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1. INTRODUCTION

In recent years the theory of nonlinear random equations involving opera-
tors of monotone type has been studied by many authors (e.g., Kannan
and Salehi [8], Itoh [6], Kravvaritis [10], and references therein). This is
due to the fact that there are many applications of this theory in the
physical, biological, mechanical, and engineering sciences.

In this paper we consider questions of the existence of random solutions
of the nonlinear random operator equation,

n{w) € T(w)x + glw)x,

where T: Q1 X D—2%(D C X) is amultivalued random m-accretive operator
and g: Q X D — X is a single-valued random continuous operator. In
order to prove the measurability of solutions, we establish a lemma in the
first section, depending on Aumann’s measurable selection (see [14]).
The second section contains our main results which are the stochastic
generalization of Morales’ [13], Kartsatos’ [9], and He’s [4] determinis-
tic theorems.

Throughout this paper X stands for a real separable Banach space, X *
its dual, and (x, f) the pairing between x € X and f € X *. For any subset
D of X, cl D (or D), aD, and wcl D stand for the closure, the boundary,
and the weak closure of the set D, respectively. The symbol B(o, b) stands
for a closed ball of radius b about origin of X. We denote the collection
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RANDOM CONTINUOUS PERTURBATIONS 175

of all natural numbers by N. We also denote strong and weak convergence
by *“—” and **—’, respectively.

In what follows, the symbol ({}, %, u) denotes a complete o-finite
measure space. Let F: ) — 2"\¢ be a multifunction with closed values.
Then F(-) is said to be measurable if it satisfies one of the following two
equivalent conditions:

(i) foralUCXopenF(U)={w€E N FlwoyN U # ¢} € 3;

(i) GrF={w,x) €0 X X:x € F(w)} € X X B(X), B{(X) = Borel
o-field of X. A measurable mapping ¢&: 0 — X is said to be a measurable
selector of F if ¢ (w) € F(w) for any w € (). We denote by B({}, X) the
set of all measurable mappings £: Q1 — X.

A multivalued operator T: D(T) C X — 2% is called accretive if for every
x,y € D(T), u € Tx, v € Ty, there exists j € J(x — y) such that

u—-vj)=0,
where J: X — 2% is the normalized duality mapping, i.e.,
Jx ={j € X*: (x, j) = |xIF = li|P}-

An accretive operator T is called m-accretive if I + A T is onto X for
every A > 0, where [ is the identity operator. If T is an m-accretive
operator, the resolvent J,, and the Yosida approximation T, are defined
by J, = (I + AT) 'and T, = A" '(I — J,), respectively. It is well known
that (i) J,: X — D(T) is nonexpansive, (ii) T,: X— X s Lipschitz continuous
and m-accretive, and (iii) | T, x|| = |Tx|, where [Tx| = inf{|lu|: « € Tx}. An
operator T: D(T) C X — X is said to be compact if it is continuous on D(T)
and maps bounded subsets of D(T) into relatively compact subsets of X.
T is completely continuous if it is continuous on D(T) from the weak
topology of X to the strong topology of X.

For an operator T: ) X X — 2*, we will write T(w)x for the value of T
at (w, x) € O X X. An operator T: () X X — 2% is said to be random if
T(-)x is measurable for every x € X. A random operator T is called
m-accretive (continuous, compact, etc.) if T(w)(+) is m-accretive (continu-
ous, compact, etc.) for every o € ().

Now, we prove a lemma which will be used in Section 2. It is the
random version of the Leray—Schauder principle.

LEMMA. Let T: QO X X — X be a random compact operator and let
Dy(w) = {x € X: T(w)x = Ax} for every o € Q and X\ > 1. If D(w) =
U, Di(w) is bounded for every w € Q, then T has a random fixed point.

Proof. By the Leray-Schauder principle, we have
F(w) = {x € X: T(w)x = x} # ¢.
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for every w € (). Since T is continuous, the set F(w) is closed. Applying
Theorm 11 of Bharucha-Reid [1], we obtain that F: ) — 2* is measurable.
From Kuratowski and Ryll-Nardzewski [12], it follows that there is a
measurable selector x: Q — X of F and x is a random fixed point of 7.

2. MAIN RESULTS
We begin with extending the result of [13, Theorem 7] in the determinis-
tic case to the random case as follows.

