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In this work, singular perturbation problems with a certain type of turning
point are studied from a geometric point of view. We first describe the delay
phenomenon, initially studied by Pontryagin, of dynamics near the slow manifold
possessing the turning points. Based on the local properties of such turning points
and the center manifold theory for general invariant manifolds developed by Chow,
Liu, and Yi, we extend the well-known exchange lemma, first formulated by Jones
and Kopell for problems with normally hyperbolic slow manifolds, to problems
with this type of turning point. Applications to singular boundary value problems
with turning points are discussed. � 2000 Academic Press

1. INTRODUCTION

In this work, we extend the geometric singular perturbation theory to
problems with a certain type of turning point.

Consider singularly perturbed ordinary differential equations of the form

=x* =F(x, y; =),
(1)

y* =G(x, y; =),

where (x, y) # Rm_Rn, F and G are smooth in their arguments, and * = d
d{

denotes the derivative with respect to the slow time {. In terms of the fast
time scale t= {

= , the system becomes

x$=F(x, y; =),
(2)

y$==G(x, y; =),

where $= d
dt denotes the derivative with respect to the fast time t.
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While these two systems are equivalent for ={0, the different time scales
give rise to two limiting systems. Letting = � 0 in (1), we obtain

0=F(x, y; 0),
(3)

y* =G(x, y; 0).

Assume that there exists a function x=H( y) for y # D, a domain in Rn,
such that F(H( y), y; 0)=0; that is, S0=[(x, y) : x=H( y)] is a part of the
slow manifold. The system (3) is then defined on S0 and its dynamic is
determined by the second equation only. On the other hand, letting = � 0
in (2) results in the system

x$=F(x, y; 0),
(4)

y$=0,

which has S0 as a set of equilibria.
Roughly speaking, the two scalings single out the roles of the two com-

ponents of the vector field. The dynamic in the vicinity of the slow
manifold plays a role similar to that of Morse sets in Morse�Smale systems.
A natural question is how the reduced flow (3) on the slow manifold affects
the one in its neighborhood for ={0.

As a set of equilibria of the system (4), the linearization on S0 is given
by

\Fx( p; 0)
0

Fy( p; 0)
0 +

for p # S0 . If the real part R(*( p))=% 0 for all eigenvalues *( p) of Fx( p; 0)
and all p # S0 , then the slow manifold S0 is normally hyperbolic. The nor-
mally hyperbolic theory (see [7, 11]) implies the persistence of the slow
manifold as well as the stable and unstable foliations. As a consequence,
the dynamic in the vicinity of the slow manifold is completely determined
by the one on the slow manifold. The latter statement is made precise, for
practical reasons, through the exchange lemmas first formulated by Jones
and Kopell in [16]. A special situation is treated early by Deng in [5].
The geometric singular perturbation theory (see [5, 8, 16, 21, 29, 30]) has
been developed based on the normal hyperbolicity of the slow manifold
together with other geometric properties, for example, the transversality of
stable and unstable manifolds. It has been successfully applied to the
study of heteroclinic, homoclinic, and periodic solutions and to singular
boundary value problems.

With the presence of turning points where, for some eigenvalues *( p), the
real part R(*( p)) changes sign, the slow manifold fails to be normally
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hyperbolic in the vicinity of the turning points. Nevertheless, the theory has
been employed in the study of some turning points. Kopell [17, 18]
applied the theory to singularly perturbed turning-point problems and
boundary layer problems exhibiting resonance. Milik and Szmolyan [24]
studied the relaxation solutions of a chemical oscillator with turning points.
In this work we identify a type of turning point and extend the geometric
singular perturbation theory to problems with such turning points; more
precisely, we establish the exchange lemmas for singular perturbation
problems for this type of turning point. The purpose of the exchange lem-
mas is to describe the change of the smooth configuration of an invariant
manifold as it passes a neighborhood of the slow manifold, which is
evidently one of the most important ingredients of the geometric singular
perturbation theory. In the case that the slow manifold is normally hyper-
bolic, Jones and Kopell [16] establish the exchange lemma. Its proof
depends heavily on a Fenichel coordinates system (see [15, 16, 30]). The
existence of such a coordinate system in the vicinity of a normally hyper-
bolic slow manifold follows from the normally hyperbolic theory. When
turning points are relevant, the theory as well as the method developed in
[7, 11] do not apply anymore. Instead, we use the center manifold theory
for general invariant manifolds recently established by Chow et al. in [3]
to achieve a similar coordinate syste��the Fenichel-type coordinate system.
It turns out that the turning points affect the changes of configuration in
three major ways, and three exchange lemmas are obtained accordingly.

The types of turning points involved possess the following property: The
presence of the turning points will not destroy the slow manifold (due to
special structures of the system, see hypotheses (H1) in Section 3). Its local
properties were studied by Pontryagin and his school. The so-called delay
of stability loss is the main feature of the turning points. Singular perturba-
tions with such turning points arise in many important applications; for
example, the class of Lotka�Volterra-type equations, a model problem of
Howes and Parter [13, 19], a perturbation of the epidemic model of SIR
type studied in [9], and traveling wave problems of a class of reaction�
diffusion systems with nonlinearity depending on gradient.

The paper is organized as follows. In Section 2, we describe the interest-
ing local properties of the turning points and discuss the effect on initial
value problems. In Section 3, a Fenichel-type coordinate system is obtained
in a neighborhood of the slow manifold. This is accomplished by an
application of the center manifold theory [3] with a series of changes of
coordinates. We then establish the exchange lemmas in Section 4. The for-
mulation and the proof of the exchange lemmas follow those of Jones and
co-workers [14�16, 30]. Section 5 is devoted to some general applications
to singular boundary value problems. Finally, in the appendix, we justify
a result on invariant foliations used in Section 3.
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2. LOCAL PROPERTIES

Let us recall some important local properties of turning points (see [22,
25]). To illustrate the idea in a simple manner, we start with the simplest
situation. Consider the singularly perturbed system

=x* =xf (x, y; =),
(5)

y* = g(x, y; =)

where (x, y) # R2. Assume that the functions f and g are smooth in their
arguments, g(0, y; 0)>0, f (0, 0; 0)=0 and f (0, y; 0) y>0 for y=% 0. Thus,
S0=[x=0] is a branch of the slow manifold [xf (x, y; 0)=0] and, most
importantly, it is invariant even for ={0. The linearization along S0 of the
corresponding fast system at ==0 is

\ f (0, y; 0)
0

0
0+ .

The condition on f implies that (0, 0) is a turning point and, on two sides
of the turning point, the stability of the slow manifold changes; that is,

S&=[(0, y) : y<0] is stable and S+=[(0, y) : y>0] is unstable.

If we consider an initial value problem with the initial data x(0)=x0=% 0
and y(0)= y0<0, then the solution immediately approaches S& first to
form an initial layer and then follows the slow manifold to give the outer
solution. When it passes the turning point (0, 0), S+ repels the solution.
The question is, up to what point is the outer solution valid, or, at what
point does the solution begin to leave the slow manifold? Intuitively, the
problem is a competition of the speed of the flow along the slow manifold
and the rate of the repelling of the slow manifold. The effect of the type of
turning points in system (5) was understood by Pontryagin back in the
1960s (see [25] and also [6, 26, 27]). We will give a description of the
phenomenon as follows.

