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Abstract

This paper deals with completion of partial latin squares L=(lij) of order n with k cyclically
generated diagonals (li+t; j+t = lij + t if lij is not empty; with calculations modulo n). There
is special emphasis on cyclic completion. Here, we present results for k = 2; : : : ; 7 and odd
n6 21, and we describe the computational method used (hill climbing). Noncyclic completion
is investigated in the cases k = 2; 3 or 4 and n6 21.
? 2003 Elsevier B.V. All rights reserved.

Keywords: Partial latin square; Completion; Cyclically generated

1. Introduction

A partial latin square L of order n is an n × n array in which each cell is either
empty or contains a single element from an n-set S of symbols, such that each element
occurs at most once in each row and at most once in each column. If every cell is :lled,
then L is a latin square. If not explicitly stated di<erently, we assume the elements
of S to be the integers 0; 1; : : : ; n− 1 and also that the rows and columns are indexed
by 0; 1; : : : ; n− 1. All calculations are performed modulo n. A partial transversal of a
partial latin square of order n is a set of :lled cells, at most one in each row, at most
one in each column, and such that no two of the cells contain the same symbol. A
partial transversal with n cells is called a transversal. We refer the reader to [4,5] for
unde:ned terms as well as a general overview of latin squares.
Completion of partial latin squares has been investigated in a number of papers.

Best known is Evans’ conjecture [6] that an n× n partial latin square which has n− 1
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Fig. 1. A partial latin square of order 7 with 4 prescribed diagonals and its unique completion.

cells occupied can always be completed to a latin square of order n. Based on work
by Marica and Sch'onheim [11] and Lindner [10] this conjecture was proved to be true
by H'aggkvist [9] for n¿ 1111 and independently by Smetaniuk [13] and by Andersen
and Hilton [2] for all n. We also like to mention a still unsolved conjecture stated by
Daykin and H'aggkvist [3] that says if L is a partial n × n latin square where each
row, column and symbol is used at most un times (where u is some constant, e.g.
u = 1

4), then L can be completed. Daykin and H'aggkvist proved this for n= 16k and
un=

√
k=32 where k ∈N.

In connection with questions from design theory the following problem was posed by
Alspach and Heinrich in 1990 [1]: Does there exist an N (k) such that if k transversals
of a partial latin square of order n¿N (k) are prescribed, the square can always
be completed? For k = 1 one has N (1) = 3 since there exists an idempotent latin
square for every order n �= 2. Giving an uncompletable example Alspach and Heinrich
also showed that N (4)¿ 10. A more speci:c version of their question was posed by
Rees [12]: Does there exist an N such that if four cyclically generated transversals
li+t; j+t = lij + t of a partial latin square of order n¿N are prescribed, the square can
always be completed to one which contains a further :ve transversals?
Fig. 1 shows as an example a partial latin square with four cyclically generated

diagonals together with its unique completion. Throughout this paper an asterisk indi-
cates an empty cell. Notice that the remaining three diagonals in the completed latin
square are also cyclically generated. Therefore, it seems natural to try a completion to a
cyclically generated latin square. We show in Section 2 that such a cyclic completion
is impossible if n is even. This suggests the following question. Does there exist a
constant odd integer C(k) such that if k cyclically generated diagonals li+t; j+t = lij + t
of a partial latin square of odd order n¿C(k) are prescribed, the square can always
be cyclically completed? For example, an idempotent latin square L=(lij) can be con-
structed for all odd n by de:ning lij = n− j + 2i. Note that L is cyclically generated.
This implies that C(1) = 1.
In Sections 2 and 3, we prove lower bounds for C(k) and N (k). Moreover, we

conjecture the bound for C(k) to be sharp and provide strong evidence for this claim
by some computer constructions. Using hill climbing (Section 4) we show that ev-
ery partial latin square L of order n with k cyclically generated diagonals is cycli-
cally completable for all k in the range 26 k6 7 if n is odd and 3k − 16 n6 21.
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Furthermore, we show that L is (noncyclically) completable for k = 2; 3 or 4 and
arbitrary n with 4k − 16 n6 21.

