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E-mail: kimyo@kunja.sejong.ac.kr

Submitted by William F. Ames

Received April 6, 1999

Let a , . . . , a , b , . . . , b be real constants with a , . . . , a / 0, y1, y2, . . . and1 p 1 p 1 p

Ž . Ž .b , . . . , b ) 0, and let F z s F a , . . . , a ; b , . . . , b ; z . It is shown that the1 p p p p p 1 p 1 p
Ž . Ž .following three conditions are equivalent to each other: i F z has only a finitep p

Ž . Ž . Ž .number of zeros, ii F z has only real zeros, and iii the a ’s can be re-indexedp p j
so that a s b q m , . . . , a s b q m for some nonnegative integers m , . . . , m .1 1 1 p p p 1 p
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1. INTRODUCTION

This paper is concerned with the zeros of generalized hypergeometric
functions, namely the functions of the form

` na ??? a zŽ . Ž .1 pn nF z s F a , . . . , a ; b , . . . , b ; z s . 1Ž . Ž .Ž . Ýp q p q 1 p 1 q b ??? b n!Ž . Ž .1 qnns0 n
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Ž . Ž .Here a , . . . , a and b , . . . , b / 0, y1, y2, . . . are constant and a s1 p 1 q n

Ž . Ž .G a q n rG a , that is,

a s 1 and a s a a q 1 ??? a q n y 1 n s 1, 2, . . . .Ž . Ž . Ž . Ž . Ž .0 n

Observe that we must assume b , . . . , b / 0, y1, y2, . . . in order that the1 1
series may be well defined, and that the series reduces to a polynomial
whenever some a is equal to 0 or a negative integer.j

In 1929, Hille published a paper entitled Note on some hypergeometric
w x Ž .series of higher order 3 . In this paper, he studied the zeros of the series 1

in the case where p F q and the parameters a , . . . , a and b , . . . , b are1 p 1 q
Ž Ž .real. Note that 1 defines an entire function if and only if p F q,

. Ž .provided a , . . . , a / 0, y1, y2, . . . . In particular, he proved that i if1 p
Ž .a / 0, y1, y2, . . . , the necessary and sufficient condition for F a; b; z1 1

to have only a finite number of zeros is that a y b is a non-negative
Ž .integer, and that ii if b , . . . , b ) 0 and m , . . . , m are non-negative1 p 1 p
Ž .integers, then F b q m , . . . , b q m ; b , . . . , b ; z has real zeros only.p p 1 1 p p 1 p

Ž .He proved ii in the special case where m s ??? s m , but the same1 p
method yields the general case.

The purpose of this paper is to generalize Hille’s results mentioned
above. For convenience, we introduce the following three conditions on

Ž .F a , . . . , a ; b , . . . , b ; z .p p 1 p 1 p

Ž .F. F a , . . . , a ; b , . . . , b ; z has only a finite number of zeros.p p 1 p 1 p

Ž .R. F a , . . . , a ; b , . . . , b ; z has only real zeros.p p 1 p 1 p

I. The a ’s can be re-indexed so that a s b q m , . . . , a s b q mj 1 1 1 p p p
for some non-negatï e integers m , . . . , m .1 p

Ž .What Hille has proved are i if p s 1 and a / 0, y1, y2, . . . , then F1
Ž .and I are equivalent, and ii if b , . . . , b ) 0, then I implies R. In this1 p

paper, we first consider the general case when the parameters a , . . . , a1 p

and b , . . . , b are allowed to have complex values, and prove that if1 q
Ža , . . . , a / 0, y1, y2, . . . , then F and I are equivalent Theorem 1,1 p

.Section 2 . Next, in Section 3, we apply a method due to Barnes to show
Ž . Ž .that F z is a real entire function and a , . . . , a are real, then F z hasp p 1 p p p

Ž .only a finite number of real zeros Theorem 2 . As a result of Theorem 1
and Theorem 2 we obtain Theorem 3 which states that if a , . . . , a1 p
Ž ./ 0, y1, y2, . . . are real and b , . . . , b ) 0, then F, R, and I are1 p
equivalent to each other. Finally, we conclude this paper with some
examples which show that the assumptions in our theorems cannot be

Ž .weakened Section 4 .
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2. NUMBER OF ZEROS

In this section, we will prove the following theorem.

