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An analysis of the structure features of liquid Co–Sn alloys has been performed by means of X-ray diffrac-
tion method, viscosity coefficient analysis and computer simulation method. The X-ray diffraction inves-
tigations were carried out over a wide concentration range at the temperature 1473 K. It was found that
the structure of these alloys can be described in the frame of independent X-ray scattering model. The
viscosity coefficient was calculated by an excess entropy scaling and compared with experimental data.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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1. Introduction

The phase diagram of Co–Sn system has changed significantly in
the last decade mainly because of the finding out of previously
unknown CoSn3 compound [1–5]. Meanwhile according to the dif-
ferent works the melting temperatures for key compositions have
dissimilar values such as Co3Sn2 compound (�1473 K [1], �1443 K
[2,3], and �1453 K [4,5]) as well as an eutectic point (�1398 K [1],
�1385 K [2,3], �1323 K [4], and �1376 K [5]). Moreover the
composition of the eutectic point is also under discussion [6].
The mentioned above discrepancies in the data could be connected
with experimental difficulties due to a high diffusion of the cobalt
in tin [7], meanwhile in [8] is mentioned the very small diffusion
mobility of the Co atoms in the Co-based alloys.

An industrial point of view the investigations of Co–Sn alloys
are motivated with possibility of using as a high-tech materials.
As an example, such alloys might be appropriate for the production
of Co–Sn-based metallic glasses [9] as well as for anode materials
in lithium ion batteries [10].

There are several works dedicated to the investigations of the
structure of Co–Sn alloys in the liquid state [11–16]. Based on
the obtained results authors suggest the complex structure of the
liquid Co–Sn alloys, but with the existence of different structure
units. It should be noted that several Co-based systems reveal
significant structure transformations with the concentration and
composition changes in the liquid state [15]. Such structure anom-
alies bring to deviations of the structure sensitive properties from
the ideal behavior: the concentration dependence of the activation
energy of viscous flow of liquid Co–Sn alloys is similar to the
liquidus curve of the phase diagram and shows an unexpected
increase near the eutectic concentration [17]; the surface tension
data versus concentration have a negative deviation from the Raul’s
law at 1823 K [18]. Besides, the enthalpy of mixing shows the tem-
perature dependence with more negative values at lower temper-
atures [19]. On the other hand, there is some disagreement in the
analysis of the experimental data. For example, the author of [20]
supposed the existence of associates with the stoichiometry of Co2-

Sn-type, while in Ref. [13] postulated an formation of Co3Sn2-type
associates has a main impact on the structure of liquid Co–Sn
alloys. According to [15], in melts are present the atomic coordina-
tions with markedly different interatomic distances. The purpose of
this work is to clarify information on the structure of liquid Co–Sn
alloys available in literature. The main point of the presented study
as continuation of the our previous works [11–14] is the investiga-
tions of the liquid Co–Sn alloys over the wide concentration range
at the temperature 1473 K, which is close to the melting point of
component with the highest melting temperature. In this case a
presence of structural units with intermetallic like chemical short
range order in the melts is expected. Thereby, based on the exper-
imental results and model simulations the composition changes of
structure units with concentration were studied. Other words, the
detected structure features with change of the concentration of
liquid Co–Sn alloys were more in the detail analyzed in comparison
with early published works [11–14] more dedicated on the
temperature dependence of the structure characteristics.

The obtained data on structure were used for calculation of the
concentration dependence of viscosity coefficient, which is one of
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the main structure-sensitive properties of the liquid state. A
semi-empirical universal relationship proposed by Rosenfeld [21]
and a universal scaling law proposed by Dzugutov [22] are used
for the concentration dependence of the viscosity calculations.
The modeled viscosity values are compared with literature data.
Fig. 1. Structure factors for liquid Co–Sn alloys.
2. Experimental and RMC modeling

Ingots of tin and cobalt (both of 99�99% purity) were used to prepare the alloy
samples in an arc melting furnace.

