Available online at www.sciencedirect.com

SCIENCE @DIHECT® ComPUtatlonal
Geometry
e el s Theory and Applications
ELSEVIER Computational Geometry 33 (2006) 165-173

www.elsevier.com/locate/comgeo

A linear time algorithm to remove winding of a simple polygon

Binay Kumar Bhattacharya Subir Kumar Ghosh*!, Thomas Caton Shermr

@ School of Computing Science, Smon Fraser University, Burnaby, BC Canada V5A 16
b school of Computer Science, Tata Institute of Fundamental Research, Mumbai 400005, India

Received 29 November 2004; accepted 3 May 2005
Available online 11 August 2005

Communicated by T. Asano

Abstract

In this paper, we present a linear time algorithm to remove winding of a simple poRgdth respect to a given poift inside
P. The algorithm removes winding by locating a subselarflan sequence that is in the proper order and uses only one stack.
0 2005 Elsevier B.V. All rights reserved.

Keywords: Algorithm; Pruning; Revolution; Visibility polygon; Winding

1. Introduction

Determining the visible region of a geometric object from a given source under various constraints is a well-studied
problem in computational geometry [1]. Two points of a simple poly@ois said to bevisible if the line segment
joining them lies insideP. The visibility polygon of a pointg in P is the set of all points o visible to g (see
Fig. 1(a)). A similar definition holds in a polygon with holes (see Fig. 1(b)). This problem of computing the visibility
polygon V(g) from a pointg is an integral part of the rendering process in computer graphics, where it is called
hidden line elimination or hidden surface elimination [5].

The problem of computind’ (¢) inside a simple polygow® of n vertices was first taken up in a theoretical setting
by Davis and Benedikt [4], who presented an algorithm that take$)@ime. Soon thereafter, EIGindy and Avis [6]
and Lee [12] gave linear-time algorithms for this problem. For a polygon kitloles of total: vertices, Asano [3]
presented Q:logh) algorithms for computing the visibility polygon of a point. Around the same time, |G n)
time algorithm for this problem was proposed by Suri and O’Rourke [13], and Asano et al. [2]. Later, Heffernan and
Mitchell [8] presented an @ + i logh) time algorithm for this problem.

It has been shown in Joe [10] and Joe and Simpson [11] that both algorithms of EIGindy and Avis, and Lee may
fail on some polygons with sufficient winding, i.e., if the revolution number is at least two. For anyzpeoiRt, the
revolution number of P with respect t is the number of revolutions that the boundaryPoinakes about. Joe and

* Corresponding author.
E-mail addresses: binay@cs.sfu.ca (B.K. Bhattacharya), ghosh@tifr.res.in (S.K. Ghosh), shermer@cs.sfu.ca (T.C. Shermer).
1 A part of this work was done when the author visited Simon Fraser University and was supported by NSERC grants.

0925-7721/$ — see front mattét 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.comge0.2005.05.001

166 B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165-173

(@) (b)

Fig. 1. The visibility polygons of in a simple polygon and in a polygon with holes.

Simpson [11] suggested a linear time algorithm for computitig) which correctly handles winding in the polygon
by keeping the count of the number of revolutions arognd

It can be seen that the portion of the boundaryPothat makes the revolution number @fmore than one is
not visible fromq. So, it is better to prun@ before using the algorithm of EIGindy and Avis or Lee so that (i) the
revolution number of the pruned polygon Bfwith respect tg; is one and (ii) the pruned polygon &f contains both
g andV (g). In the next section, we discuss in details the need for such pruning in the context of conmpitingn
Section 3, we present our(®@ time algorithm for pruningP. In Section 4, we conclude the paper with a few remarks.