THEOREM 1. Let X* be a separable Banach space and let T: () X
D— 25(D C X)) be arandom m-accretive operator for which J, is a random
compact operator for every A > 0. Further, let g: Q) X D— X be a random
operator whick is continuous and bounded. Suppose that there exist posi-
tive constants b and r such that for every x € D with ||x|| = b there exists
J € Jx satisfying

x| = (u + gw)x,j), w€Q (1)

for u € T(w)x. Then there exists a random solution £ € B({}, X) of the
operator equation

N(w) € T(w) {(w) + glw) é(w) (wE Q) 2
for each n € B(Q, X) with |p(w)|| = r (0 € Q).
Proof. Define the operator §,; ! X D — 2* by S (w)x = T(w)x +
(1/n)x. Then S, is a random m-accretive operator for n € N. From condi-
tion (1) of the theorem, we have for every x € D with |x| = b,

rixll = (u, + glw)x, j), w€Q,

where u € T(w)x and u, = u + (1/n)x € §,(w)x. For given n» € B({}, X)
with |p(w)]| = r(w € ), we know that

F () = {u € X: n(w) = u + g@)[S (@) 'u} #0

for every w € () by virtue of Theorem 7 of Morales [13]. Take a countable
dense subset {x}%},., of X*. Then, we obtain

Fuw = [ ) {u € X: (n(w) — u — g@)S,(@)]"u, x2) = 0}.

m=1
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It is easy to see that for every m = I, (n(w) ~— « — g(w)[S,(w)] 'u, x*) is
measurable with respect to @ € ) and continuous in u, respectively.
Hence, from Lemma 11I-14 of Castaing and Valadier [3], we obtain that
(mw) — 4 — g[S ()] 'u, xt) (n € N) are jointly measurable with
respect to (w, u), and hence

GrF, = [ ) {(w, 0) € Q X X: (n(@) — 1 — g(@)[S,@)]'u, xX) = 0}

m=]

€ 2 X B(X).

Invoking Aumann’s selection theorem [ 14, Theorem 3], we obtain measur-
able selector u,, of F,. Set x,(w) = [S,(0)] 'u,(w). Now x, also is measur-
able. We claim that {x,(w)} is bounded for every w € ). In fact, if not,
there exists a subsequence {x,,(w)} of {x,(w)} such that ||x,,|| = b. Thus,
there exists j € Jx,,(w) such that

(Uyy(@) + glo)xypfw), J) = (n(w), ),
r uxn(k)(“’)” + [1/at)] {x (@) < n(w) s ()],

or |m(w)|| > r. This is a contradiction. Consequently, {x,(w)} is bounded
forevery w € Q. Recalling S ,(w) = T(w) + (1/n)I and x,(w) = [S (0)] 'u,(w),
it is easy to find

x,(w) = Jiw)n(w) + [(n = Din)x(w) — glw)x,(w)}, 3)

where J, = (T + I)"!. By the compactness of J, and the boundedness of
g and {x,(w)} in (3), we can see that {x,(w)} is precompact for each » €
Q. Let G(w) = cl {x{w): i = n}, then G, (w) (n € N) is compact. Hence,
by Theorem 4.1 of [5], G(w) = U;_, G,(w) is measurable. Then, there
exists a measurable selector £ of G such that é(w) € G(w) for every w €
Q. So, to each w € ), we may extract a subsequence {x,;(w)} from {x,(w)}
such that lim;,, x,;(w) = é(w). With n(j) replacing n in the equality
(3) and letting j — =, we obtain that {é(w) = Ji(wln(w) + é(w) —
glw)é(w)] € D and n(w) € Tw)é(w) + gl@)(w) (v € Q) in virtue of the
continuity of J, and g. Therefore, ¢ is the random solution of Eq. (2). The
proof is completed.

CorOLLARY. LetX*,T,J,andgbeasinTheorem1.Suppose thatthere
exists b > 0 and a function c: R* — R* with c(r) — +% as r — +% such
that for every x € D with ||x|| = b there exists j € Jx satisfying

c(ixlh Ixll = (u + glw)x, ),  w€EQ
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for u € T(w)x. Then for any m € B(Q, X), there exists € € B(Q}, X) such that
Nw) € T(w)(w) + glw)é(w)

for all w € ().

Remark. FromLemma 2.1 of Itoh [7], we know that if T is a continuous
random accretive operator, the resolvent J, is a random operator for every
A >0,

The following is a multivalued and stochastic generalization of He [4,
Theorem 3].

THEOREM 2. Let T: Q X D — 2X(D C X) be a random m-accretive
operator for which J, is a random compact operator. Let g: €} X DX
be a random continuous operator and let (w, 0) € D for every o € (1.
Suppose that there exist positive constants b and r such that for every
x € D with |jx|| = b there exists j € Jx satisfying

(T@)0] + x|l = (g(w)J\(w)x, j) (4)

for all @ € Q. Then for any n € B(Q, X) with |n(w)| = r there exists £ €
B(Q}, X) such that