The XRD measurements were carried out by means of a high-temperature X-ray
diffractometer with a special attachment, which allows investigating the solid and
liquid samples at different temperatures. Cu Ka radiation monochromatized with
LiF single crystal and Bragg–Brentano focusing geometry in the 2h range from 10�
up to 120� were used. Intensity curves were corrected on polarization and incoher-
ent scattering [23]. After this procedure they were normalized to electron units by
Krogh–Moe method [24]. A detailed description of the experimental technique was
reported [25]. The measuring of scattered intensity was done with accuracy better
than 2%. Main structure parameters obtained from structure factor (SF) and pair
correlation function (PCF) were calculated according to Ref. [26]. Main structure
parameters obtained from them were analyzed.

Details describing the RMC technique can be found in [27]. The initial cubic cell
was arranged with 5000 atoms in the stoichiometric ratio, which corresponded to
the melt composition. The sizes of the model cube were adapted with the melt
density at the experiment temperature. The minimum distances between atoms
rij was took the point of intersection of the left branch of the first maximum in
an experimental PCF curve with the abscissa axis. According to the RMC algorithm,
the model is optimized by minimizing the sum of the squared difference between
experimental and model total structure factors according to equation:

v2 ¼
XN

i¼1

ðSsimðkiÞ � SexpðkiÞÞ=r2ðkiÞ; ð1Þ

where ki is the wave vector; r2(ki) is the experimental error as a function of wave
vector k; Ssim and Sexp are the model and experimental total structure factors.

As a result of simulation the partial pair correlation function and Faber-Ziman
partial structure factors have been obtained. Partial coordination numbers have
been calculated by means of analysis of local structure of the RMC simulated
configurations.
3. Results and discussion

Experimental SFs for liquid Co100�xSnx alloys of different Co
content show the untypical for simple liquids profile (Fig. 1). Par-
ticularly the principal peak is low, wide and reveals a fine structure
comparatively to SFs of constituents. Because of the existence of
several intermetallic compounds the local atomic structure in the
Co–Sn alloys should be significantly depend from the concentra-
tion of components both in the solid and in the liquid state that
is evidently observed in SFs at different content of the components.
The splitting of broad main SF maximum of liquid Co–Sn alloys into
two sub-peaks at some concentrations is one of the confirmations
of a complex structure of the investigated alloys. The first sub-peak
corresponds to the main SF maximum of liquid Sn, while the sec-
ond one corresponds to the position of the main SF maximum for
liquid Co (Fig. 1). In this case the short range order structure in
the liquid Co–Sn alloys cannot be described by a random atomic
distribution and most probably could be interpreted as mixture
of different kind structural units in the liquid state.

In view of the formation of chemical compounds in the investi-
gated system and taking into account an exothermic behavior of
the integral enthalpy of mixing with minimum point of about
60 at.% Co [19] we can assume the existence of complexes (clus-
ters) with similar chemical ordering in the liquid state. It should
be also noted, that among all existing compounds, and only Co3Sn2

melts uniformly reaching a congruent melting point and is most
stable compound in the system. As follows from structural studies
for such kind compounds the chemical ordering persists upon
melting. Therefore we can suppose that this compound will affect
the structure of the Co–Sn alloys in the liquid state. Accordingly,
the composition which corresponds to the Co3Sn2 compound
divides the phase diagram into two parts. The first part is a eutectic
type diagram, and the second one – eutectic type with incongruent
melting phases. Thus, we will consider the structure of the investi-
gated liquid alloys in accordance with above mentioned feature of
phase diagram.

Liquid Co79.5Sn20.5 alloy corresponds to the eutectic composi-
tion which consists from pure cobalt and Co3Sn2 phase in the solid
state. According to the self-associated model the liquid eutectics
consist of clusters with structure corresponding to the phases
formed according to eutectic reaction L ? Co + Co3Sn2. According
to Ref. [16] bCo3Sn2- and bCo-type clusters exist in the liquid
Co79.5Sn20.5 alloy in the temperature range 1423–1623 K. Therefore
we have compared the structure factors of the liquid Co50Sn50,
Co60Sn40 and Co79.5Sn20.5 alloys with the diffraction pattern of
the crystalline Co3Sn2 (Fig. 2). As we can see from the figure, com-
parison shows a good agreement. This also allowed us to suppose
that Co3Sn2-like chemical ordered units affects the structure over
the whole investigated concentration range.

For more detailed investigation of the structure, we performed
modeling the structure of investigated alloys by reverse Monte
Carlo method. As a result of simulation, partial structure factors
(PSF) and pair correlation functions (PPCF) were obtained. Using
the partial pair correlation functions partial interatomic distances
were defined.