2. Background

As stated earlier, Lee’s algorithm works in general but it may fail on some polygons with sufficient winding as
pointed out in Joe [10] and Joe and Simpson [11]. The polygon in Fig. 2(a) is one such polygon. While scanning the

- /
| Wy /UJS
/11)2
/ ")
11)1/ B
S1
l Y ‘ 4 g % 1
Y . i
(@) ()

Fig. 2. (a) The algorithms of EIGindy and Avis, and Lee fail for this polygar(b) The polygonP can be divided by segmeniguy, ugug, usug
andu7ug. The shaded regioR; contains botly andV (¢).

B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165-173 167

boundary ofP (denoted abd(P)) in counterclockwise order starting frasp, Lee’s algorithm pusheg ands; on the
stack. Then it looks for the intersectiontod(P) with the ray drawn frony throughs; (denoted agsi) and locates
the intersection poinb1. Sincebd(P) has intersectegls1 atw; in the opposite directiony; and the next intersection
pointw, are ignored. The algorithm correctly accepts the next intersectionpgift again returns t@s; and locates
the intersection pointvs on syws. Then it locates the next intersection poirg by checking intersection did(P)
with s;w4 and pushesss on the stack. Since then, the algorithm does not comyge correctly. Observe thédgd(P)
has intersectegh w4 at ws from the opposite direction due to winding.

It can be seen that if the winding part of the input polygdiis removed before using Lee’s algorithm, it correctly
computeV (¢). Let P1 C P be a pruned polygon (see Fig. 2(b)) such thatontains botly andV (¢), and the angle
subtended & is no more than 2 while scanning the boundary &f. Then P; andg can be given as inputs to Lee’s
algorithm to computé (¢). We start the discussion on pruning with the following lemma.

Lemma 2.1. Let (1o, u1, ..., ux) betheintersection points of bd(P) with the half-line drawn from ¢ to theright of ¢
such that for all i, u; € qu;+1. Then, the ssgments uqup, uzua, ..., ur—_1u lieinside P.

Lemma 2.1 suggests that sineg®, u1, . . ., u) is in sorted order along the half-line (Fig. 2(bp can be partitioned
into several parts by adding the segmentss, usug, ..., ur_1u;. Observe that the part containing is a pruned
polygon P; which containg; as well asV (¢). Analogously, remove winding by drawing a horizontal line frgrno
the left of ¢ by treatingP; as P. Since there is no winding now in the ney, the angle subtended atcannot be
more than 2 while scanning the boundary of the né® by Lee’s algorithm.

Intersection pointsg, u1, ..., u; can be computed in @) time by checking the intersection of the half-line with
every edge ofP. Then, intersection points can be sorted along the half-line (im) ®me using the algorithm of
Hoffmann et al. [9]. Note that sorting af numbers in general is different from sorting of these intersection points
(uo, u1, ...,ux) lying on bd(P). Hence, the overall time complexity of the algorithm for computing) remains
O(). However, the algorithm of Hoffmann et al. [9] uses involved data structures dadesl-linked search trees,
which are not easy to implement. In our pruning algorithm, we adopt a different method for computimich uses
only one stack.

Observe that if only the segmentu or usug is added to the polygon in Fig. 2(b), it still removes winding frém
It suggests that winding can be removed by introducing a few selected segmént®ur pruning algorithm shows
that such segments can be identified without sorting all intersection poibt 8§ with the horizontal line (called
Jordan sequence).

3. Pruning algorithm
Pruning algorithm starts by drawing the horizontal liheghroughg. Let L, and L; denote the portion of. to

the right and left ofy respectively (see Fig. 3(a)). Let (or ¢g;) be the closest point af among the intersection
points ofbd(P) with L, (respectivelyL;). Add the segmeny; ¢, to partition P into polygonsP, and P,, where the

Py

wg| \
L, { ws |lwg | L w1 L, w2H L,
qr| |ws [wr sz q wy w1J \ w; l Wy,

w
5 P b w;—1

v
Qe
|

(a) (b)

Fig. 3. (a) Four procedures identify one subsegment eadh @n) All pairs of consecutive intersection points bp are of opposite type.