N(w) € T(w)(w) + gw)(w) 5

for all w € ().
Proof. We consider the random approximation
Tiw)x + glw),(@)x + (I/n)x = n(w), nEN,

where € B((}, X), [n(w)|| = r(w € Q). It is equivalent to

x = [n/(1 + M — glew)lJ(e)x + [n/(1 + nln{w).
Define the operator A,: X X — X by A, (w)x = [a/(1 + n)]I —
glw)lJ(w)x + [n/(1 + n)In(w). Clearly, A, is a random compact operator
for n € N. Now, we can claim that the number b is an upper bound of
the subset

D (w) = {x € X: A (w)x = Ax for some A > 1}

for every w € Q. Indeed, suppose |x|| = b with A, (w)x = Ax for some
A > 1. Then, by condition (4), there exists j € Jx such that
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Ixl? = ¢x,0) = A" KA, (w)x, )
X <[nl(1 + Ml (@)x,j) + (n(w),j) = (gl@)\(w)x, /)
= (@)l flxll + ) <] = (T(@)0] + r) ||
= |lxlP + I 1(@)Of flxl ~ | Tw)o] [x[
= [l + [T ()0l x| = 1 T()Ol <]
= |xl?

which is a contradiction. By virtue of the lemma in the Section 1, we
obtain that A, has a random fixed point x, for n € N, i.e.,

x (@) = [n/(n + DI = glw)lJ(@)x,(w) + [n/(n + D]n(w) (n € N).
(6)

As we proved in Theorem 1, {x,(w)} is also bounded for every w € Q.
Hence, for each w € (1, {J,(w)x,(w)} contains a convergent subsequence.
Similar to the proof of Theorem 1, let F,(w) = cl{J(w)x(w): { = n} and
Flo) = U, F,(®). So, F,(®) is nonvoid and measurable for every n €
N. Then, there exists a measurable selector £ of F such that ¢(w) € F(w)
for every w € Q. It follows that there exists a subsequence {x,(w)} of
{x (@)} such that J,(w)x,u(w) = &w) € D for each w € . Hence
gl (@) x,gy(w) — glw)é(w) € D for each @ € (1 by the continuity of g.
On the other hand, from the equality (6), T, =1 —J,,and J, = (T + I)7!,
we see that

T(w)x,p(w) = n(w) — glw)J(w)x,g(w) + {[l/n(k)]}xn(k)(w) N
and
Ti(w)x,u)(w) € T(w)J (w)x,gw). (8)

Since {x,(w)} is bounded, T((w)x,4(w) = n(w) — g(w)é(w) as k — = from
(7). Finally, by the closedness of T and (8), we obtain

nw) € T(w)(w) + glw)(w) (v € ),

i.e., £ is the random solution of Eq. (5).
The deterministic case corresponding to the following theorem was
obtained by Morales [13, Theorem 3].

THEOREM 3. Let T: 0 X D — 25D C X) be a random m-accretive
operator for which J, is a random compact operator for every A > 0. Let
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g: Q x D — X be a random operator which is continuous and bounded.
Suppose that there exist positive constants a and b such that

alx|| + gl = [T@)x + glw)x[, o€Q 9)

for all x € D with ||x|| = b. Then for any q € B(Q, X), there exists £ €
B(Q, X) such that

N(w) € T(w)é(w) + glw)é(w)

for all w € Q.

Proof. Let m € B(Q), X) and select n, € N such that (1/n) < a for
n = n,. Then there exists b)(w) (w € (1) such that b(w) = b and [a —
(1/n)1by(w) > |n(w)|| for n = n,. Define the operator A,: & X X — X by
given A, (w)x = n{w) — glo)(T(w) + (1/m)1)~'x. Obviously, A, is a random
compact operator for n € N. Now, we claim that for every o € (1

D, () = {x € X: A, (w)x = \x for some A > 1}
is bounded. Let x € D, (w). Then
A+ glo)T(w) + (/)™ 'x = plw)

for some A > 1. Suppose |lu]| = b\(w) with « = (T(w) + [(1/n)]) 'x and
v € T(w)u, from condition (9) we have that
Il = A" ) = llv + A 'gle)u + (1/n)u|
= o + glw)ull + A7V glw)ul| — ||g(w)ul] — (1/n) ||ul]
=[a ~ (/] |u] = [a — (1/n)}b(w),

which is a contradiction. Therefore ||u]| < b (w). It follows from the bound-
edness of g that there exists M(w) > 0 such that ||g(w)u|| = M(w) and, hence,

lIxll = A lixll = n@)ll + [lglw)u] = In@)] + Mw).

Thus, by our lemma we know that A, has a random fixed point x, (w) for
n=n,. Let u(w) = (T(w) + (1/n)1)"'x,(w). Clearly, , is measurable and
bounded for n = n,. Then, as we proved in Theorem 1, there exists £ €
B(Q, X) such that

N(w) € T(w)(w) + glw)é(w)

for all w € Q. This completes the proof.
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Finally, we give a stochastic generalization of Theorem 6 of Kartsatos
9] as follows.