Fig. 3 shows partial SFs of liquid Co–Sn alloys compared with
diffraction pattern for the crystalline Co3Sn2. As can be seen, if
the content of tin in melts is less than 50%, the positions of the
main maxima of the partial structure factors SCo–Sn(k) coincide
with reflexes of crystalline compound indicating the existence
clusters with Co3Sn2–type chemical short-range order in the melt.
With increasing of tin content, the effect of chemically ordered
atomic groups on the structure of alloys becomes smaller.
Preferred interaction of different kinds of atoms confirms the



Fig. 2. Structure factors for liquid Co50Sn50, Co60Sn40 and Co79.5Sn20.5 alloys and
diffraction pattern for crystalline Co3Sn2 compound.

Fig. 3. Partial structure factors for liquid Co–Sn alloys and diffraction pattern for
crystalline Co3Sn2 compound.

Fig. 4. Concentration dependence of interatomic distances for Co–Sn liquid alloys.

Fig. 5. Probability of the Sn–Co partial coordination numbers in the liquid state.
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reduction of average interatomic distances rCo–Sn in comparison
with the sum of Sn and Co radii (Fig. 4). Weightier evidence of
the existence of Co3Sn2-type chemical short-range order is the
comparison the partial interatomic distances and coordination
numbers of investigated liquid alloys and crystalline compound.
According to [28] for crystalline Co3Sn2 phase, tin has 6 Sn atoms
as a nearest neighbors at a distance of 3.52 Å, 5 Co atoms as neigh-
bors (3 + 2 a distance of 2.36 Å and 2.61 Å respectively) whereas
cobalt has 8 neighbors of Co (2 + 6 at a distance of 2.61 Å and
2.70 Å respectively). As we can see from Figs. 4 and 5 the partial
interatomic distances and coordination numbers are in good agree-
ment with the above data.

To confirm hypothesis about formation of Co3Sn2-type chemical
ordering groups (clusters) in Co–Sn melts the structure factors of
melts in the frame of independent scattering model have been cal-
culated. According to this model, the intensity of X-ray scattering
by alloy is equal to the weighted sum of scattered intensities of
the alloy components
Ia ¼ c1I1 þ c2I2; ð2Þ

where Ia, I1, and I2 are the intensities of X-ray scattering; c1, c2 are
the fractions of the alloy components. Using this relation we can
calculate the structure factor of the alloy:

SðkÞ ¼ c1K2
1S1ðkÞ þ c2K2

2S2ðkÞ; ð3Þ

where K2
1 ¼

F2
1ðkÞ

c1F2
1ðkÞþc2F2

2ðkÞ
, K2

2 ¼
F2

2ðkÞ
c1F2

1ðkÞþc2F2
2ðkÞ

are the scattering abilities

of the alloy components; F1, F2 are the atomic scattering factors.
The calculation results are shown in Fig. 1 (dot line). Calcula-

tions were carried out assuming that the structure of melts
containing less than 40 at.% of tin forms with clusters of cobalt
and Co3Sn2-type chemical ordering regions. The structure of alloys
with higher content of tin affect chemically ordered Co3Sn2 clus-
ters, solution with the composition Co22.3Sn77.7 for liquid Co50Sn50

or Co33.3Sn66.7 and Sn for liquid Co10Sn90 alloys. According to Fig. 1
calculated curves are in good agreement with the experimental
data. It should be noted that calculated curve for eutectic alloy is
in good agreement with the experimental structure factor suppos-
ing the higher solubility of Co in the Co3Sn2-type structural units
comparatively with crystalline intermetallic. This solubility
reaches values of about 70 at.% that is close to the Co2Sn composi-
tion. This assumption follows from the fact that the stoichiometric
range of Co3Sn2-compound expands and shifts to the cobalt side of
phase diagram at approaching to melting point. Calculation of
other structure factors was based on the assumption that the
composition of Co3Sn2-like clusters corresponds to Co60Sn40



Fig. 6. Concentration dependence of the viscosity for liquid Co–Sn alloys at 1473 K.
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stoichiometry. Taking into account a good agreement of the
experimental SFs with the calculated ones, we suppose that the
structure of liquid alloys in the wide investigated concentration
range can be represented as a mixture of two types of clusters,
composition and relative content of which are given in Table 1.
The standard deviation of represented data of cluster composition
of Co–Sn liquid alloys in the frame of independent scattering
model is less than ±3%.