2. A lower bound for C (k)

In this section, we discuss some obvious necessary conditions and prove a lower
bound for C(k).
Clearly, a cyclically generated square of order n is completely described by its :rst

row (l0;0; l0;1; : : : ; l0; n−1) (if there is no chance of confusion we write (l0; l1; : : : ; ln−1))
and it is a latin square if and only if all elements li and all di<erences li − i (modulo
n) are mutually distinct. The latter condition ensures that the elements in every column
are pairwise di<erent. It is easily checked that there is no cyclically generated latin
square of even order n since

∑n−1
i=0 i ≡ n=2mod n but

∑n−1
i=0 li− i ≡ 0mod n. A proper

partial row is a row (l0; l1; : : : ; ln−1) where some of the li are empty and all nonempty
li and the corresponding di<erences li − i are mutually distinct. Of course, a proper
partial row with exactly k nonempty li corresponds to a partial latin square with k
cyclically prescribed diagonals.
A partial latin square L= (lij) of order n with

lij =

{
i + j if i + j¡n; or

empty otherwise

is called a left cyclic upper triangle latin square (LCUTLS). We now give the fol-
lowing preliminary result.

Lemma 1. Let L be an LCUTLS of order n. Then the number of cells in a partial
transversal of L of maximum size is

t(n) =
⌊
2n+ 1
3

⌋
:

Proof. We :rst show that for every n there is a partial transversal in L with �(2n+1)=3�
cells. Let n ≡ 1mod 3 and T = {(i + (n− 1)=3; i) : i = 0; 1; : : : ; (n− 1)=3} ∪ {(i − (n+
2)=3; i) : i=(n+2)=3; : : : ; (2n−2)=3} be a set of (2n+1)=3 cells containing the elements
(n − 1)=3; (n − 1)=3 + 2; : : : ; n − 1; (n + 2)=3; (n + 2)=3 + 2; : : : ; n − 2. Clearly all cells
are from di<erent rows and columns and all elements are pairwise distinct. Therefore,
T is a partial transversal. See Fig. 2 for an example with n = 7. Now, if n ≡ 0 or
2mod 3 construct a partial transversal T ′ in an LCUTLS L′ of order n + 1 or n + 2
with (2n+ 3)=3 or (2n+ 5)=3 cells. Then removing the back diagonal containing n or
the back diagonals containing n+1 and n yields an LCUTLS L of order n. Removing
cells in T ′ which are in the deleted back diagonals gives then a partial transversal in
L with �(2n+ 1)=3� cells.
It remains to show that there is no partial transversal T in an LCUTLS L of order

n with more than �(2n+ 1)=3� cells. We do so by counting edges in a bipartite graph
G = (A ∪ (B ∪ C); E) in two ways. Let t denote the number of cells in an arbitrary
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Fig. 2. A partial transversal (elements printed in bold) in an LCUTLS of order 7.

partial transversal T and take |A| = n(n + 1)=2; |B| = t and |C| = 3(n − t) where the
vertices of A are labeled by the :lled cells of L, the vertices of B are labeled by the
cells of T , and the vertices in C are labeled by those rows, columns and back diagonals
which do not contain a cell from T (note that two cells from the same back diagonal
contain the same symbol, which implies that T contains at most one cell from each
back diagonal). Two vertices from A and B are connected by an edge if and only
if the corresponding cells occur together in a common row, column or back diagonal.
Furthermore, two vertices from A and C are connected if and only if the corresponding
cell occurs in the corresponding row, column or back diagonal. Obviously, a vertex in
A has either degree 1 if it is labeled by a cell from T or degree 3 otherwise. Hence,
|E| = 3n(n + 1)=2 − 2t. Every vertex in B has degree 2n − 1 and every vertex in C
has degree at least 1. Moreover, vertices in C which correspond to distinct rows have
di<erent degrees. The same is true for distinct columns and back diagonals. Therefore,
|E|¿ t(2n − 1) + 3(n − t)(n − t + 1)=2. This in turn implies 0¿ t (t − (2n + 1)=3).
Hence, t6 (2n+ 1)=3.

