JOURNAL OF ALGEBRA 13, 143-147 (1969)

Group Algebras of Some Torsion-free Groups

S. E. Stonehewer

Mathematics Institute, University of Warwick, Coventry, England Communicated by J. A. Green Received January 2, 1969

1. Results

In [3] the open question regarding the semi-simplicity of group algebras over fields of characteristic 0 was considered. A second open question is the following (see [7] and [9]):

If G is a torsion-free group and if F is any field, is the group algebra FG semisimple?

If G is torsion-free nilpotent (or even locally nilpotent), then FG is semisimple. For, by Lemma 1 of [3], we may suppose that G is finitely generated. For any prime p, let \mathfrak{F}_p denote the class of finite p-groups. Then by [4], G is a residually- \mathfrak{F}_p group. If we choose p different from the characteristic of F, then FG is semi-simple, by the Corollary to Theorem 2.3 of [11]. On the other hand, if G is only soluble, then G need not be residually finite even. For example, let H be the group of 3×3 unitriangular matrices over Q (the rational field) and suppose that $H = \langle a_0, a_1, a_2, ... \rangle$. Let

$$T = \langle t \rangle \cong C_{\infty}, \qquad \overline{W} = H \overline{\setminus} T,$$

the complete wreath product of H and T. So \overline{W} is torsion-free and soluble $(\overline{W}''' = 1)$. Let u be the element of the base group of \overline{W} defined by $u_{2r} = a_r$, if $r \ge 0$, and $u_n = 1$ otherwise. Then let $G = \langle t, u \rangle$, $M = \langle u^G \rangle$. According to [6] M' is isomorphic to the direct product of a countable infinity of copies of H'; and H' is isomorphic to the additive group of Q. Thus since Q is not residually finite, neither is G. Nevertheless we will prove

THEOREM A. Let G be torsion-free and a finite extension of a soluble group, and let F be any field. Then FG is semi-simple.

Using Lemma 1 of [3], there is a corollary to Theorem A (analogous to Theorem C of [3]). In particular we have

THEOREM B. Let G be torsion-free and locally soluble. Then FG is semisimple, for any field F.

STONEHEWER

A locally soluble group is an SN-group ([10]). If a group G has an abelian series $(\Lambda_{\sigma}, V_{\sigma}; \sigma \in \Omega)$ with torsion-free factors $\Lambda_{\sigma}/V_{\sigma}$ (forcing G to be torsion-free), then Bovdi ([1]) proves that FG is semi-simple for any field F. However there exist even polycyclic torsion-free groups which do not possess an abelian series with torsion-free factors ([8]). A variation of the proof of Theorem A of [3] gives an alternative proof of Bovdi's result:

THEOREM C. Let G be an SN-group with an abelian series having torsionfree factors. Then FG is semi-simple, for any field F.

2. Proofs

2.1 Proof of Theorem C. By Lemma 2 of [3], we may suppose that F contains at least 3 elements.

Suppose, if possible, that G is an SN-group with an abelian series having torsion-free factors such that FG is not semi-simple. Then choose a nonzero element x belonging to the Jacobson radical J(FG) of FG. Write $x = \sum_{i=1}^{n} \lambda_i g_i$, where $n \ge 1$, $0 \ne \lambda_i \in F$ ($1 \le i \le n$), and $g_1, ..., g_n$ are distinct elements of G. Since this expression for x is unique, we may call n the *length* of x. Without loss of generality, suppose that $g_1 = 1$.

Let $H = \langle g_1, ..., g_n \rangle$. Then there exists a subgroup $K \triangleleft H$ such that $H/K \cong C_{\infty}$. Let $H = \langle K, t \rangle$. Then $g_i = k_i t^{m_i}$, $k_i \in K$, $1 \leq i \leq n$. So $m_1 = 0$, $k_1 = 1$. Let m be the g.c.d. of the absolute values of the nonzero integers among $m_1, ..., m_n$. Write $m_i = mn_i$, $1 \leq i \leq n$, $s = t^m$, $H_1 = \langle K, s \rangle$. Then $x = \sum_{i=1}^{n} \lambda_i k_i s^{n_i} \in J(FH_1)$, by Lemma 1 of [3], and $n_1 = 0$.