Combining the X-ray diffraction data and an excess entropy
scaling, the concentration dependence of the viscosity for liquid
Co–Sn alloys at 1473 K was calculated. By performed calculations
of the viscosity we supposed that obtained by Fourier transforma-
tion of the SF values of the configuration entropy correspond to the
excess entropy data.

The Rosenfeld’s scaling law has been used for the calculations of
the viscosity [21]:

g ¼ g�Rq
2=3ðmkBTÞ1=2

; ð4Þ

where q is the density; m is the atomic mass; kB is the Boltzmann
constant; T is the temperature; and the reduced viscosity coefficient
according to the Rosenfeld:

g�R ¼ 0:2e�0:8S; ð5Þ

where S is the excess entropy.
In another way, microscopic reduction parameters (collision

frequency C and interparticle distance r) were chosen for the
transport coefficients, according to the Enskog theory [29]:

C ¼ 4r2gðrÞq pkBT
m

� �1=2

; ð6Þ

where g(r) is the radial distribution function at the position of the
first maximum of the g(r).

Using the microscopic reduction parameters Dzugutov [22]
defined the follow relationship between the viscosity coefficient
and reduced viscosity coefficient:

g ¼ g�D
Cm
r

� �
; ð7Þ

where the reduced viscosity coefficient is equal:

g�D ¼ 0:035e�0:55S: ð8Þ

The density values were calculated for the melts from the
densities of the constituents, qi under the assumption that the
excess volume is zero [30].

The comparison of the calculated viscosity of liquid Co–Sn
alloys with literature ones [17] is shown in Fig. 6. The calculated
viscosity data are in good agreement with experimental ones for
the liquid Co79.5Sn20.5, Co60Sn40 and Co50Sn50 alloys, but are in dis-
agreement for liquid Co33.3Sn66.7, Co22.3Sn77.7 and Co10Sn90 alloys,
except calculated value using Eq. (7) for eutectic alloy. It means
that by the predictions of g for liquid Co–Sn alloys with large
amounts of tin should be consider various factors that account
the specific atomic and electronic structure of liquid tin, which is
commonly referred to semimetals. The compared analysis of
Table 1
Cluster composition of Co–Sn liquid alloys in the frame of independent scattering
model.

Alloys Clusters

Co Co3Sn2 Co22.3Sn77.7 Sn

Co79.5Sn20.5 0.6 0.4 – –
Co50Sn50 – 0.74 0.26 –
Co33.3Sn67.7 – 0.7 0.3 –
Co10Sn90 – – 0.04 0.96
experimental viscosity data with calculated ones using different
semi-empirical models has been done in Ref. [17]. The main reason
of performed calculations is to show the impact of the structure
features on the viscosity, as one of the structure-sensitive
properties. The agreement between experimental and calculated
viscosity values for the liquid Co-based Co–Sn alloys suggests that
the Co3Sn2-like clusters formations should have a main impact on
the structure-sensitive properties, while by calculations for the Sn-
based alloys other factors should be also taken into account.
4. Conclusions

The asymmetry of the main peak of structure factors for liquid
Co–Sn alloys indicates the existence of inhomogeneous short range
order structure. The atomic arrangement of these alloys over the
whole investigated concentration range can be described in the
frame of independent scattering model. According to this model,
the structure of melts containing less than 40 at.% of tin forms with
clusters of cobalt and Co3Sn2-type chemical ordering regions. The
structure of alloys with higher content of tin affect chemically
ordered Co3Sn2 clusters, solution with the composition Co22.3Sn77.7

for Co50Sn50 or Co33.3Sn66.7 melts and Sn for Co10Sn90 liquid alloy.
The agreement between experimental and calculated viscosity
values for the liquid Co-based Co–Sn alloys suggests that the Co3-

Sn2-like clusters formations have a main impact on this transport
property. Some discrepancy appears at increasing of Sn content
in alloy due to the specific atomic and electronic structure of liquid
tin.
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