THEOREM 1. If a , . . . , a / 0, y1, y2, . . . , then F and I are equï alent.1 p

Proof. We first prove that I implies F. Let q denote the differential
Ž . noperator z drdz , so that for each convergent power series ÝA z and an

constant a g C we have

` `
n na q n A z s a q q A z .Ž . Ž .Ý Ýn n

ns0 ns0

If b / 0, y1, y2, . . . and m is a non-negative integer, then

F b q m; b; zŽ .1 1

` nb q m zŽ . ns Ý b n!Ž . nns0

` n1 z
s b q n b q 1 q n ??? b q m y 1 q nŽ . Ž . Ž .Ýb n!Ž . m ns0

` n1 z
s b q q b q 1 q q ??? b q m y 1 q q ,Ž . Ž . Ž . Ýb n!Ž . m ns0

Ž . Ž . z Ž .so that F b q m; b; z s P z e for some polynomial P z of degree m.1 1
In general, if b , . . . , b / 0, y1, y2, . . . and m , . . . , m are non-nega-1 p 1 p

tive integers, then we have

F b q m , . . . , b q m ; b , . . . , b ; zŽ .p p 1 1 p p 1 p

m y1 np j `1 z
s b q k q q ,Ž .Ł Ł Ýjb n!Ž .js1 ks0j m ns0j

Ž . Ž . zand hence F b q m , . . . , b q m ; b , . . . , b ; z s P z e for somep p 1 1 p p 1 p

Ž .polynomial P z of degree m q ??? qm . This proves that I implies F.1 p
Ž .Conversely, suppose that a , . . . , a / 0, y1, y2, . . . and that F z s1 p p p

Ž .F a , . . . , a ; b , . . . , b ; z has only a finite number of zeros. Thenp p 1 p 1 p

Ž .F z is an entire function of order 1 with finitely many zeros. Thereforep p

Ž .F z can be written in the formp p

F z s c q c z q ??? qc z N ea z , 2Ž . Ž .Ž .p p 0 1 N
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w xwhere a , c , . . . , c are constants with a , c / 0. It is well known 1, p. 600 N N
Ž .and easy to see that F z satisfies the differential equationp p

d
q q b y 1 ??? q q b y 1 y q q a ??? q q a F z s 0.Ž . Ž . Ž .Ž . Ž .1 p 1 p p pdz

3Ž .

Ž . Ž .From 2 and 3 , we obtain

a pq1 y a p c z Nqp q lower terms s 0,Ž . N

Ž .so that a s 0 or 1. Since a / 0, it follows that a s 1, and hence 2
becomes

` n ` na ??? a z zŽ . Ž .1 pn n Ns c q c z q ??? qc z .Ž .Ý Ý0 1 Nb ??? b n! n!Ž . Ž .1 pnns0 ns0n

Therefore we have

a ??? a 1 c c cŽ . Ž .1 p 0 1 Nn n s q q ??? q
b ??? b n! n! n y 1 ! n y N !Ž . Ž . Ž .Ž .1 pn n

n s N , N q 1, . . . . 4Ž . Ž .

Ž .Let f t be the polynomial defined by

f t s c q c t q c t t y 1 q ??? qc t t y 1 ??? t y N q 1 .Ž . Ž . Ž . Ž .0 1 2 N

Ž .Then 4 implies that

a ??? aŽ . Ž .1 pn n s f n n s N , N q 1, . . . ,Ž . Ž .
b ??? bŽ . Ž .1 pn n

and hence we have

a ??? aa q n ??? a q n a q n ??? a q n Ž . Ž .Ž . Ž . Ž . Ž . 1 p1 p 1 p n nf n sŽ .
b q n ??? b q n b q n ??? b q n b ??? bŽ . Ž . Ž .Ž . Ž . Ž .1 p 1 p 1 pn n

a ??? aŽ . Ž .1 pnq1 nq1s s f n q 1Ž .
b ??? bŽ . Ž .1 pnq1 nq1

n s N , N q 1, . . . ,Ž .
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so that

a q n ??? a q n f n s b q n ??? b q n f n q 1Ž . Ž . Ž . Ž . Ž .Ž .1 p 1 p

n s N , N q 1, . . . . 5Ž . Ž .