THEOREM 4. Let X, X* both be separable uniformly convex Banach
spaces. Let T: Q X D— X (D C X) be a random m-accretive operator for
which I, is a random operator for all A > 0. g: Q X B(o, b) = X is a
completely continuous random operator and that (w, 0) € Q X D for
every w € ). Suppose further that there exists r > 0 such that for every
X € dB(o, b) there exists j € Jx satisfying

(IT(w)ol| + Nb = (glw)x, /), o©€N. (10)
Then for any n € B(Q, X) with |m(w)|| < r there exists ¢ € B(Y, X) such that

Nw) = Tw)é(w) + gw)é(w) (1

forall v € 1.

Proof. Letn € B(Q, X) with |n(w)|| = r(e € Q), and let a > 0. Define
the operator S, 1 X X — X by § (w)x = T}, (w)x + ax. Then §, is a
continuous random m-accretive operator for n € N and ||S,(w)o| = [[T(w)o|
(w € Q). From Theorem 6 of Kartsatos [9] and condition (10) of the
theorem, we have

F(w) = {x|| = b: n(w) = S,(w)x + glw)x} # ¢

for every o € (1. Pick a countable dense subset {x}},., of X*; then

Fow) = [ ) fild] = b: (n(w) — S,(@)x — gl@)x, x2).

mz=1

Because of our hypotheses, for every m = |, (n(w) — S, (w)x — g(w)x,
xX)is measurable with respect to w € 1 and (n(w) — S, (wx — g(w)x,
x}) is continuous in 4. By Lemma 11I-14 of Castaing and Valadier [3], we
know that (n(w) — S, (w)x — glw)x, x¥) is jointly measurable. Hence,

GrF, = ) . 1) € Q X X: (n(w) — S,w)x — glw)x, x%) = 0,

m=1

Ixll = b} € X x B().

Applying Aumann’s selection theorem [14, Theorem 3], we obtain a mea-
surable selector x,, of F, with | x(w)] < b(w € Q), i.e.,

T()J ) (w)x(w) + glw)x,(w) + ax,(w) = H(w), wEN, nEN. (12)
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Since g is cornpact, there exists a subsequence {x,,(w)} of {x,(w)} such
that {g(w)x,(®)} is convergent. Setting u, (@) = J (@) X,4\(w) and re-
calling the definition of resolvent J,,,, we find that

Ko@) = (@) + [1/n(k)] N(w)uyw)} (13)
is also bounded. So, we deduce that

from (13). Corabining (12) with (14), we know that {T(w)u (@) + au,q(w)}
is a convergent sequence. Since T + al is strong accretive, {u,,(w)}
converges to a u(w) (w € 1) and x4, —> u(w) as k — =, Let G (w) =
cl{x,(w): i = n}. Then G,(w) is a nonvoid and compact set for every v €
Q (n € N). By Theorem 4.1 of [5], G(w) = NZ_, G,(w) is measurable.
Hence, there exists a measurable selector € of G such that £(w) € G(w)
for every w € (). For a fixed @ € (1}, we may extract a subsequence
{xpu(@)} of {x(w)} such that lim x,4(w) = &é(w). From (12), (14), the
closedness of T, and the continuity of g, and letting j — «, we obtain

T(w)f(w) + gl@)(w) + af(w) = n(w) (0 €Y,

where [|£(w)| = b (0 € ). Taking a positive sequence {a,} with a, — 0
(n — =), the equation

T(w)x + glw)x + a,x = n(w) (15)
has a random solution &, (n € N) with [|¢,(w)]| = b (0 € Q) by virtue of
the previous conclusion. For each n € N, we define a mapping I',: @ —
B(0, b) by given T, (w) = wcl{§;(w): i = n}. By the reflexivity of X, it must
be nonvoid. Since B(0, b) is a metrizable separable space in the weak
topology, the mapping I', is weakly measurable [3, p. 67]. Then the map-
ping I': Q — wcl B(0, b) defined by

Tw) = [ ] T
n=1

is also weaklv measurable [3, Proposition 111.4]. Invoking Aumann’s selec-
tion theorem, we obtain a measurable selector ¢ of I'. Therefore, to each
w € , there exists a subsequence {£,(w)} of {£,(w)} such that ¢, ;(w)
— £(w) as j— =, Recall that ¢, ;(w) is the random solution of Eq. (15), i.e.,

T(w)é (@) + glw)E, (@) + ay;)Ep (@)
= n(w) wEQN,jJEN.



RANDOM CONTINUOUS PERTURBATIONS 183

Taking note of the m-accretiveness of T and the complete continuity of
g and letting j — « and applying [9, Lemma 1], we conclude that £(w) is
a random solution of Eq. (11). The proof is complete.
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