Let us define a map P0 : S& � S+ by P0(0, y)=(0, y0)=(0, y } {0),
where {0>0 is determined by

|
{0

0
f (0, y } s; 0) ds=0, (6)

where y } { denotes the solution on S0 at ==0. Or equivalently,

|
y0

y

f (0, !; 0)
g(0, !; 0)

d!=0. (7)
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The assumptions on f and g imply that P0 is a well-defined one-to-one map
and P0(0, y) � (0, 0) as y � 0.

Definition 2.1. The map P0 will be called the pairing map and the pair
of points (0, y) and P0(0, y) will be called a turning pair.

The main result below reveals the delay of the stability loss.

Theorem 2.2. Fix $=% 0 and K>0. Choose Poincare� sections as

I$ :=[($, y) : y # (&K, 0)]; II$ :=[($, y) : y # (0, �)]

and define the Poincare� map P= : I $ � II $ by P= ($, y) = (,=
1 ({= ; $, y),

,=
2({= ; $, y)) at the time {=>0 such that ,=

1({= ; $, y)=$, where (,=
1({; x, y),

,=
2({; x, y)) is the flow defined by the system (5) corresponding to ={0 with

the initial point (x, y). Then P= � P0 in the Cr-norm as = � 0 if we identify
I$ with I 0 and II $ with II 0 in the obvious way.

Proof. See [22, 25]. K

As an immediate consequence, we have (see Fig. 1)

Corollary 2.3. Consider the initial value problem x(0)=x0=% 0 and
y(0)= y0<0 for the system (5). The outer expansion is valid until
P0 (0, y0)=(0, y1) in the sense that (i) for any 0< y< y1 the solution is
exponentially in = close to the slow manifold up to (0, y) for small =; (ii) for
any y> y1 the solution leaves the vicinity of the slow manifold before (0, y).

Proof. See [22]. K

FIG. 1. The delay phenomena.
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Example 2.4. An application of Corollary 2.3 explains a phenomenon
observed by O'Malley in [28] from a simple linear system. The system is

=x* =({&1) x. (8)

The slow manifold is given by x=0 and the exact solution of an initial
value problem is given by x({; =)=e&(1&{�2) {�=x(0). It can be readily seen
that the outer solution expansion is valid up to {=2. If we try to solve the
initial value problem x(0){0 using the traditional asymptotic expansion
procedure, we obtain, for the inner problem and in terms of the fast
time t, the solution x(t; =)=e&tx(0)+1�2t2e&tx(0)+ } } } . In particular,
x(t; =) � 0 as t � �. For the outer solution, we then seek the solution with
x(0)=0 on the slow manifold. It turns out that x({; =)=0 for all { is a
solution. There are two questions which arise here. One comes from the
fact that the outer solution is actually valid beyond {=1, the turning point;
the other is that it is not valid after {=2, the symmetric point of the initial
point with respect to the turning point. It is known that the complicated
phenomenon was caused by the presence of the turning point {=1.

If we augment {* =1 to the equation and replace { with y+1, we have

=x* =xy,
(9)

y* =1.

In terms of system (5), we have f (x, y; =)= y and g(x, y; =)=1, and hence
(0, 0) is a turning point and (0, &1) and (0, 1) form a turning pair. The
initial value problem x(0){0 for system (8) is equivalent to the initial
value problem x(0){0 and y(0)=&1 for system (9). Corollary 2.3 asserts
that the outer solution expansion is valid up to y=1 or {=2.

We now state the result for higher dimensional slow manifolds and one
fast direction. Thus, we consider

=x* = f (x, y; =) x,
(10)

y* = g(x, y; =),

where x # R and y=( y1 , y2 , ..., yn) # Rn. Assume that the functions f and g
are smooth in their arguments,

<0, if y1<0

f (0, y; 0)={=0, if y1=0

>0, if y1>0
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and (0, g(0, y; 0)) is transversal to [ y1=0] on [x=0] pointing from
[ y1<0] to [ y1>0]. Thus, S0 :=[x=0] is a branch of the slow manifold
and is also invariant for ={0. The set L :=[x=0, y1=0], consisting of
turning points, is a hypersurface of S0 . The two sides of L on S0 will be
denoted by

S& :=[(0, y) : y1<0] and S+ :=[(0, y) : y1>0].

On S0 , the slow flow is given by

y* = g(0, y; 0).

Let y } { denote the solution with the initial condition y. Define the pairing
map P0 : S& � S+ by P0 (0, y0)=(0, y0 } T )=(0, y1), where T>0 is deter-
mined by

|
T

0
f (0, y0 } {; 0) d{=0, (11)

or equivalently, y1 is determined by the line integral condition

|
Or( y0, y1)

f (0, y; 0)
| g(0, y; 0)| 2 ( g(0, y; 0), dy) =0, (12)

where Or( y0, y1) denotes the curve formed by the solution y0 } { from y0 to
y1. In fact, if we parameterize the curve Or( y0, y1) by the solution y0 } {,
then the line integral equation (12) reduces to the equation (11). An advan-
tage of the second formula is that one can evaluate the line integral using
any parameterization of the curve instead of the one given by the solution;
for example, if the slow flow is a two dimensional Hamiltonian flow, then
the orbits are given by the level curves of the Hamiltonian and they usually
have natural parameterization while the solutions are not representable in
general.

Theorem 2.5. Fix $=% 0 and K>0. Choose Poincare� sections as

I$ :=[($, y) : y1 # (&K, 0)]; II$ :=[($, y) : y1 # (0, �)]

and define the Poincare� map P= : I $ � II$ by P= ($, y) = (,=
1({= ; $, y),

,=
2({= ; $, y)) at the time {=>0 such that ,=

1({= ; $, y)=$, where (, =
1({; x, y),

,=
2({; x, y)) is the flow defined by the system (10) corresponding to ={0 with

the initial point (x, y). Then P= � P0 in the C r-norm as = � 0 if we identify
I$ with I 0 and II $ with II 0 in the obvious way.

140 WEISHI LIU



3. FENICHEL-TYPE COORDINATES

As shown in [16, 30], in establishing the exchange lemmas a Fenichel
coordinate system in a neighborhood of the normally hyperbolic slow
manifold is crucial for the analysis. There, the existence of a Fenichel coor-
dinate system follows from the normally hyperbolic theory. Although the
slow manifold of the singularly perturbed system we consider here is not
normally hyperbolic, we are able to construct a similar coordinate system
(the Fenichel-type coordinate system) by taking into the account the
properties of the turning points. As far as for the geometric theory, the nor-
mally hyperbolic theory is replaced with the center manifold theorem for
invariant manifolds developed in [3].

The hypotheses on the system (2) are as follows.

(H1) (Persistence). The slow manifold

S0 :=[(x, y) : x=H( y), y # D],

where D is a domain in Rn and H: D � Rm is a function, persists; that is,
there is a smooth function H: D_(&=0 , =0) � Rm such that

S= :=[(x, y) : x=H( y; =), y # D]

is invariant under system (2) for = # (&=0 , =0) and H( y; 0)=H( y).

(H2) (Turning Surface). There is a smooth hypersurface L of S0

which divides S0 into two parts

S& :=[(x, y) : x=H( y), y # D&] and

S+ :=[(x, y) : x=H( y), y # D+],

such that, for some :0<0<;0 , the eigenvalues of Fx( p; 0) for p=
(H( y), y) # S0 , denoted by

:i ( y) for i=1, ..., l, ;j ( y) for j=1, ..., k, and *0 ( y),

satisfy R(:i ( y))<:0<*0 ( y)<;0<R(;j ( y)), and *0 ( y) changes sign at
p=(H( y), y) # L, and *0 ( y)<0 for y # D& and *0 ( y)>0 for y # D+ .