168 B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165-173

boundary ofP, (or P,) consists of the segmentg, and the counterclockwise (respectively, clockwise) boundary
from ¢, to ¢;. There are four types of subsegments/othat are lying insideP: the subsegments formed by pairs
of intersection points of (iy., with bd(P,), (i) L; with bd(P,), (iii) L, with bd(P,) and (iv) L; with bd(P). Our
procedure identifies some of these subsegments such that after sgjttargl P, by adding these subsegments, the
portion of P, (or Py), whose boundary contaimgg,, is above (respectively, below). Union of these two portions,
one fromP, and another fron®,, form the polygonP; and it contains botly andV (g).

The subsegments of type (i) dn can be identified by scannirgl(P,) in counterclockwise order from. to ¢;.

This procedure is denoted 8S(P,, g,, q1, L,). Analogously, procedures for identifying the subsegments of types
(i), (iii) and (iv) are denoted a€(P,, g1, 4r, L1), CPs, qr, q1, Ly) andCCS(Py, q;, qr, L;) respectively. For the
simple polygon in Fig. 3(a)CCS(P,, ¢r, qi, L,) identifies the subsegment w2, CS(P,, q;, g,, L;) identifieswzwg,
CS(Py, gy, qi, L,) identifiesw7ws andCCS(Py, g1, g, L;) identifieswsweg. Since these procedures are analogous, we
present here only the proced @€S(P,, g,, q;, L;).

As stated aboveCCS(P,, g,, qi, L) scansdbd(P,) in counterclockwise order from. to ¢; and locate subsegments
on L, lying inside P,. Let w be an intersection point df, with bd(P,). If the next counterclockwise vertex af on
bd(P,) is below (or above).,, thenw is called adownward (respectivelyupward) intersection point. Note thaj,
is an upward intersection point by definition. If two intersection points are both downward or upward, they are called
the same type of intersection points. Otherwise, they are calleddpposite type of intersection points. In Fig. 3(a),
(w1, wp) is a pair of opposite type as; andw; are downward and upward intersection points respectively. We have
the following properties on the pairs of intersection pointg pfvith bd(P,).

Lemma 3.1. Let u and w betwo intersection pointsof L, with bd(P,). If u and w are same type of intersection points,
the segment uw does not lieinside P,.

Proof. Sinceu andw are same type of intersection points aRdis a closed and bounded region, there are odd
number of intersection points &fl(7,) with L, that are lying on the segmentv. Hence, the segmentv does not
lieinsideP,. O

Lemma 3.2. Let u and w be two intersection points of L, with bd(P,). If the segment uw liesinside P,, then u and
w are opposite type of intersection points.

Proof. If u andw are the same type of intersection points, then the segmenbes not lie insidé, by Lemma 3.1,
a contradiction. O

Coroallary 3.1. If u isa downward (or upward) intersection point, w isan upward (respectively, downward) intersec-
tion point and uw liesinside P,, then u € gw (respectively, w € qu).

Lemma 3.3. Let u and w be two intersection points of L, with bd(P,). Assume that ¥ and w are downward and
upward intersection points respectively and u € gw, or vice versa. |f the segment uw doesnot lieinside P,, then there
exists another pair of intersection points («’, w’) of opposite type lying on the segment uw.

Proof. Sinceu andw are intersection points of opposite type and the segmendoes not lie inside?,, there are
even number of intersection pointsilad(P,) with the segmentw excluding the points andw. So, there exists at
least a pair of intersection points’, w’) of opposite type lying on the segment. O

Above lemma suggests that in order to locate subsegmerits thiat are lying insideP,, it is necessary to locate
the pairs of intersection points of opposite type lonand then test whether the segment formed by any such pair
contains another pair of opposite type. Wét= (wo, w1, ..., wy,) be the order of intersection points lad(P,) with
L, while bd(P,) is traversed in counterclockwise order starting frgmwhereq, = wo (see Fig. 3(b)). Letv;_1 be
a point of W such that for any two consecutive pointg andwy1 in (wo, wa, ..., w;—1), (Wi, wis1) form a pair of
opposite type andy;, € qwy1. We say that points itwg, w1, ..., w;_1) are in theproper order up tow;_1. It can be
seen that if the points i are in the proper order up to,,, then the segments connecting alternate pairs of points in
W lie inside P,. Note that if there is winding irP,, points inW are not in the proper order.