Each element of FH_1 is uniquely expressible in the form

$$\sum_{-\infty}^{\infty} \theta_i s^i,$$

where $\theta_i \in FK$ and all but a finite number of the θ_i 's are 0. Choose $\mu \in F$ such that $0 \neq \mu \neq 1$. Then

$$\phi:\sum_{-\infty}^{\infty} heta_i s^i\mapsto\sum_{-\infty}^{\infty}\mu^i heta_i s^i$$

defines an automorphism of FH_1 . Thus

$$x\phi = \sum_{1}^{n} \lambda_{i}\mu^{n_{i}}k_{i}s^{n_{i}} \in J(FH_{1}).$$

Therefore $y = x - x\phi \in J(FH_1)$. Also $y \neq 0$. For otherwise, $\mu^{n_i} = 1$, $1 \leq i \leq n$. Since the g.c.d. of the absolute values of the nonzero n_i 's is 1,

and since $\mu \neq 1$, it would follow that $n_i = 0, 1 \leq i \leq n$; that is $g_i \in K$, $1 \leq i \leq n$, and so H = K, giving a contradiction. Finally, y has smaller length than x.

Since H_1 is a counter-example to the Theorem, it follows that there exists a counter-example, say M, and an element of length 1 in J(FM). This is impossible, and so our contradiction establishes Theorem C.

2.2 Proof of Theorem A. Let G be torsion-free with a normal soluble subgroup N of finite index. We argue by induction on the derived length of N. Thus suppose, if possible, that the Theorem is false, and let G be a counter-example. Let N have a finite abelian series

$$1 = H_0 \leqslant H_1 \leqslant H_2 \leqslant \dots \leqslant H_m = N, \tag{1}$$

where $m \ge 1$ and each $H_i \lhd G$. We show that we may suppose that $H_1 \le \zeta_1(G)$, the centre of G.

Let T_1 be a transversal to H_1 in G containing the identity. Then each nonzero element $x \in J(FG)$ is uniquely expressible in the form

$$x=\sum_{1}^{n}\alpha_{i}g_{i},$$

where $n \ge 1$, $0 \ne \alpha_i \in FH_1$ ($1 \le i \le n$), and the g_i 's are distinct elements of T_1 . Choose such an element x with n minimal. Without loss of generality we may suppose that $g_1 = 1$. Let $h \in H_1$. Then

$$x^h = h^{-1}xh = \sum_{i=1}^n \alpha_i g_i^h \in J(FG).$$

Thus $x - x^h = \sum_{i=1}^n \alpha_i (1 - [h, g_i^{-1}]) g_i \in J(FG)$, and $\alpha_i (1 - [h, g_i^{-1}]) \in FH_1$, $2 \leq i \leq n$. Therefore, by choice of $x, x - x^h = 0$. Then for each i,

$$\alpha_i(1 - [h, g_i^{-1}]) = 0.$$
⁽²⁾

Now H_1 , as a torsion-free abelian group, is ordered ([2]). Therefore FH_1 has no zero-divisors. Thus (2) implies that $hg_i = g_i h$, $1 \le i \le n$, all $h \in H_1$. Hence by Lemma 1 of [3], we may suppose that $G = \langle H_1, g_i; 1 \le i \le n \rangle$; and then

$$H_1 \leqslant \zeta_1(G). \tag{3}$$

Suppose that m = 1. Then by a theorem due to Schur (see [5], Theorem 8.1), G' = 1. So G is torsion-free abelian, and then FG is semi-simple, by Theorem C. Thus we must have $m \ge 2$. Suppose that G is a counter-example, with m in (1) minimal, and satisfying (3). We show that there exists such a

STONEHEWER

group with H_2 in (1) abelian. Then the Theorem will follow by our induction argument.