Theorem 2. The following inequality holds for every k ¿ 2:

C(k)¿ 3k − 1:

Proof. De:ne k entries of a proper partial row R as follows: l2i= i for i=0; : : : ; �(k−
1)=2�; l2i+1 =n−�k=2�+ i for i=0; : : : ; �(k−2)=2� and li is empty for i= k; : : : ; n−1.
(For example, when k = 5 and n= 13 we obtain R= (0; 11; 1; 12; 2; ∗; ∗; ∗; ∗; ∗; ∗; ∗; ∗).)
We prove that this partial row R cannot be cyclically completed if n6 3k − 2 and k
is odd, or n6 3k − 3 and k is even.
Let k be odd. In this case we have not used indices k; : : : ; n − 1, elements (k +

1)=2; : : : ; n − 1 − (k − 1)=2 and di<erences 1; : : : ; n − k. We may represent possible
relations between indices, di<erences and elements by an (n − k) × (n − k) array
A whose rows are indexed by unused di<erences and whose columns are indexed
by unused indices. An entry in this array contains the element corresponding to the
row and column index if that element is unused, or is empty otherwise, i.e. arc =
r + c if there is no li in R with li = r + c, or arc = ∗ otherwise. In Fig. 3 the
general case is exhibited. It is easy to see that R is cyclically completable if and
only if the partial latin square A (on the set of symbols S = {(k + 1)=2; : : : ; n − 1 −
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Fig. 3. Partial latin square A of order (n − k) containing unused elements; indexed by unused di<erences
(rows) and unused indices (columns).

(k−1)=2}) has a transversal. Note that both the upper left triangle and the lower right
triangle in A are equivalent to an LCUTLS of order n− (3k − 1)=2− 1. If there is a
transversal in A, then of these triangles contains at least (n−k)=2 cells. Hence, Lemma 1
implies

2(n− (3k − 1)=2− 1) + 1
3

¿
n− k
2
:

Thus, n¿ 3k.
If k is even a similar argument shows that one needs a partial transversal in an

LCUTLS of order n− 3
2k−1 having (n−k−1)=2 cells. Consequently, n¿ 3k−1.

We remark that in the case k = 2, not covered in the above discussion, we have
only the trivial bound C(2)¿ 3 since the two possible proper partial rows of length
3(0; 2; ∗) and (0; ∗; 1)R are completable to (0; 2; 1).

3. A lower bound for N (k)

Similarly as in the previous section we obtain a lower bound for N (k) by showing
that a special type of partial latin squares with k prescribed transversals (we use again
k cyclically generated diagonals for that purpose) is not completable.
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Theorem 3. The following inequality holds for every k¿ 1:

N (k)¿ 4k − 1:

Proof. Let L be a partial latin square of even order n with k cyclically generated
diagonals where all elements in the :rst row (row index 0) are even and contained in
a cell with even column index; take l2i=n−2i for i=0; 1; : : : ; k−1 as an example for
n= 4k − 2. Let L′ be a completion of L. Consider the set A of cells in L′ with even
row index and odd column index. An arbitrary even element x occurs in k prescribed
cells (with even row and column index). Thus, x occurs in at most n=2− k cells of A.
Therefore, there are at most n=2(n=2− k) cells in A containing even elements. On the
other hand consider the cells from A which are in a :xed column. At least k of these
cells contain an even element since the column contains k odd elements in cells with
odd row index. Hence, there are at least (n=2)k cells in A containing even elements.
Consequently, (n=2)k6 n=2(n=2−k). This implies n¿ 4k, but then we cannot complete
the example from the beginning of the proof with n= 4k − 2.