B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165-173 169

The procedureCCS(P,, q,, q;, L) tests whether the points iW are in the proper order starting froom. If it
encounters a point that violates the proper order up to the last point tested, it discards some poiatsdafestores
the proper order. In this process, the proced0&S(P,, ¢,, q;, L) identify the subsegments df, that are lying
inside P,. In the following lemmas, we explicitly state the properties of the proper order on a subset of pdints in

Lemma 3.4. Assumethat the pointsin W areinthe proper order upto w;_1. If w; preservestheorder, then w; ¢ qw;_1
and (w;_1, w;) isa pair of opposite type.

Lemma 3.5. Assume that the pointsin W arein the proper order up to w;_1. If w; violatesthe order, then w; € qw;_1
or (w;_1, w;) isapair of same type.

Lemma 3.6. Assume that the pointsin W are in the proper order up to w;_1. If thereis a point w; of W lieson the
segment wywy1, wherek < i — 1, then w; isa subsequent point of w;_1 in W.

Assume that the procedureCS(P,, q,, q;, L) has tested points if¥ up to w;_; and they are in the proper
order (see Fig. 3(b)). It means thag, w2, wa, ..., w;_1 are upward intersection points and, w3z, ws, ..., w;_» are
downward intersection points. We also assume that the procedure has pushed alternate pairs of oppasitestype
(ws, wy), ..., (w;j_2, w;—1) on the stack, wheréw; _2, w;_1) is on the top of the stack. Note that the segmenis1,
wows, ..., w;—3w;_2 do not lie insideP,. The procedure checks whether the next paintsatisfies the order. We
have the following cases.

Case 1. The poinb; is a downward intersection point ang ¢ qw; 1 (see Fig. 3(b)).
Case 2. The poinb; is a downward intersection point ang € qw; 1 (see Fig. 5(a)).
Case 3. The poinb; is an upward intersection point ang € gw; 1 (see Fig. 5(b)).
Case 4. The poinb; is an upward intersection point ang ¢ qw;_1 (see Fig. 7(b)).

Consider Case 1. Since; is a downward intersection point and; ¢ qw;_1, w; is in the proper order by
Lemma 3.4. The procedure checks whether, w; 1) is the next pair of opposite type.if; € gw;+1, then(w;, w;11)
is the next pair (see Fig. 3(b)). ;11 € qw; (see Fig. 4(a)), themw; 1 violates the proper order by Lemma 3.5.
ScanW starting fromw; 4 till a point wy is found such thaty; € qwy. So, (w;, wy) is the next pair and points
(wj41, ..., wg—1) are removed. Without loss of generality, we assume thatw;,1) is the next pair. Ifw; 1 is
an upward intersection point (see Fig. 3(b)), th@en, w;;1) is the next pair of opposite type, and the points in
(wo, w1, ..., w;, w;+1) are in the proper order by Lemma 3.4. Therefdne;, w;11) is pushed on the stack. Oth-
erwise, (w;, w;1+1) is the first pair of same type because bathand w;; are downward intersection points (see
Fig. 4(b)). By Lemma 3.5w;1 has violated the proper order. It can be seen that the counterclockwise boundary of

a
Wi—1

q Wo |_ \ w; (']—1'00 Ll wj i

(@) (b)

Fig. 4. (a) The pointsy; andw form the next pair. (b) The points; andw ; form the next pair.