Clearly, we have k+l+1=m. Let B=[ y # D : (H( y), y) # L] be the
projection of L to D. Thus, B=�D& & �D+ .

(H3) (Transversality). On D, the reduced vector field G(H( y), y; 0)
is transversal to B, and G points from D& to D+ .
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Lemma 3.1. If the hypotheses (H1)�(H3) are satisfied by system (2),
then there exists a coordinate system in a neighborhood of L such that, for
==% 0 small, the system can be written as, in the fast time scale t,

u$=U(u, v, w, y; =) u,

v$=V(u, v, w, y; =) v,
(13)

w$=*0 (w, y; =) w+4(u, v, w, y; =)(u, v),

y$==(h( y; =)+a(w, y; =) w+H(u, v, w, y; =)(u, v)),

or, in the slow time scale {,

=u* =U(u, v, w, y; =) u,

=v* =V(u, v, w, y; =) v,
(14)

=w* =*0 (w, y; =) w+4(u, v, w, y; =)(u, v),

y* =h( y; =)+a(w, y; =) w+H(u, v, w, y; =)(u, v),

where u # Rk; v # Rl; w # R; L=[ y1=0]; S0=[u=v=w=0]; h(0, y2 , ...,
yn ; 0) transverses to L on S0 ; U(0, 0, 0, y; =) and V(0, 0, 0, y; =) are in the
Jordan canonical forms; and U(0, 0, 0, y; 0) and V(0, 0, 0, y; 0) have eigen-
values ;j ( y) for j=1, ..., k and :i ( y) for i=1, ..., l respectively; *0 (0, y; 0)=
*0 ( y); 4(u, v, w, y; =) and H(u, v, w, y; =) are bilinear forms; and a(w, y; =)
is a vector in Rn and, for any fixed $0>0 small, a(w, y; =)=0 for | y1 |�$0 .

Proof. This will be accomplished through several changes of variables
together with applications of invariant manifold theory.

Step 1. The first change of variables is made to put S= and L as
regions on coordinate subspaces. By the hypothesis (H1), we have that

S= :=[(x, y) : x=H( y; =), y # D]

is invariant. We may also assume, locally around the interested turning
points, that L is given by

L=[(x, y) : x=H( y), y1=,( y2 , ..., yn)].

Set

X=x&H( y; =),

Y1= y1&,( y� ), Y� :=(Y2 , ..., Yn)= y� :=( y2 , ..., yn),
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and note that the inverse of this change of variables is given by

x=X+H(Y1+,(Y� ), Y� ; =), y1=Y1+,(Y� ), y� =Y� .

In the new coordinates, the system (2) becomes

X$=F(X+H(Y1+,(Y� ), Y� ; =), Y1+,(Y� ), Y� ; =)

&=DH(Y1+,(Y� ), Y� ; =) G(X+H(Y1+,(Y� ), Y� ; =), Y1+,(Y� ), Y� ; =),

Y$==G(X+H(Y1+,(Y� ), Y� ; =), Y1+,(Y� ), Y� ; =).

The invariance of x=H( y; =) is equivalent to

F(H( y; =), y; =)==DH( y; =) G(H( y; =), y; =),

or

F(H(Y1+,(Y� ), Y� ; =), Y1+,(Y� ), Y� ; =)

==DH(Y1+,(Y� ), Y� ; =) G(H(Y1+,(Y� ), Y� ; =), Y1+,(Y� ), Y� ; =).

Hence, there exists F (X, Y; =) : Rm � Rm such that

F(X+H, Y1+,(Y� ), Y� ; =)&=DHG(X+H, Y1+,(Y� ), Y� ; =)

=F (X, Y; =) X.

We then end up with

X$=F (X, Y; =) X
(15)

Y$==g(X, Y; =),

where g(X, Y; =)=G(X+H, Y1+,(Y� ), Y� ; =). In this new coordinates
system, S0=[X=0] and L=[X=0, Y1=0].

Step 2. Next, we make use of the existence of center, stable, and
unstable manifolds of S0 to split X into three components.

Note that F (0, Y; 0)=Fx(H, Y1+,(Y� ), Y� ; 0) has eigenvalues :i , *0 ,
and ;j . Therefore, the standard invariant manifold theory and the center
manifold theory developed in [3] imply that there exist stable, center, and
unstable manifolds W s

= , W c
= , and W u

= which, at ==0, are tangent to the
eigenspaces corresponding to :i , *0 , and ; j , respectively. Furthermore, W s

=

and W u
= are invariantly foliated. Following the argument of Fenichel [8]

(see also [15, 16]), there exists a local coordinate system (u� , v� , w� , y� ) so
that system (15) becomes
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u� $=U� (u� , v� , w� , y; =) u� ,

v� $=V� (u� , v� , w� , y; =) v� ,

w� $=*� 0 (u� , v� , w� , y; =) w� +4� (u� , v� , w� , y; =)(u� , v� ),

y$==(h� ( y; =)+a� (u� , v� , w� , y; =) w� +H� (u� , v� , w� , y; =)(u� , v� ))

with u� # Rk; v� # Rl; w� # R; U� (0, 0, 0, y; 0) has eigenvalues ; j for j=1, ..., k;
V� (0, 0, 0, y; 0) has eigenvalues :i for i=1, ..., l; and *� 0 (0, 0, 0, y; 0)=*0 ( y).

Step 3. A further technical but crucial point is that there are locally
invariant foliations of the center-stable and center-unstable manifolds W cs

=

and W cu
= over the center manifold W c

= . See Lemma 6.1 in the appendix for
a construction. Making use of these foliations, there exists a local coor-
dinate system (u, v, w, y) such that the system can be further reduced to

u$=U(u, v, w, y; =) u,

v$=V(u, v, w, y; =) v,

w$=*0 (w, y; =) w+4(u, v, w, y; =)(u, v),

y$==(h( y; =)+a(w, y; =) w+H(u, v, w, y; =)(u, v)).

The assertion that a(w, y; =)=0 for | y1 |�$0 follows from the existence of
stable and unstable foliations of the corresponding part of the center
manifold.

Step 4. Finally, let u=P( y; =) u� and v=Q( y; =) v� , where P( y; =) and
Q( y; =) are matrices putting U(0, 0, 0, y; =) and V(0, 0, 0, y; =) into their
Jordan canonical forms, respectively. The resulting system has the desired
form. K

The coordinate system established in Lemma 3.1 will be referred to as
the Fenichel-type coordinates system.

4. EXCHANGE LEMMAS

Having the Fenichel-type coordinate system, we will extend the exchange
lemma to the cases where the slow manifold possesses the type of turning
points discussed above.

Let B=[(u, v, w, y) : |u|, |v|, |w|�2, y # D=D& _ D+] be a neighbor-
hood of the slow manifold, where 2 is small enough so that the Fenichel-
type coordinate system is valid in B. For =>0, let 1= be an orbit entering
B at q0

= =(u0
= , v0

= , w0
= , y0

= ) and exiting at q1
= =(u1

= , v1
= , w1

= , y1
= ) later on. Let

M= be a (k+_)-dimensional invariant manifold containing 1= , where k is
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the dimension of the unstable fiber of the slow manifold as in (H2) and
_�1 (see Remarks 4.1 and 4.2 for the explanation of this requirement on
the dimension). The objective of the exchange lemmas is to describe the C1

configuration of M= at q1
= in terms of that of M= at q0

= . Different from the
results for normally hyperbolic slow manifolds in [14, 16, 30], etc., the
phenomena depend significantly on the positions of y0

0 and y1
0 relative to

the pairing map P0 . Corresponding to the different relative positions, the
w component of the orbit 1= will be treated as stable, center, and unstable
ones and the three exchange lemmas, Theorem 4.4, Theorem 4.7, and
Theorem 4.10 will be obtained.