4. Computational construction methods

In this section, we describe the way in which a nonexhaustive search technique called
hill climbing was applied to construct cyclically generated latin squares with prescribed
diagonals. Hill climbing has been successfully applied to a variety of combinatorial
problems, for background information see e.g. [7,8]. A hill-climbing
problem can be speci:ed as a set � of feasible solutions, together with a cost c(R)
associated with each feasible solution R∈�. Here, let � be the set of proper par-
tial rows and de:ne c(R) of a proper partial row R to be the number of empty cells
in R. A cyclically generated latin square has no empty cells and, therefore, corre-
sponds to a feasible solution R with minimum cost c(R) = 0. Starting with an ini-
tial solution R (the :rst row of the prescribed partial latin square) our hill-climbing
algorithm works by transforming R = (l0; : : : ; ln−1) into another feasible solution in
which the cost either remains the same or decreases by one. We use two di<erent
transformations:

Transformation T1
1. Choose an unused index i at random;
2. Choose an unused di<erence d at random;
3. Let a := i + dmod n;
4. If there is an lj with lj = a and a is not prescribed then

put lj := ∗;
5. If a is not prescribed then

put li := a;
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Transformation T2
1. Choose an unused index i at random;
2. Choose an unused element a at random;
3. Let d := a− imod n;
4. If there is an lj with lj − j ≡ dmod n and d is not prescribed then

put lj := ∗;
5. If d is not prescribed then

put li := a;

The hill-climbing algorithm is now given below. There are situations in which the
construction gets stuck. Therefore, we use a threshold value tmax to specify the maxi-
mum number of consecutive cost-preserving transformations allowed before we abandon
the algorithm and restart with a new random seed.

Hill-climbing algorithm to complete a proper partial row R
1. Mark all elements in the given proper partial row R as prescribed;
2. Let t := 0;
3. While c(R)¿ 0 and t ¡ tmax do
3.1 Increase t by one;
3.2 choose r = 1 or 2 at random with equal probability;
3.3 perform Tr;
3.4 If c(R) has been decreased by one in Tr then

put t := 0;

In order to complete all possible partial latin squares of order n with k cyclically
prescribed diagonals one has to compute all proper partial rows of length n with exactly
k nonempty cells. Two proper partial rows R=(l0; : : : ; ln−1) and R′=(l′0; : : : ; l

′
n−1) are

called isomorphic if there are integers r; s such that li = l′i+r + s for i= 0; : : : ; n− 1. It
is easy to verify that if R and R′ are isomorphic and R is cyclically completable, then
so is R′. We avoid unnecessary work by considering only one canonical representative
from each isomorphism class, for example the lexicographically smallest row (assume
∗=∞).
We also used hill climbing for the completion of partial latin squares of even order

as is very brieMy explained in the sequel. De:ne � to be the set of all partial latin
squares of order n. For L∈� de:ne the cost c(L) to be the number of empty cells in
L. Clearly, L is a latin square if and only if c(L) = 0. An admissible transformation
consists of choosing an empty cell lij and :lling it with an element x not used in row
i (column j), i.e. lij := x. If there is a cell li′j in column j (a cell lij′ in row i)
containing x and x is not prescribed in cell li′j (lij′), then put li′j := ∗(lij′ := ∗). If
x is prescribed in cell li′j (lij′), then put lij := ∗. Clearly, the cost of a partial latin
square during such a transformation remains unchanged or decreases by one. Again,
it might be possible that at some point the algorithm makes no further progress (in
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particular with partial latin squares described in the proof of Theorem 3 when n=4k),
so that one needs to restart the construction.
Finally, in case that the hill-climbing algorithm :nished unsuccessfully an exhaustive

search method (backtracking) has been used to decide whether a given proper partial
row is completable or not.

5. Results and problems

We constructed all canonical proper partial rows for given k and odd n with a back-
tracking algorithm (see Table 1 for some examples of the number of rows considered)
and tried to complete these rows with the hill-climbing algorithm for proper partial
rows. Using tmax = 1000 and at most 5 restarts we made the following observation.

Proposition 4. Let k be an integer in the range 26 k6 7. Every partial latin square
of odd order n with 3k − 16 n6 21 and k cyclically generated diagonals can be
completed to a cyclically generated latin square.

Note that for these parameters n; k the lower bound from Theorem 2 seems to be
the exact bound. Therefore, we would like to pose the following problem.

Problem 5. Is it possible to prove that every partial latin square of odd order n with
k cyclically generated diagonals can be cyclically completed if n¿ 3k − 1?

In addition, we constructed all canonical proper partial rows for even n (see Table
2) and the corresponding partial latin squares. These partial latin squares we then tried
to complete with the second hill-climbing approach described. Choosing tmax = 5000
and at most 100 000 restarts we proved the following result.