Wit1

\
&

v

170 B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165-173

P, from w; to w;41 (denoted add(w;, w;4+1)) has winded aroung. ScanW starting fromw;_» till a point w; is
found such thatv; € w; w;+1. Sincew; is an upward intersection pointw;, w;) becomes the next pair of opposite
type by Lemma 3.4. Remove all pointsfthat do not belong to the segment; 1 asL, is now restricted tqw; 1.

The pair(w;, w;) is pushed on the stack. Note that if the segment; lies insideP,, the winding inbd(w;, w;4+1)

can be removed fronP, by adding the segment;w; to P,. Otherwise, there exists another pair of opposite type
in W by Lemma 3.3 (see Fig. 4(b)) that lies on the segment;, which will be detected subsequently as stated in
Lemma 3.6.

Consider Case 2. Sinag; is a downward intersection point amg € gw;_1, w; has violated the proper order by
Lemma 3.5 (see Fig. 5(a)). It can be seen thaies on a segment formed by a pair (s@y, wi+1)) which is already
in the stack. Pop the stack tillu, wr11) is on the top of the stack. We know from Lemma 3.3 that there exists another
pair of opposite type i that lies on the segmeni; wy1. ScanW from w; 1 till a point w; is found such that
w; € wyw;. Observe that; is an upward intersection point axa,, w;) is a pair of opposite type. Hence, the points
in (wo, wy, ..., wk, wj) are in the proper order by Lemma 3.4. Rog, wi+1) from the stack and pustwg, w;) on
the stack.

Consider Case 3. Sinag; is an upward intersection point ang € qw;_1, w; has violated the proper order by
Lemma 3.5 (see Figs. 5(b) and 6(a)). It can be seenithbelongs to the subsegmentiof whose corresponding pair
is not in the stack. ScaW from w; till two consecutive pointsv;_1 € qw;_1 andw; € qw;_1 are found such that
they are both downward intersection points (see Fig. 5(b)). Remove all gaints.., w;_1) from W. Treatingw;
as neww;, Case 2 is executed to update the stack. If no such vettigesandw; exist (see Fig. 6(a)), it means that
bd(w;, wy,,) has not intersected any segment formed by a pair in the stack and therefore, these segments are addec
partition P,. In the process, the stack becomes empty.

It can be seen thak, still has winding inbd(w;_1, w;) (see Fig. 6(a)) which is to be removed. The procedure
CCS(P,, qr,qi, L) now locates the subsegmentsqab; (from w; towardsqg) using the same stack that are lying
insideP,. LetU = (ug, u1, ..., up) be the order of intersection pointstaf(w;, ¢) with gw; while bd(P,) is traversed
in counterclockwise order starting fromy, wherew; = ug (see Fig. 6(a)). Observe that any two consecutive points
ui—1 anduy in U are of opposite type though there may be windin@jnHoweveru; may not always lie ogu;_1
for all k and therefore, the points iti may not be in the proper order in the direction fragtowardsg. We have the
following lemmas on the proper order bf, which are analogous to Lemmas 3.4, 3.5 and 3.6.

Lemma 3.7. Assume that the pointsin U are in the proper order from ug to ug_1. If u; preserves the order, then
Uy & uolg—1.

Lemma 3.8. Assume that the points in U are in the proper order from ug to uz—_1. If u; violates the order, then
Ur € UQUE—1.

Py P, _
“ L, [—_ : [] L,
g wo| [Wj U /4 g Wo ij wi—N |w; w1
w; \ wWi—1 -
Wk+1
(a) (b

Fig. 5. (a) The downward intersection point lies on the segment; wi1. (b) The upward intersection point; belongs to the segment whose
corresponding pair is not in the stack.

B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165-173 171

Po P,

Uk41
ik ;u]ﬂuo L, uk_l ‘_\u uo) | Ly
q ng \\ \ I Tw; wWi—1 g wo \\ \ I Tw;
Up+1| |UE—1 7

T

' Ug—1

Wi—1

(a) (b)

Fig. 6. (a) The next paifuy, u 1) is in the proper order. (b) The next pair in the proper ordénjsu ;).