4.1. Evolution of Forms along a Solution

To track the C1 configuration of M= along the orbit 1= , we apply the
treatment in [14, 16] of using differential forms. The idea is that the
tangent space of the (k+_)-dimensional manifold M= at a point on 1= can
be coordinated by the evaluations��the so-called Plu� cker coordinates��of
(k+_)-forms on the tangent space. The value of a form on the tangent
space measures the (k+_)-volume of the projection of the tangent space to
the space corresponding to the form. In this subsection, we will derive the
differential equation that the (k+_)-forms satisfy along a solution of
system (14).

Let (u= ({), v= ({), w= ({), y= ({)) be a solution of system (14) in B. For
_�1, all (k+_)-forms form a vector space. We will use the following base
consisting of three types of basic forms: type I, type II, and type III.

For any integers p and q with p�q, let 7( p, q) denote the set of all
monotone and one-to-one maps ?: (1, ..., p) � (1, ..., q).

The type-I basic forms are

!? :=du1 7 } } } 7 duk 7 dy?(1) 7 } } } 7 dy?(_)

where ? # 7(_, n). Thus, there are C(n, _) many such basic type-I (k+_)-
forms, where C(n, _) is the combination number of choosing _ elements
from n elements.

The type-II basic forms are

'? :=du1 7 } } } 7 duk 7 dw 7 dy?(1) 7 } } } 7 dy?(_&1) ,

where ? # 7(_&1, n), and there are C(n, _&1) many such basic forms.
The type-III basic forms are further divided into k+1 subgroups:

III0 , ..., IIIk . The type-IIIi group consists of

\? :=du?(1) 7 } } } 7 du?(i ) 7 dzi+1 7 } } } 7 dzk+_
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where ? # 7(i, k) and zj ranges over vi , w, and yi . In the case that i=k, at
least one of the zj 's belongs to [v:].

Taking the differential on the slow system (14), we get

=du* =U du+(DzU dz) u,

=dv* =V dv+(DzV dz) v,

=dw* =*0 dw+(Dw*0 dw) w+(Dy*0 dy) w

+4 } (du, v)+4 } (u, dv)+(Dz4 dz)(u, v),

dy* =Dyh dy+(a+w Dwa) dw+w Dya dy

+H } (du, v)+H } (u, dv)+(Dz H dz)(u, v), (16)

where z runs over u, v, w, and y. To illustrate the derivation of the differen-
tial equations for the (k+_)-forms, let us derive the differential equation
for a type-I form with the assumption that the solution followed is on the
slow manifold where u=v=w=0. In the computation, the following nota-
tions will be used

d ku :=du1 7 } } } 7 duk ; d _y? :=dy?(1) 7 } } } 7 dy?(_) .

For any ?i # 7(_, n), the corresponding type-I form is

!?i
=d ku 7 d _y?i

.

Taking the derivative with respect to { and using the relations (16),

=!4 ?i
=:

:

= du1 7 } } } 7 du* : 7 } } } 7 duk 7 d _y?i

+:
#

=d ku 7 dy?i (1) 7 } } } 7 dy* ?i (#) 7 } } } 7 dy?i (_)

= :
:, ;

du1 7 } } } 7 (U:; du;) 7 } } } 7 duk 7 d _y?i

+ :
#, p

=d ku 7 dy?i (1) 7 } } } 7 Dyp
h?i (#) dyp 7 } } } 7 dy?i (_)

+:
#

=d ku 7 dy?i (1) 7 } } } 7 a?i (#)dw 7 } } } 7 dy?i (_)

=tr U!?i
+= :

?j

A?i?j
!?j

+:
#

=a?i (#)'?i (#) ,
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where the summation in the second term above is over all ?j 's such that the
image of ?j differs from that of ?i by exactly one element, say ?i (#1) � Im ? j

and ?j (#2) � Im ?i , and A?i ?j
=(&1) |#2&#1|Dy?j (#2) h?i (#1) , and

'?i (#)=d ku 7 dy?i (1) 7 } } } 7 dy?i (#&1) 7 dw 7 dy?i(#+1) 7 } } } 7 dy?i (_) .

In general, along a solution (u= ({), v= ({), w= ({), y= ({)) in B, if we set
!=(!?1

, ..., !?c
){ with ?i # 7(_, n), where c=C(n, _), '=('?1

, ..., '?d
){ with

?i # 7(_&1, n), where d=C(n, _&1) and \=(\? : ? # 7(i, k), i=0, ..., k) is
the vector formed by all the type-III forms, then a computation yields

Lemma 4.1. The forms !, ', and \ satisfy the linear nonautonomous
system

=!4 =(tr U+,1) !+=(AI+%I
1) !+=%2'+%3 \,

='* =(tr U+*0+,2) '+=(AII+% II
1 ) '+%4 !+%5\,

=\* =(tr U+B+*0+,3) \+%6 !+%7' (17)

where the argument of the coefficients of !, ', and \ in the above system is
(u= ({), v= ({), w= ({), y= ({); =), and where AI and AII are matrices formed from
Dy h( y= ({)); B is in the Jordan canonical form with entries on the main
diagonal less than or equal to &#0 with #0=min[&:0 , ;0]; ,i 's are
R-valued functions; and there exists a constant K>0 independent of = such
that

|,1 |�K |u|, |,2 |�K( |u|+|w|+=), |,3 |�K( |u|+ |v|+ |w| ),

|%I, II
1 |�K( |u| |v|+ |Dya| |w| ),

|%2 |�K( |u| |v|+ |a|+ |Dwa| |w| ), |%3 |�K |u|,

|%4 |�K( |u| |v|+ |w| ), |%5 |�K |u|,

|%6 |�K |v|, |%7 |�K |v|. K

4.2. The First Exchange Lemma

Let us denote the stable (resp., unstable, center-stable, center-unstable,
and center) manifold of S0 by W s (S0) (resp. W u (S0), W cs (S0), W cs (S0),
and Wc (S0)) in B. For example, W s (S0)=[u=0, w=0], W cs (S0)=
[u=0], and W c (S0)=[u=0, v=0].

Let ,{
=(q0

= )=(u= ({), v= ({), w= ({), y= ({)) denote the solution of system (14)
with the initial condition q0

= =(u= (0), v= (0), w= (0), y= (0)). To shorten the
notation, let *=

0({) :=*0 (u= ({), v= ({), w= ({), y= ({); =). The slow flow on S0

at ==0 will be denoted by y } { for (0, y) # S0 . On the center manifold
Wc (S0) the system is the same as that discussed in Section 2. We denote
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the pairing map by P0 . Also, for y1, y2 # S0 , we will use the notation
y1 Oy2 (resp. y1 oy2) if y1= y0 } {1 , y2= y0 } {2 , and {1<{2 (resp. {1>{2).

For a set N, let |(N) (resp. :(N)) denote the |-limit (resp. :-limit) set
of N for the system (13) at ==0.

The letters K and C will denote positive constants whose values may
change with each occurrence but will not depend on =.