Ž . Ž .Since f t is a polynomial, Eq. 5 implies that

a q t ??? a q t f t s b q t ??? b q t f t q 1 . 6Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 p 1 p

Ž .Now, using 6 and an induction, we will show that we can re-index
a , . . . , a so that a y b , . . . , a y b are non-negative integers. If p q N1 p 1 1 p p

Ž .s p q deg f t s 1, then we must have p s 1 and N s 0, so that our
assertion is trivial.

Let p q N ) 1 and assume the induction hypothesis. Since b q t is a1
Ž .factor of the right-hand side of 6 , it is a factor of the left-hand side also.

Ž . Ž . Ž .Therefore b q t divides a q t ??? a q t , or b q t divides f t .1 1 p 1
Ž . Ž .If b q t divides a q t ??? a q t , then b s a for some k. Re-index1 1 p 1 k

Ž .a , . . . , a so that a s b . Then 6 implies that1 p 1 1

a q t ??? a q t f t s b q t ??? b q t f t q 1 .Ž . Ž . Ž . Ž .Ž . Ž .2 p 2 p

Hence, by the induction hypothesis, we can re-index a , . . . , a so that2 p
a y b , . . . , a y b are non-negative integers.2 2 p p

Ž . Ž .If b q t divides f t , then there is a polynomial f t of degree N y 11 1
Ž . Ž . Ž . Ž .such that f t s b q t f t . From 6 , we obtain1 1

a q t ??? a q t f t s b q t ??? b q t f t q 1Ž . Ž . Ž . Ž .Ž . Ž .1 p 1 2 p

s b q t ??? b q t b q t q 1 f t q 1 .Ž . Ž . Ž .Ž .2 p 1 1

Again, the induction hypothesis implies that we can re-index a , . . . , a1 p

so that a y b y 1, a y b , . . . , a y b are non-negative integers. This1 1 2 2 p p
proves our assertion.

3. REALITY OF ZEROS

w xWe start this section with an asymptotic equality due to Barnes 1 . Let
a , . . . , a and b , . . . , b be complex constants and assume that b , . . . , b1 p 1 p 1 p

w x/ 0, y1, y2, . . . . In 1, pp. 80]83 , it is shown that for each e ) 0 we
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have

p G aŽ .j
F a , . . . , a ; b , . . . , b ; zŽ .Ł p p 1 p 1 pG bŽ .js1 j

1 p
z Ýa yÝbj j < < < <s e z 1 q O z ª `, arg z F y e . 7Ž .ž /ž /ž /z 2

Ž .Here arg is the principal branch of the argument. Hence F z has only ap p
p< <finite number of zeros in the sector arg z F y e for each e ) 0.2

Next, we will show that if

a ??? aŽ . Ž .1 pn n g R n s 0, 1, 2, . . . ,Ž .
b ??? bŽ . Ž .1 pn n

Ž .and if a , . . . , a are real, then F z has only a finite number of negative1 p p p
Ž .real zeros. If some a is equal to zero or a negative integer, then F z is aj p p

Ž .polynomial, and if the condition I holds, then F z has only a finitep p
number of zeros, by Theorem 1. Hence we may assume, without loss of
generality, that a , . . . , a / 0, y1, y2, . . . and that the condition I does1 p

Ž . Ž . Ž . Žnot hold. Then the function G a q s ??? G a q s rG b q s ??? G b q1 p 1 p
.s has infinitely many poles all of which are different from 0, 1, 2, . . . . Let

Ž . Ž . Ža , a , . . . denote the distinct poles of G a q s ??? G a q s rG b q1 2 1 p 1
. Ž . Ž .s ??? G b q s . For each k s 1, 2, . . . let R z denote the residue of thep k

function

G a q s ??? G a q sŽ . Ž .1 p s
G ys yzŽ . Ž .