P, P,
.] U] U] L, . us us uulr L,
L (23 y Ly Uq 2
ik fl / q N
Up— Ui Yk+] Wi—1 ||
k=1 It w; = U <

Wi—1 w; = Uo

(a) (b)

Fig. 7. (a) The next pair in the proper orderis;, u,). (b) Pq is partitioned using the segments corresponding to the pajts:1) and(uz, us).

Lemma 3.9. Assume that the pointsin U are in the proper order fromug to uy_1. If thereisa point u; of U lieson
the segment u;u, 1, wheret < k — 1, then u; is a subsequent point of u;_1 inU.

Assume that the procedu€CS(P,, q,, g1, L,) has tested points iV up to ux_1 and they are in proper or-
der (see Fig. 6(a)). We also assume that the procedure has pushed alternate pairs of opposiig itype
(uz2,u3), ..., (ux—2, ux—1) on the stack. Recall that is an upward intersection point. df, ¢ uouy—1, then the point
uy, is in the proper order by Lemma 3.7. The procedure checks whéthgai, 1) is the next pair of opposite type.
If upi1 ¢ uoui (see Fig. 6(a)), theny1 is also in the proper order by Lemma 3.7. @@y, ui+1) is the next pair of
opposite type anduy, ux11) is pushed on the stack. Otherwisg, 1 belongs touou; (see Fig. 6(b)) and;,1 has
violated the proper order by Lemma 3.8. Sdarstarting fromu, till a point «; is found such thai ; ¢ uouy. So,
points in(ug, u1, ..., ux, u;) are in the proper order by Lemma 3.7. Therefdre, u ;) is the next pair of opposite
type and(ug, 1) is pushed on the stack. Consider the other situation whenuoui_1 (see Fig. 7(a)). Sas, has
violated the proper order by Lemma 3.8. It can be seenuthties on the segment formed by a pair (s@y;, u j+1))
which is already in the stack. Pop the stackdi}, « ;1) is on the top of the stack. We know from Lemma 3.3 that
there exists another pair of opposite typdlirthat lies on the segmentiu ;1. ScanU from w1 till a point u, is
found such that, € uju;. Observe thak, is a downward intersection point and poirit&, u, ..., u;, u,) are in
the proper order by Lemma 3.7. Henge,, u,) is a pair of opposite type. Paj;, u ;1) from the stack and push
(uj,ur) on the stack.

172 B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165-173

Consider Case 4. Sinag; is an upward intersection point ang ¢ qw;_1, w; has violated the proper order by
Lemma 3.5 (see Fig. 7(b)). It can be seen tdhtw; 1, w;) has winded around. Let U = (uo, u1, ..., u,) be the
order of intersection points did(w;, ¢) with the segmentv; _1w; while bd(P,) is traversed in counterclockwise
order starting fromw;, wherew; = ug. Pop the stack till the stack becomes empty. Using the same method stated
above forU, locate all pairs of opposite type U (from w; towardsw;_1) that are in proper order. Add the segments
corresponding to the pairs in the stack to partitiyn After partition, the portion of, that containg on its boundary
becomes newP,. Let W denote only the intersection points of the boundary of lgvandqw; 1. With new P, and
newW,CCS(P,, q;, q, L) is executed again. Note that Case 4 cannot occur again and the@@S@,, ¢,, qi, L,)
terminates after the second round. In the following steps, we formally present the proc&@8ie,, q,, q;, L,).