Let 1�_�n be an integer and let M= be a (k+_)-dimensional invariant
manifold of system (13) which is smooth in = (including ==0).

We impose the following assumptions.

(A1) M0 intersects W cs (S&) transversally at q0
0 # �B.

Remark 4.1. If we denote N0=M0 & W cs (S&), then, as a consequence
of (A1), dim N0=_. Since M0 is invariant, we have _�1.

(A2) The set |(N0) & B is a (_&1)-dimensional submanifold of S& .
(A3) (0, h( y; 0)) � T(0, y) |(N0) for (0, y) # |(N0).

Remark 4.2. If dim |(N0)=0, or equivalently, _=1, then (A3) is
automatic. Also, (A3) requires that dim |(N0)�n&1; that is _�n.
Together with Remark 4.1, this explains the above requirement of 1�_�n.

Suppose that the singular orbit on S0 followed by M= has end points
y0 # S& and y1 # S+ . The First Exchange Lemma deals with the case that
y1 OP0 ( y0). In view of the Exchange Lemma of [16, 30], etc., the w-com-
ponent can be regarded as a stable one in this case. Thus, the exchange
lemma obtained in this subsection is a generalization of that in [16, 30].

The next lemma is a C0 version of the Exchange Lemma. It estimates the
location of the orbit ,{

=(q
0
= ) relative to its singular limit on the slow

manifold.

Lemma 4.2. Assume (H1)�(H3) and (A1)�(A3). If M= enters B through
the point q0

= which depends on = smoothly and exits B through the point
q1

= =,{=
= (q0

= ) on the face |u|=2 with {= � {0>0 and :(q1
0)OP0 (|(q0

0)), then
there exist constants K>0 and C>0 such that, for 2>0 small, =>0 small,
and { # [0, {=],

|u= ({)|�Ke&;0({=&{)�=, |v= ({)|�Ke:0{�=, |w= ({)|�Ke&C{�=,

and

| y= ({)& y0 } {|�K(=+| y= (0)& y0 | )�K=.

Proof. The estimates for |u= ({)| and |v= ({)| follow from the results of
Proposition 3.1 in [16]. We now estimate |w= ({)| and | y= ({)& y0 } {|.
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Choose 2 small enough such that :0<*&�*0 (w, y; =)�*+<;0 for
(u, v, w, y) # B. Recall that *=

0({) :=*0 (u= ({), v= ({), w= ({), y= ({); =).
First we show that if

|
{

0
* =

0(s) ds�&r0{

for some constant r0>0 and { # [0, {=], then the estimates in the lemma
hold. To see this, note that

w= ({)=e (1�=) �{
0 *=

0(s) dsw= (0)+|
{

0
e (1�=) �{

s *=
0(t) dt4 } (u= (s), v= (s)) ds

and

|u= ({)| |v= ({)|�Ke&;0({=&{)�=e:0{�=�Ke ((:0+;0) {&;0{=)�=.

Therefore,

|w= ({)|�e&r0{�= |w= (0)|+K |
{

0
e(*+({&s)+(:0+;0) s&;0{=)�= ds

�2e&r0{�=+K=(e:0 {= �=+e&(;0&*+) {=�=),

which implies the estimate of |w= ({)| in the lemma. Using the above
estimates for |u= ({)| |v= ({)| and |w= ({)|, and

y= ({)= y= (0)+|
{

0
(h( y= (s); =)+aw= (s)+H } (u= (s), v= (s))) ds,

we have

| y= ({)& y0 } {|�| y= (0)& y0 |+|
{

0
|Dh| | y= (s)& y0 } s| ds

+|a| |
{

0
|w= (s)| ds+|H | |

{

0
|u= (s)| |v= (s)| ds

�| y= (0)& y0 |+K=+|
{

0
K | y= (s)& y0 } s| ds.

By an application of Gronwall's inequality, we get

| y= ({)& y0 } {|�K(=+| y= (0)& y0 | )�K=.

Thus, to complete the proof, it remains to show the following claim.
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Claim. There exists a constant r0>0 such that

|
{

0
* =

0(s) ds�&r0{, (18)

for { # [0, {=] and = small.

Proof of Claim. Since :(q1
0)OP0(|(q0

0)) and {= � {0 , �{
0 *0 ( y0 } s) ds<0

for 0<{�{= . Also,

lim
{ � 0

1
{ |

{

0
*0 ( y0 } s) ds=*0 ( y0)<0.

Thus, there exists a constant r0>0 such that, for { # [0, {=],

1
{ |

{

0
*0 ( y0 } s) ds� &2r0 or |

{

0
*0 ( y } s) ds�&2r0 {.

We may assume that

r0<&*0 (w= (0), y= (0); =). (19)

Let T be the supermum of the {'s satisfying the inequality (18) for a
fixed =. Then, T>0 due to the inequality (19). We will show that T={= .
Suppose, on the contrary, that T<{= . Note that

w= ({)=e (1�=) �{
T

*=
0(s) dsw= (T )+|

{

T
e (1�=) �{

s *=
0 (t) dt4 } (u= (s), v= (s)) ds

and

|u= ({)| |v= ({)|�Ke((:0+;0) {&;0{=)�=.

Therefore, for {�T+min[r0T�2*+ , (;0&*+) {= �2*+ ],

|w= ({)|�e (1�=) �{
T *=

0(s) ds |w= (T )|+K |
{

T
e (1�=) �{

s *=
0(t) dte((:0+;0) s&;0{=)�= ds

�e (1�=) �{
T *=

0 (s) ds |w= (T )|+K |
{

T
e(*+({&s)+(:0+;0) s&;0{=)�= ds

�Ke&r0T�2=+K=e&(;0&*+) {=�2=,

and, using an argument the same as that given earlier,

| y= ({)& y0 } {|�K=.
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We then have, for {�T+min[r0T�2*+ , (;0&*+) {= �2*+ ] and = small,

|
{

0
*=

0 (s) ds�|
{

0
*0 ( y0 } s) ds+|Dw*0 | |

{

0
|w= (s)| ds

+|Dy*0 | |
{

0
| y= (s)& y0 } s| ds+|D= *0 | |

{

0
= ds

�&2r0{+K={�&r0{.

This contradicts to T<{= . The proof is then completed. K

Next, we prove a technical lemma which is the crucial estimate for a
proof of the exchange lemmas.

Lemma 4.3. Consider the linear nonautonomous system

!4 =(AI+% I
1) !+%2 '+

%3

=
\,

'* =
*0+,2&,1

=
'+(AII+%II

1 ) '+
%4

=
!+

%5

=
\,

\* =
B+*0+,3&,1

=
\+

%6

=
!+

%7

=
'

where the coefficients AI, AII, B, , i , and %i are as in (17). Assume the
hypotheses in Lemma 4.2. Then there exist constants K>0 and C>0 such
that, for =>0 small and { # [0, {=],

|!({)|�K( |!(0)|+= |'(0)| )+Ke&C{= �= |\(0)|,

|'({)|�Ke&C{�= \ |'(0)|+
|!(0)|

= ++Ke&C{=�= |\(0)|,

and

|\({)|�Ke&C{�= ( |\(0)|+|!(0)|+|'(0)| ).

Proof. The estimate is complicated but very basic. It uses a variation of
the constant formula and Gronwall's inequality.