G b q s ??? G b q sŽ . Ž .1 p

Ž . sat the pole s s a . Here yz is defined byk

syz s exp s log yzŽ . Ž .

for s g C and z / 0; log is the principal branch of the logarithm. Then it
Ž . Ž .ak Ž .is easy to see that R z r yz is a polynomial of log yz for eachk

w xk s 1, 2, . . . . See 6, p. 288 also.
� < < 4Let A ) max Im a : j s 1, . . . , p , let K be an arbitrary positive realj

number such that Re a / yK for all k s 1, 2, . . . , and let C denote thek 1
contour composed of the half line s s yt q Ai, y` - t F K, the line
segment from yK q Ai to yK y Ai, and the half line s s t y Ai, yK F t
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- `. Then we have

y1 G a q s ??? G a q sŽ . Ž .1 p s
G ys yz dsŽ . Ž .H2p i G b q s ??? G b q sŽ . Ž .C 1 p1

G a ??? G aŽ . Ž .1 ps F z y R zŽ . Ž .Ýp p kG b ??? G bŽ . Ž .1 p yK-ak

for Re z - 0.
Let C denote the line s s yK y it, y` - t - `, and let e ) 0 be2

p< Ž . < < Ž . <arbitrary. If arg yz s Im log yz F y e , then2

G a q s ??? G a q sŽ . Ž .1 p s
G ys yz dsŽ . Ž .H

G b q s ??? G b q sŽ . Ž .C 1 p1

G a q s ??? G a q sŽ . Ž .1 p ss G ys yz ds.Ž . Ž .H
G b q s ??? G b q sŽ . Ž .C 1 p2

Moreover, we have

G a q s ??? G a q sŽ . Ž .1 p s yK< <G ys yz ds s O zŽ . Ž . Ž .H
G b q s ??? G b q sŽ . Ž .C 1 p2

p
< <arg yz F y e , z ª ` ,Ž .ž /2

so that

G a ??? G aŽ . Ž .1 p yK< <F z s R z q O zŽ . Ž . Ž .Ýp p kG b ??? G bŽ . Ž .1 p yK-ak

p
< <arg yz F y e , z ª ` . 8Ž . Ž .ž /2

Ž . Ž .From 8 , it follows that if a , . . . , a are real and if R z / 0 for some1 p k
Ž .k and z, then for each e ) 0 the function F z has only a finite numberp p

p a1< Ž . < Ž . Ž . Ž .of zeros in the sector arg yz F y e , because R z r yz , R z r1 22
Ž .a2 Ž .yz , . . . are polynomials of log yz .

Ž .Remark. It seems hardly true that R z s 0 for all k and z, but thek
authors were unable to prove that this is not the case.

To proceed further, we need the following lemma whose proof is almost
trivial.
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Ž .LEMMA. Let f s be a function which has a pole of order m G 1 at
Ž .s s a , and let c , . . . , c be arbitrary constants. Then either f s has1 my1

nonzero residue at s s a or there is a positï e integer l F m y 1 such that
Ž . Ž . Ž .s y c ??? s y c f s has nonzero residue at s s a .1 l

From this lemma, it follows that if z / 0, then for each k s 1, 2, . . .
there is a nonnegative integer l such that the residue of

G a q s ??? G a q sŽ . Ž .1 p s
G ys q l yzŽ . Ž .

G b q s ??? G b q sŽ . Ž .1 p

at s s a is not equal to zero. As a consequence, there is a non-negativek
integer l such that if z / 0, then the function

G a q l q s ??? G a q l q sŽ . Ž .1 p s
G ys yzŽ . Ž .