Step 1. Traverséd(qg,, ¢;) in counterclockwise order starting frog and compute the intersection poirits =
(wo, w1, ..., wy) of L, with bd(P,) wherewg=g¢,; h:=0;i :=1;
Step 2. If w; is a downward intersection poiahd w; ¢ qw;, (see Case lthen
Step 2a. Assign+ 1 tok; whilewy € qw;, k:=k +1;
Step 2b.If wy is an upward intersection poititen begin push (w;, wy) on the stackj := k + 1 end else
begin j :=k + 1, whilew; ¢ w;wy, j:= j + 1; push(w;, w;) on the stacki := j + 1 end;
Step 2c. Assigmn — 1 toh; if i # m + 1 then goto Step 2else goto Step 10;
Step 3.If w; is a downward intersection poiahd w; € qw;, (See Case Zhen
Step 3a. Let{wy, w,) denote the pair on the top of the stadthile w; ¢ wyw, pop the stackj :=i + 1;
while w; ¢ wiw;, j:= j + 1, pop the stack and pughy, w;) on the stack;
Step 3b. Assigny + 1toi; h:=i —1;if i #m + 1 then goto Step 2else goto Step 10;
Step 4. If w; is an upward intersection poiahd w; € qw;, (see Case 3hen
Step 4a. Assign+ 1to j;
Step 4b.If j =m then goto Step 4d;
Step 4c.If wj; 1 andw; are downward intersection points and both of them belongutptheni := j +1
andgoto Step 3else j := j + 1 and goto Step 4b;
Step 4d.While stack is not empty, add the segment corresponding to the pair on the top of the sijck to
and pop the stack;
Step 4e. Traversbd(w;, q;) in counterclockwise order starting fromy and locate the intersection points
U = (uo, us, ..., up) of qw; with bd(w;, ¢;) whereuo = w;; goto Step 6;
Step 5. If w; is an upward intersection poiahd w; ¢ qw;, (See Case 4hen
Step 5a. Traverded(w;, g;) in counterclockwise order starting fromy and compute the intersection points
U = (ug, u1, ..., up) of wyw; with bd(w;, g;) whereug = w;;
Step 5b. Clear the stack;
Step 6. Pusliuo, #1) on the stackk := 2;
Step 7.1f uy ¢ uoui—1 thenbegin j :=k + 1; whileu; € uouy, j := j + 1; push(ug, u ;) on the stackk := j + 1,
goto Step 9end;
Step 8.If uy € uogui—_1 then
Step 8a. Letu;, u;) denote the pair on the top of the stadile uy ¢ u ju;, pop the stack; :=k +1;
Step 8b.Whileu, ¢ ujui, r :=r 4 1; pop the stack and pugh;, u,) on the stackk :=r + 1,
Step 9.1f k # p + 1 then goto Step 7;
Step 10.While stack is not empty, add the segment corresponding to the pair on the top of the staantbpop the
stack;
Step 11. STOP.

Lemma 3.10. The procedure CCS(P,, q;, q1, L) correctly removes winding from P,.

Proof. Consider any pair of intersection poir{ts;, w;) of W in the stack at the time of executing Step 4d or Step 10.
We show that the segment w; lies insideP,. We know that(w;, w;) is pushed on the stack either in Step 2b or in
Step 3a. It can be seen from Steps 2 and 3 that;(i} a downward intersection point, (ii); is an upward intersection
point, (i) w; € gw; and (iv) points of W belonging to the pairs in the stack are in the proper order up;toSo,

the segmenty; w; lies inside P, provided no subsequent point of w; in W belongs tow;w;. If such pointwy

B.K. Bhattacharya et al. / Computational Geometry 33 (2006) 165-173 173

exists, then Steps 3 and 4c ensure that w;) cannot remain on the stack. Hence, the segmeunt; lie inside P,.
Analogous arguments show that any segment, which corresponds to a pair of intersection gaéimstod stack at
the time of executing Step 10, lies insidg.