Let 81 ({), 82 ({), and 83 ({) be the principal fundamental matrix solu-
tions at {=0 of the systems with system matrices

AI+% I
1 ,

*0+,2&,1

=
+AII+%II

1 ,
B+*0+,3&,1

=
,
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respectively. Then, we have

|81 ({) 8&1
1 (s)|�K, |82 ({) 8&1

2 (s)|�Ke (1�=) �{
s *=

0 (t) dt

and

|83 ({) 8&1
3 (s)|�Ke (1�=) �{

s *=
0 (t) dte&#0(r&s)�=

for some constant K>0, for {>s in [0, {=] and #0<min[&:0 , ;0].
By the variation of the constant formula and the estimates given above,

we have

|!({)|�K |!(0)|+K |
{

0 \ |%2 | |'(s)|+
|%3 |

=
|\(s)|+ ds, (20)

|'({)|�Ke (1�=) �{
0 *=

0 (s) ds |'(0)|

+K |
{

0
e (1�=) �{

s *=
0 (t) dt \ |%4 |

=
|!(s)|+

|%5 |
=

|\(s)|+ ds, (21)

and

|\({)|�Ke (1�=) �{
0 *=

0 (s) dse&#0{�= |\(0)|

+K |
{

0
e (1�=) �{

s *=
0 (t) dte&#0(r&s)�= \ |%6 |

=
|!(s)|+

|%7 |
=

|'(s)|+ ds. (22)

Substituting the estimate in (20) into (22),

|\({)|�Ke (1�=) �{
0 *=

0 (s) dse&#0{�= |\(0)|

+K |
{

0
e (1�=) �{

s *=
0 (t) dte&#0(r&s)�= |%6 |

=
|!(0)| ds

+K |
{

0
e (1�=) �{

s *=
0 (t) dte&#0(r&s)�= |%6 |

= |
s

0
|%2 | |'(t)| dt ds

+K |
{

0
e (1�=) �{

s *=
0 (t) dte&#0(r&s)�= |%6 |

= |
s

0

|%3 |
=

|\(t)| dt ds

+K |
{

0
e (1�=) �{

s *=
0 (t) dte&#0(r&s)�= |%7 |

=
|'(s)| ds.
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Recalling that |%6 |�K |v= |�Ke:0{�= and *=
0({)>:0 , there exists a constant

0<C�min[*0&:0 , #0] such that

|
{

0
e&(1�=) �{

0 *=
0 (s) ds e&#0(r&s)�= |%6 |

=

�
K
= |

{

0
e&(1�=) �{

0 *=
0 (t) dte&#0(r&s)�=e:0s�= ds�Ke&C{�=.

Therefore,

|\({)|�Ke (1�=) �{
0 *=

0 (s) dse&C{�= \ |\(0)|+|!(0)|+|
{

0
|%2 | |'(s)| ds+

+Ke (1�=) �{
0 *=

0 (s) ds |
{

0
e&(1�=) �{

0 *=
0 (t) dte&#0(r&s)�= |%7 |

=
|'(s)| ds

+Ke(1�=) �{
0 *=

0 (s) dse&C{�= |
{

0

|%3 |
=

|\(s)| ds.

Dividing e (1�=) �{
0 *=

0 (s) dse&C{�= on both sides, applying Gronwall's inequality,
and using the estimates |%3 |�K |u= |�Ke&;0 ({=&{)�= and

|
{

0

e&;0 ({=&s)�=

=
e(1�=) �s

0 *=
0 (t) dte&Cs�= ds�K,

one has

|\({)|�Ke(1�=) �{
0 *=

0 (s) dse&C{�= \ |\(0)|+|!(0)|+|
{

0
|%2 | |'(s)| ds+

+Ke (1�=) �{
0 *=

0 (s) ds |
{

0
e&(1�=) �{

0 *=
0 (s) dse&#0(r&s)�= |%7 |

=
|'(s)| ds. (23)

Substituting the estimates (20) and (23) into (21),

|'({)|�Ke (1�=) �{
0 *=

0 (s) ds |'(0)|+K |
{

0
e (1�=) �{

s *=
0 (t) dt |%4 |

=
|!(0)| ds

+K |
{

0
e (1�=) �{

s *=
0 (t) dt |%4 |

= |
s

0 \ |%2 | |'(t)|+
|%3 |

=
|\(t)|+ dt ds

+K |
{

0
e (1�=) �{

s *=
0 (t) dt |%5 |

=
|\(s)| ds
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�Ke (1�=) �{
0 *=

0 (s) ds|'(0)|+K |!(0)| |
{

0
e (1�=) �{

s *=
0 (t) dt |%4 |

=
ds

+K |
{

0
e (1�=) �{

s *=
0 (t) dt |%4 |

=
ds |

{

0
|%2 | |'(s)| ds

+K( |\(0)|+|!(0)| ) |
{

0
e (1�=) �{

s *=
0 (t) dt |%4 |

=
ds

_|
{

0

|%3 |
=

e (1�=) �s
0 *=

0 (t) dte&Cs�= ds

+K |
{

0
e (1�=) �{

s *=
0 (t) dt |%4 |

=
ds |

{

0

|%3 |
=

e (1�=) �s
0 *=

0 (t) dte&Cs�= ds

_|
{

0
|%2 | |'(s)| ds

+K |
{

0
e (1�=) �{

s *=
0 (t) dt |%4 |

=
ds |

{

0

|%3 |
=

e (1�=) �s
0 *=

0 (t) dt e&#0s�= ds

_|
{

0
e&(1�=) �{

0 *=
0 (t) dte#0s�= |%7 |

=
|'(s)| ds

+K( |\(0)|+|!(0)| ) |
{

0
e (1�=) �{

s *=
0 (t) dt |%5 |

=
e (1�=) �s

0 *=
0 (t) dte&Cs�= ds

+K |
{

0
e (1�=) �{

s *=
0 (t) dt |%5 |

=
e (1�=) �s

0 *=
0 (t) dte&Cs�= ds |

{

0
|%2 | |'(s)| ds

+K |
{

0
e (1�=) �{

s *=
0 (t) dt |%5 |

=
e (1�=) �s

0 *=
0 (t) dte&#0 s�= ds

_|
{

0
e&(1�=) �{

0 *=
0 (s) dse#0s�= |%7 |

=
|'(s)| ds.

Note that |%4 |�K( |u= | |v= |+|w= | ); |%3 |, |%5 |�K |u= |; |%2 |�K; and |%7 |�
K |v= |. From the estimates in Lemma 4.2, we have

K |
{

0
e (1�=) �{

s *=
0 (t) dt |%4 |

=
ds�

K
=

e(1�=) �{
0 *=

0 (s) ds,
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and

K |
{

0

|%i |
=

e&#0s�= ds�Ke&#0{= �= for i=3, 5.

Therefore,

|'({)|�Ke (1�=) �{
0 *=

0 (s) ds \ |'(0)|+
|!(0)|

=
+e&C{= �= |\(0)|+

+
K
=

e (1�=) �{
0 *=

0 (s) ds |
{

0
|'(s)| ds

+Ke (1�=) �{
0 *=

0 (s) dse&#0{=�= |
{

0
e&(1�=) �{

0 *=
0 (s) dte#0s�= |v= |

=
|'(s)| ds.