Let T_2 be a transversal to H_2 in G containing the identity. Then each nonzero element $x \in J(FG)$ is uniquely expressible in the form

$$x=\sum_{1}^{n}\gamma_{j}f_{j}$$
 ,

where $n \ge 1$, $0 \ne \gamma_j \in FH_2$ $(1 \le j \le n)$, and the f_j 's are distinct elements of T_2 . Let M be the set consisting of those elements x for which n is minimal and some f_j , say f_1 , is 1. Let S be a transversal to H_1 in H_2 containing the identity. For each $x \in M$, write

$$\gamma_1 = \sum_1^l \alpha_i e_i$$
 ,

where $l \ge 1$, $0 \ne \alpha_i \in FH_1$ $(1 \le i \le l)$, and the e_i 's are distinct elements of S. Now choose $x \in M$ with l minimal. Without loss of generality, suppose that $e_1 = 1$. Let $b \in H_2$. Then

$$x^{b} = \alpha_{1} + \sum_{2}^{l} \alpha_{i}[b, e_{i}^{-1}] e_{i} + \sum_{2}^{n} \gamma_{j}^{b}[b, f_{j}^{-1}] f_{j} \in J(FG),$$

by (3). Also $\alpha_i[b, e_i^{-1}] \in FH_1$ $(2 \leq i \leq l)$ and $\gamma_j^{b}[b, f_j^{-1}] \in FH_2$ $(2 \leq j \leq n)$. Then $x - x^{b} \in J(FG)$; and by choice of x,

$$x - x^b = 0. \tag{4}$$

Thus, for each i, $\alpha_i(1 - [b, e_i^{-1}]) = 0$; and as above $be_i = e_i b$, all $b \in H_2$. For $2 \leq j \leq n$, let

$$\gamma_j = \sum_{k=1}^{l_j} lpha_{jk} e_{jk}$$
 ,

where $l_j \ge 1$, $0 \ne \alpha_{jk} \in FH_1$, and the e_{jk} 's are distinct elements of S. Then from (4),

$$\gamma_j = (\gamma_j f_j)^b f_j^{-1} = \sum_{k=1}^{l_j} \alpha_{jk} (e_{jk} f_j)^b f_j^{-1},$$

 $2 \leq j \leq n$. Thus the number of conjugates of each $e_{jk}f_j$ under transformation by elements $b \in H_2$ cannot exceed the length of γ_j . Now by Lemma 1 of [3], we may suppose that $G = \langle H_1, e_i, e_{jk}f_j; 1 \leq i \leq l, 1 \leq k \leq l_j, 2 \leq j \leq n \rangle$ and (3) is still satisfied. Then $K = \zeta_1(G) \cap H_2$ has finite index in H_2 . Therefore, again by Schur's theorem, H_2 is abelian.

This completes the proof of Theorem A.

REFERENCES

- BOVDI, A. A. Group rings of torsion-free groups. Sibirsk. Mat. Z. 1 (1960), 251-253.
- FUCHS, L. Partially Ordered Algebraic Systems. Addison-Wesley, Reading, Pennsylvania, 1963.
- 3. GREEN, J. A. AND STONEHEWER, S. E. The radicals of some group algebras. J. Algebra.
- GRUENBERG, K. W. Residual properties of infinite soluble groups. Proc. London Math. Soc. (3) 7 (1957), 29-62.
- 5. HALL, P. Nilpotent groups. Summer Seminar, University of Alberta, 1957.
- HALL, P. The Frattini subgroups of finitely generated groups. Proc. London Math. Soc. (3) 11 (1961), 327–352.
- 7. HERSTEIN, I. N. Theory of rings. Mathematics Lecture Notes, University of Chicago, 1961.
- HIRSCH, K. A. On infinite soluble groups IV. J. London Math. Soc. 27 (1952), 81-85.
- JACOBSON, N. Structure of rings. Am. Math. Soc. Colloq. Publ., Vol. 37, New York, 1956.
- KUROSH, A. G. "The Theory of Groups," Vol. II. Chelsea, New York, 1956. [Translated by K. A. Hirsch.]
- 11. WALLACE, D. A. R. The Jacobson radicals of the group algebras of a group and of certain normal subgroups. *Math. Z.* 100 (1967), 282-294.