Consider any pointz; on bd(P,) such thatbd(wo, z) has winded around;. We show that the procedure
CCS(P,, qr, qi, L) has removed from P,. Assume on the contrary thatis not removed fromP, by the proce-
dureCCS(P,, g, qi, L,). So, there is a polygonal path frognto z such that the path does not intersect the segment
corresponding to any pair in the stack at the time of executing Step 4d or Step 10. So, there exists angthear'pair
of intersection points of¥ or U such that’ andv” are in the proper order along with the points of the pairs in the
stack. It means th&@CS(P,, ¢,, q;, L) has not considered all points 8f andU, which is not possible. Hence,is
removed fromP,. O

After P, is modified byCCS(P,, g, qi, L), P, is further modified byCS(P,, q;, q,, L;) and the newP, forms the
portion of P; above the lind.. Similarly, after the execution of procedut@S(Py, ¢,, g1, L) andCCX(Py, q1, qr, L1),
the newP, forms the portion ofP; below L. So, the union of?, and P, gives the pruned polygoR;. It can be seen
that the pruning algorithm runs in®) time. We state the result in the following theorem.

Theorem 3.1. Given a point ¢ inside an n-sided simple polygon P, a polygon P; € P can be constructed in O(n)
time such that (i) P; contains both ¢ and the visibility polygon of P fromg, and (ii) the boundary of P; does not wind
around g.

4. Concluding remarks

In Section 2, we have discussed the need for pruning algorithm in the context of comgingConsider the
problem of computing the weak visibility polygovi(pg) of P from a given internal segmenty. A point z € P
is said to beweakly visible from pq if z is visible from any point ofpg. Draw the lineL passing throughy and
q, and remove the winding aP using our pruning algorithm. It can be seen that the pruned polygon contains
andV (pq). Therefore, the pruned polygon can be used as the input polygon to the algorithm of Guibas et al. [7] for
computeV (pq). We feel that such pruning can reduce the size of the input polygon significantly for polygons with a
large number of vertices.

Acknowledgements
The authors wish to thank Chinmoy Dutta and Partha Goswami for suggesting improvements to original paper.

References

[1] T. Asano, S.K. Ghosh, T. Shermer, Visibility in the plane, in: J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, North-
Holland, Amsterdam, 2000, pp. 829-876.
[2] Ta. Asano, Te. Asano, L.J. Guibas, J. Hershberger, H. Imai, Visibility of disjoint polygons, Algorithmica 1 (1986) 49-63.
[3] Te. Asano, Efficient algorithms for finding the visibility polygons for a polygonal region with holes, Trans. IECE Japan E68 (1985) 557-559.
[4] L. Davis, M. Benedikt, Computational models of space: Isovists and isovist fields, Comput. Graph. Image Process. 11 (1979) 49-72.
[5] S.E. Dorward, A servey of object-space hidden surface removal, Internat. J. Comput. Geom. Appl. 4 (1994) 325-362.
[6] H. EIGindy, D. Avis, A linear algorithm for computing the visibility polygon from a point, J. Algorithms 2 (1981) 186-197.
[7] L.J. Guibas, J. Hershberger, D. Leven, M. Sharir, R.E. Tarjan, Linear-time algorithms for visibility and shortest path problems inside triangu-
lated simple polygons, Algorithmica 2 (1987) 209-233.
[8] P.J. Heffernan, J.S.B. Mitchell, An optimal algorithm for computing visibility in the plane, SIAM J. Comput. 24 (1) (1995) 184-201.
[9] K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, R.E. Tarjan, Sorting Jordan sequences in linear time using level-linked search trees, Inform.
Control 68 (1986) 170-184.
[10] B. Joe, On the correctness of a linear-time visibility polygon algorithm, International J. Comput. Math. 32 (1990) 155-172.
[11] B. Joe, R.B. Simpson, Corrections to Lee’s visibility polygon algorithm, BIT 27 (1987) 458-473.
[12] D.T. Lee, Visibility of a simple polygon, Comput. Vis. Graph. Image Process. 22 (1983) 207-221.
[13] S. Suri, J. O’'Rourke, Worst-case optimal algorithms for constructing visibility polygons with holes, in: Proceedings of the 2nd Annual ACM
Symposium on Computational Geometry, 1986, pp. 14-23.