An application of Gronwall's inequality yields

|'({)|�Ke (1�=) �{
0 *=

0 (s) ds \ |'(0)|+
|!(0)|

=
+e&C{= �= |\(0)|+ . (24)

Substituting the estimate (24) into (23), we have

|\({)|�Ke (1�=) �{
0 *=

0 (s) dse&C{�= ( |\(0)|+|!(0)|+|'(0)| ). (25)

Substituting the estimates (24) and (25) into (20) yields

|!({)|�K( |!(0)|+= |'(0)| )+Ke&C{=�= |\(0)|. (26)

The conclusion of the lemma then follows from the fact that �{
0 * =

0(s) ds
�&C{ for some C>0 and { # [0, {=] as in the proof of Lemma 4.2. K

Remark 4.3. Because we only require K to be independent of =, the
estimates (26), (24), and (25) hold true for { # [0, {=] as long as the
property �{=

0 * =
0(s) ds�K= holds true.

We are now ready to obtain the corresponding C 1 Exchange Lemma
(see Fig. 2 for an illustration).

Theorem 4.4. Assume (H1)�(H3) and (A1)�(A3). If M= enters B

through the point q0
= which depends on = smoothly and exits B through the

point q1
= =,{=

= (q0
= ) on the face |u|=2 with {= � {0 and :(q1

0)OP0 (|(q0
0)),

then, for some $>0 small independent of =, M= is C 1 O(=)-close at q1
= to the

manifold

W u (S0)| |(N0) } ({0&$, {0+$)=[(u, 0, 0, y) : y # |(N0) } ({0&$, {0+$)].
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FIG. 2. The First Exchange Lemma.

Proof. Let !({), '({), and \({) be the types I, II and III forms corre-
sponding to the tangent space of M= along the solution (u= ({), v= ({), w= ({),
y= ({)) and let !0 ({) denote the corresponding vector of type-I (k+_)-
forms at ==0 of

T(0, 0, 0, y0 } {) W u(S0)| |(N0) } ({&$, {+$) .

(The corresponding '0 and \0 are identical zeros.)
The statement of the theorem is equivalent to the estimate

|'({=)|+|\({=)|+|!({=)&!0({=)|�K=.

Recall the differential equation (17) that the forms satisfied along the
solution (u= ({), v=({), w= ({), y= ({)) are

=!4 =(tr U+,1) !+=(AI+%I
1) !+=%2'+%3 \,

='* =(tr U+*0+,2) '+=(AII+% II
1 ) '+%4 !+%5\,

=\* =(tr U+B+*0+,3) \+%6 !+%7'.

By multiplying !, ', and \ by the integrating factor (1� |!(0)| )
e&(1�=) �{

0 (tr U+,1) and abusing the notations !, ', and \ for the resulting
forms, we get
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!4 =(AI+% I
1) !+%2 '+

%3

=
\,

'* =
*0+,2&,1

=
'+(AII+%II

1 ) '+
%4

=
!+

%5

=
\, (27)

\* =
B+*0+,3&,1

=
\+

%6

=
!+

%7

=
'.

Note that the factor 1�|!(0)| normalizes the initial conditions and that after
the normalization we have

|!(0)|=1, |'(0)|�
K
=

, and |\(0)|�
K
=

for some constant K. Applying Lemma 4.3 to system (27), we have that, for
{�{= ,

|!({)|�K( |!(0)|+= |'(0)|+|\(0)| e&C{= �=),

|'({)|�K |'(0)| e&C{�=+
K |!(0)|

=
e&C{�=+K |\(0)| e&C{=�=,

and

|\({)|�K( |\(0)|+
|!(0)|

=
+|'(0)| ) e&C{�=.

In particular, |'({=)|+|\({=)|�K=. Next, we show that |!({=)&!0 ({=)|
�K=. The equation that !0 satisfied is

!4 0 ({)=AI ( y0 } {) !0 ({)

and that of ! is

!4 ({)=(AI ( y= ({)))+%I
1) !({)+%2'({)+

%3

=
\({).

Therefore,

|!({)&!0 ({)|�|!(0)&!0 (0)|+|
{

0
( |DyAI| | y= (s)& y0 } s|+|% I

1 | ) |!(s)| ds

+|
{

0
|AI| |!(s)&!0 (s)| ds+|

{

0
|%2 | |'(s)| ds

+|
{

0

|%3 |
=

|\(s)| ds.
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Note that, for some {
*

, {* # (0, {=) independent of =, a(w= ({), y= ({); =)=0
for { � [{

*
, {*]. Thus, for { # [0, {=],

|
{

0
|%2 | |'(s)| ds�K |

{*

{*

|'(s)| ds

�K(= |'(0)|+|!(0)| ) e&C{* �=+Ke&C{=�= |\(0)|.

Also, since

|%I
1|�K( |u= | |v= |+ |Dy a| |w= | )�Ke&C{�= and

|%3 |�K |u= |�Ke&;0({=&{)�=,

one can check easily that

|
{

0
|% I

1| |!(s)| ds�K=( |!(0)|+= |'(0)|+e&C{=�= |\(0)| )�K=,

and

|
{

0

|%3 |
=

|\(s)| ds�K \ |'(0)|+
|!(0)|

=
+|\(0)|+ e&C{=�=�K=.

Therefore,

|!({)&!0 ({)|�|!(0)&!0 (0)|+K=+|
{

0
|AI| |!(s)&!0 (s)| ds.

An application of Gronwall's inequality then yields

|!({)&!0 ({)|�K(=+|!(0)&!0 (0)| ).

Note that !(0) is the vector of type-I (k+_) forms of Tq̂0
=
W u(S0)||(N0) } (&$, $) .

We have that |!(0)&!0 (0)| is O(=) small. The proof is complete. K

4.3. The Second Exchange Lemma

The Second Exchange Lemma corresponds to the case that M= enters
and exits B at points close to W c (S0) for which the delay of stability loss
phenomenon in Theorem 2.2 dominates the evolution of the configuration.
The stability of the w-component balances along this passage and the
w-component can be viewed as a true center direction.

Lemma 4.5. Assume (H1)�(H3) and (A1)�(A3) and N0 & [ |w|=2]
=% <. If M= enters B through the point q0

= # [ |w|=2] which depends on =
smoothly and exits B through the point q1

= =,{=
= (q0

= ) on the face |w|=2 with
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{= � {0>0 and :(q1
0)=P0 (|(q0

0)), then there exists K>0 such that, for
2>0 small, =>0 small, and { # [0, {=],

|u= ({)|�Ke&;0({=&{)�=, |v= ({)|�Ke:0{�=, |w= ({)|�Ke (1�=) �{
0 *=

0 (s) ds,

and

| y= ({)& y0 } {|�K(=+| y= (0)& y0 | ).

Proof. This can be proved in a manner similarly to that of Lemma 4.2.
The only change one may need is to break the proof into two steps. First, use
the same proof to show the estimates for the first ``half'' trajectory where
the inequality (18) holds and then to reverse the time and apply the same
method for the second ``half'' trajectory. The details will be omitted. K

Lemma 4.6. Consider the linear system

!4 =(AI+% I
1) !+%2 '+

%3

=
\,

'* =
*0+,2&,1

=
'+(AII+%II

1 ) '+
%4

=
!+

%5

=
\,

\* =
B+*0+,3&,1

=
\+

%6

=
!+

%7

=
',

where the coefficients AI, AII, B, ,i , and %i are as in (17). Assume the
hypotheses in Lemma 4.5. Then there exist constants K>0 and C>0 such
that, for =>0 small and for { # [0, {=],

|!({)|�K( |!(0)|+= |'(0)| )+Ke&C{=�= |\(0)|,

|'({)|�Ke (1�=) �{
0 *=

0 (s) ds \ |'(0)|+
|!(0)|

= ++Ke&C{= �= |\(0)|,

and

|\({)|�Ke&C{�= ( |\(0)|+|!(0)|+|'(0)| ).

