitchell, An optimal algorithm for computing visibility in the plane, SIAM J. Comput. 24 (1) (1995) 184–201.
[9] K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, R.E. Tarjan, Sorting Jordan sequences in linear time using level-linked search trees

Control 68 (1986) 170–184.
[10] B. Joe, On the correctness of a linear-time visibility polygon algorithm, International J. Comput. Math. 32 (1990) 155–172.
[11] B. Joe, R.B. Simpson, Corrections to Lee’s visibility polygon algorithm, BIT 27 (1987) 458–473.
[12] D.T. Lee, Visibility of a simple polygon, Comput. Vis. Graph. Image Process. 22 (1983) 207–221.
[13] S. Suri, J. O’Rourke, Worst-case optimal algorithms for constructing visibility polygons with holes, in: Proceedings of the 2nd Annu

Symposium on Computational Geometry, 1986, pp. 14–23.