Proposition 6. Let k = 2; 3 or 4. Every partial latin square of order n with 4k −
16 n6 21 and k cyclically generated diagonals can be completed to a latin square.

We observe that it is likely that for these small parameters n; k the lower bound in
Theorem 3 is the exact bound. Thus, we would like to pose a second problem.

Table 1
NCR(k; n)—number of canonical proper partial rows of length n with k nonempty cells

(k; n) (2; 5) (2; 7) (3; 9) (4; 11) (4; 13) (5; 15) (6; 17)

NCR(k; n) 6 15 346 11,030 41,885 2,172,003 133,073,720

(k; n) (6; 19) (7; 21)

NCR(k; n) 582,669,528 47,765,113,158



M. Gr&uttm&uller / Discrete Applied Mathematics 138 (2004) 89–97 97

Table 2
NCR(k)—number of canonical proper partial rows of length n with k nonempty cells; NUCR(k)—number
of uncompletable canonical proper partial rows of length n with k nonempty cells

n 4 6 8 10 12 14 16 18 20

NCR(2) 3 10 21 36 55 78 105 136 171
NUCR(2) 3 7 0 0 0 0 0 0 0

NCR(3) — 34 182 600 1504 3172 5950 10246 16530
NUCR(3) — 34 30 10 0 0 0 0 0

NCR(4) — 34 674 4972 22300 74110 201614 475384 1006872
NUCR(4) — 34 590 1396 291 181 0 0 0

Problem 7. Is it possible to prove that every partial latin square of order n with k
cyclically generated diagonals can be completed if n¿ 4k − 1?

References

[1] B. Alspach, K. Heinrich, Matching designs, Austral. J. Combin. 2 (1990) 39–55.
[2] L.D. Andersen, A.J.W. Hilton, Thank Evans! Proc. London Math. Soc. 47 (1983) 507–522.
[3] D.E. Daykin, R. H'aggkvist, Completion of sparse partial latin squares, in: Graph Theory and

Combinatorics, Proceedings of Conference on Hon. P. Erd'os, Cambridge 1983, Academic Press, London,
1984, pp. 127–132.

[4] J. DRenes, A.D. Keedwell, Latin Squares and Their Applications, English University Press, London,
1974.

[5] J. DRenes, A.D. Keedwell (Eds.), Latin Squares: New Developments in the Theory and Applications,
Annals of Discrete Mathematics, Vol. 46, North-Holland, Amsterdam, 1991.

[6] T. Evans, Embedding incomplete latin squares, Amer. Math. Monthly 67 (1960) 959–961.
[7] P.B. Gibbons, Computational methods in design theory, in: C.J. Colbourn, J.H. Dinitz (Eds.), The CRC

Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 1996, pp. 718–740.
[8] P.B. Gibbons, R. Mathon, The use of hill-climbing to construct orthogonal Steiner triple systems, J.

Combin. Designs 1 (1993) 27–50.
[9] R. H'aggkvist, A solution of the Evans conjecture for latin squares of large size, in: A. Hajnal, V.T.

Sos (Eds.), Combinatorics, Keszthely 1976, Coll. Math. Soc. Janos B'olyai, Vol. 18, North-Holland,
Amsterdam, 1978, pp. 495–514.

[10] C.C. Lindner, On completing latin rectangles, Canad. Math. Bull. 13 (1970) 65–68.
[11] J. Marica, J. Sch'onheim, Incomplete diagonals of latin squares, Canad. Math. Bull. 12 (1969) 235.
[12] R.S. Rees, Mandatory representation designs MR(3; k; v) with k even and v odd, J. Statist. Plann.

Inference 86 (2000) 567–594.
[13] B. Smetaniuk, A new construction on latin squares I. A proof of the Evans conjecture, Ars Combin.

11 (1981) 155–172.


	Completing partial latin squares with prescribed diagonals
	1. Introduction
	2. A lower bound for C(k)
	3. A lower bound for N(k)
	4. Computational construction methods
	5. Results and problems
	References