G b q l q s ??? G b q l q sŽ . Ž .1 p

has a pole other than 0, 1, 2, . . . at which the residue is not equal to zero.
Since

F Ž l . a , . . . , a ; b , . . . , b ; zŽ .p p 1 p 1 p

a ??? aŽ . Ž .1 pl ls F a q l , . . . , a q l ; b q l , . . . , b q l ; z ,Ž .p p 1 p 1 pb ??? bŽ . Ž .1 pl l

Ž .we conclude that if a , . . . , a are real, then some derivative of F z has1 p p p
p< Ž . <only a finite number of zeros in the sector arg yz F y e for each2

e ) 0.
Ž .Now suppose that a , . . . , a are real and that F z is a real entire1 p p p

function, that is, its Maclaurin coefficients are all real. Then the above
Ž l .Ž .argument implies that there is a non-negative integer l such that F zp p

has only a finite number of negative real zeros, and hence Rolle’s theorem
Ž .implies that F z must have a finite number of negative real zeros. Onp p

Ž . Ž .the other hand, Eq. 7 implies that F z has finitely many positive realp p

Ž .zeros. Consequently, F z has only a finite number of real zeros.p p

Ž .THEOREM 2. Suppose that F z is a real entire function and a , . . . , ap p 1 p

Ž .are real. Then F z has only a finite number of real zeros.p p

Ž .COROLLARY. If F z is a real entire function and a , . . . , a are real,p p 1 p
then R implies F.

As mentioned in the Introduction, Hille proved that if b , . . . , b ) 0,1 p
then I implies R, but he gave only a sketch of the proof. For completeness,
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we will give a detailed proof of the result. Our proof is based on the
Polya]Schur theory of multiplier sequences.´

� 4̀ ŽA sequence g of real numbers is said to be a multiplier sequence ofn ns0
.the first kind if it has the following property.

M. If a q a z q ??? qa z d is a real polynomial with real zeros only,0 1 d
then the polynomial

g a q g a z q ??? qg a z d
0 0 1 1 d d

also has real zeros only.

� 4 � 4It follows immediately from the definition that if g and d aren n
� 4multiplier sequences, then their termwise product g d is also a multi-n n

plier sequence.
The multiplier sequences are completely characterized by the following

w xtheorem of Polya and Schur 4 .´
� 4THE POLYA]SCHUR THEOREM. A sequence g of real numbers is a´ n

multiplier sequence if and only if the function

` nz
F z s gŽ . Ý n n!ns0

can be uniformly approximated on compact sets in the complex plane by a
sequence of real polynomials all of whose zeros are real and of the same sign.

Let b be a positive real number. Then the Polya]Schur theorem implies´
� 4̀that b q n is a multiplier sequence, becausens0

` n kz z
zb q n s z q b e s lim z q b 1 q .Ž . Ž . Ž .Ý ž /n! kkª`ns0

Since the class of multiplier sequences is closed under termwise multiplica-
tion, it follows that for each positive integer m the sequence

`
b q n b q 1 q n ??? b q m y 1 q n� 4Ž . Ž . Ž . ns0

is a multiplier sequence. Hence

` `
b q m 1Ž . n s b q n b q 1 q n ??? b q m y 1 q nŽ . Ž . Ž .½ 5½ 5b bŽ . Ž .n m ns0ns0

is a multiplier sequence for each positive integer m.
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Now suppose that b , . . . , b are positive real numbers and m , . . . , m1 p 1 p
are nonnegative integers. Then it is clear that the sequence

`
b q m ??? b q mŽ . Ž .1 1 p pn n½ 5b ??? bŽ . Ž .1 pn n ns0

is a multiplier sequence. Hence, by the Polya]Schur theorem, the function´

F b q m , . . . , b q m ; b , . . . , b ; zŽ .p p 1 1 p p 1 p

` nb q m ??? b q m zŽ . Ž .1 1 p pn ns Ý b ??? b n!Ž . Ž .1 pnns0 n

can be uniformly approximated on compact sets in the complex plane by a
sequence of real polynomials all of whose zeros are real and of the same
sign; in particular, it has only real zeros. This completes the proof.

Ž .THEOREM 3. If a , . . . , a / 0, y1, y2, . . . are real and b , . . . , b ) 0,1 p 1 p

then F, R, and I are equï alent.

Proof. We have just shown that if b , . . . , b ) 0, then I implies R.1 p
Now, our theorem is an immediate consequence of Theorem 1 and the
corollary to Theorem 2.

4. EXAMPLES

In this section, we exhibit some examples which show that we cannot
weaken the assumptions of the theorems in this paper without altering
their conclusions. First of all, we remark that we must assume the
condition that a , . . . , a / 0, y1, y2, . . . in Theorem 1; otherwise the1 p

Ž .function F a , . . . , a ; b , . . . , b ; z reduces to a polynomial, so that thep p 1 p 1 p

implication F « I does not hold.
Ž .Theorem 2 states that if F z is a real entire function and a , . . . , ap p 1 p

Ž .are real, then F a , . . . , a ; b , . . . , b ; z has only a finite number of realp p 1 p 1 p

zeros. The following example, however, shows that this is not the case in
general.

Ž . Ž .EXAMPLE 1. The real entire function f z s F i, yi; 1, 1; z has in-2 2
Ž .finitely many real zeros. This may be shown as follows. According to 8 of
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w xSection 3 or the asymptotic equality given in 1, Sect. 9 , we have

2p G i G y2 iŽ . Ž . yi y1f yt s t 1 q O tŽ . Ž .Ž .p yp 2e y e G 1 y iŽ .
G yi G 2 iŽ . Ž .

i y1q t 1 q O t ,Ž .Ž .2
G 1 q iŽ .

as t ª ` with t ) 0. Therefore there exist real constants A and B, with
A ) 0, such that

f yt s A cos B q log t q O ty1 t ª `, t ) 0 ,Ž . Ž . Ž . Ž .

and this proves our assertion.
Next, we consider the assumptions of Theorem 3, namely a , . . . , a /1 p

0, y1, y2, . . . and b , . . . , b ) 0. The following example is about the1 p
condition a , . . . , a / 0, y1, y2, . . . .1 p

EXAMPLE 2. Let b ) 0. Then

G bŽ .
f x sŽ .

G b q xŽ .

is a real entire function of order 1 and has negative real zeros only. Hence
�Ž .y1 4̀ � Ž .4̀ wb s f n is a complex zero decreasing sequence by 2,n ns0 ns0

xTheorem 1.4 . In particular, it is a multiplier sequence. Let m be a positive
�Ž .y1 4̀integer. If we apply the multiplier sequence b to the polynomialn ns0

Ž .m Ž .1 y z , then we obtain F ym; b; z , because1 1

m n mym z 1Ž . n nmF ym; b; z s s yz .Ž . Ž .Ý Ý1 1 ž /nb n! bŽ . Ž .n nns0 ns0

Ž .Therefore F ym; b; z has real zeros only for each m s 1, 2, . . . and1 1
b ) 0. Consequently, we must assume a , . . . , a / 0, y1, y2, . . . in order1 p
to obtain the implication R « I in Theorem 3.

Our last example is concerned with the condition b , . . . , b ) 0.1 p

EXAMPLE 3. Let b - 0 and b / y1, y2, . . . . If m is a positive integer
Ž . wŽ . xgreater than yb, then F b q m; b; z has at least 2 1 y b r2 nonreal1 1

zeros.

�ŽProof. Let m be a positive integer greater than yb. Then b q
.y1 4̀m is a complex zero decreasing sequence. On the other hand, then ns0

Ž . Ž . zproof of Theorem 1 shows that F b q m; b; z s P z e for some real1 1
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Ž .polynomial P z of degree m. Hence the number of nonreal zeros of

` nb q m zŽ . n
F b q m; b; z sŽ . Ý1 1 b n!Ž . nns0

is at least that of

` n ` n1 z 1 b q m zŽ . n
F b; z s s .Ž . Ý Ý0 1 b n! b q m b n!Ž . Ž . Ž .n n nns0 ns0

w xNow our assertion follows from a well-known theorem of Hurwitz 5, 15.27
Ž .which states that if b - 0 and b / y1, y2, . . . , then F b; z has exactly0 1

wŽ . x2 1 y b r2 nonreal zeros.
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