Proof. From Remark 4.3 and displays (24), and (25), and (26), it suf-
fices to show that

|
{=

0
*=

0 (s) ds�K=.
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Recall that

w= ({)=e (1�=) �{
0 *=

0 (s) ds w=(0)+|
{

0
e (1�=) �{

s *=
0 (t) dt4 } (u= (s), v= (s)) ds

and

|u= ({)| |v= ({)|�Ke&;0 ({=&{)�=e:0{�=�Ke((:0+;0) {&;0{=)�=).

Thus,

|w= ({=)|�e (1�=) �0
{= *=

0 (s) ds |w= (0)|&K=(e:0{=�=+e&(;0&*+) {=�=).

From this and |w= ({=)|=|w= (0)|=2 we have

e (1�=) �0
{= *=

0 (s) ds�2

or

|
{=

0
*=

0(s) ds�K=.

This completes the proof.
We now prove the corresponding C1 exchange lemma (see Fig. 3).

Theorem 4.7. Assume (H1)�(H3), (A1)�(A3), and that N0 & [ |w|=2]
=% <. If M= enters B through the point q0

= # [ |w|=2] which depends on =
smoothly and exits B through the point q1

= =,{=
= (q0

= ) on the face |w|=2 with

FIG. 3. The Second Exchange Lemma.
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{= � {0>0 and :(q1
0)=P0 (|(q0

0)), then M= is C 1 O(=)-close at q1
= to the

manifold

W cs (S0)| P0(|(N0))=[(u, 0, w, y) : y # P0 (|(N0))].

Proof. The strategy for the proof of Theorem 4.4 can be modified for a
proof of this theorem.

We decompose the tangent space of M= at q0
= into the direct sum of the

vector field direction and its orthogonal complement. The evolution of the
former one is nothing but the vector field along the solution. For the latter,
the evolution can be traced by the evaluations of all (k+_&1)-forms.

Along the solution (u= ({), v= ({), w= ({), y= ({)) on M= , let !({), '({), and
\({) be the vectors of the basic types I, II, and III (k+_&1)-forms corre-
sponding to the compliment of the tangent space of M= to the vector field,
respectively (in the case that _=1 there is no '��the type-II (k+_&1)-
forms). Let !0 ({) be the vector of type-I (k+_&1)-forms at ==0 corre-
sponding to the tangent space

T(0, 0, 0, y 0 } {)Wu (S0)| |(N0) } { .

The corresponding '0 and \0 are identically zeros.
The statement of the theorem is then equivalent to the estimate

|\({= |+|!({=)&!0 ({=)|�K=.

To obtain the estimate, we recall the equation that the forms satisfied

=!4 =(tr U+,1) !+=(AI+%I
1) !+=%2'+%3 \,

='* =(tr U+*0+,2) '+=(AII+% II
1 ) '+%4 !+%5\,

=\* =(tr U+B+*0+,3) \+%6 !+%7'.

Again, using the integrating factor (1� |!(0)| ) e&(1�=) �{
0 (tr U+,1), we get

!4 =(AI+% I
1) !+%2 '+

%3

=
\,

'* =
*0+,2&,1

=
'+(AII+%II

1 ) '+
%4

=
!+

%5

=
\,

\* =
B+*0+,3&,1

=
\+

%6

=
!+

%7

=
'. (28)
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Due to the transversality condition (A1) and the normalization by the
integrating factor, we have

|!(0)|=1, |'(0)|�K, and |\(0)|�K

for some constant K. Applying Lemma 4.6 to system (28), we have that, for
{�{= ,

|!({)|�K( |!(0)|+= |'(0)| )+Ke&C{=�= |\(0)|,

|'({)|�Ke (1�=) �{
0 *=

0 (s) ds \ |'(0)|+
|!(0)|

= ++K |\(0)| e&C{=�=,

and

|\({)|�Ke&C{�= ( |\(0)|+|!(0)|+|'(0)| ).

In particular, |\({=)|�K=. It remains to show that |!({=)&!0 ({=)|�K=.
The equation that !0 satisfied is

!4 0 ({)=AI ( y0 } {) !0 ({)

and that of ! is

!4 ({)=(AI ( y= ({))+%I
1) !({)+%2'({)+

%3

=
\({).

As in the proof of Lemma 4.4, we have

|
{

0
|%2 | |'(s)| ds�K |

{*

{*

|'(s)| ds

�K=e&C{*�= \ |'(0)|+
|!(0)|

= ++Ke&C{=�= |\(0)|�K=,

|
{

0
|%I

1| |!(s)| ds�K=( |!(0)|+= |'(0)|+e&C{=�= |\(0)| )�K=,

and

|
{

0

|%3 |
=

|\(s)| ds�K \ |'(0)|+
|!(0)|

=
+|\(0)|+ e&C{=�=�K=.
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Hence,

|!({)&!0 ({)|�|!(0)&!0 (0)|+|
{

0
( |DyAI| | y= (s)& y0 } s|+|% I

1 | ) |!(s)| ds

+|
{

0
|AI| |!(s)&!0 (s)| ds

+|
{

0
|%2 | |'(s)| ds+|

{

0

|%3 |
=

|\(s)| ds

�|!(0)&!0 (0)|+K=+|
{

0
|AI| |!(s)&!0 (s)| ds.

An application of Gronwall's inequality then yields

|!({)&!0 ({)|�K(=+|!(0)&!0 (0)| ).

Note that !(0) is the vector of type-I (k+_&1)-forms of Tq̂ 0
=
Wu (S0)||(N0) .

We have that |!(0)&!0 (0)| is O(=) small and thus |!({)&!0 ({)|�K=. The
proof is complete. K

4.4. The Third Exchange Lemma

Suppose that the singular orbit on S0 followed by M= has endpoints
y0 # S& and y1 # S+ . The last exchange lemma deals with the case that
y1 oP0 ( y0) and the w-component is naturally treated as an unstable one.
The lemma can again be viewed as a generalization of that of [16] and
[30]. The assumptions (A1)�(A3) need to be replaced.

Let 2�_�n+1 and let M= be a (k+_)-dimensional invariant manifold
of system (13) for small = which is smooth in =.

We change the assumptions (A1)�(A3) to the following.

(A1$) M0 intersects W s (S&) transversally at q0
0 # �B.

Remark 4.4. Let us denote that N0=M0 & W s (S&). As a consequence
of assumption (A1$), we now have dim N0=_&1. Since M0 is invariant,
we need _�2.

(A2$) The set |(N0) & B is a (_&2)-dimensional submanifold of S& .

(A3) (0, h( y; 0)) � T(0, y) |(N0) for (0, y) # |(N0).

Remark 4.5. If dim |(N0)=0, or equivalently, _=2, then (A3$) is
automatic. Also, (A3$) requires that dim |(N0)�n&1; that is, _�n+1.

Lemma 4.8. Assume (H1)�(H3) and (A1$)�(A3$). If M= enters B

through the point q0
= which depends on = smoothly and exits B through the
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point q1
= =,{=

= (q0
= ) on the face |u|=2 or |w|=2 with {= � {0>0 and

:(q1
0)oP0 (|(q0

0)), then there exist constants K>0 and C>0 such that, for
2>0 small, =>0 small, and { # [0, {=],

|u= ({)|�Ke&;0 ({=&{)=, |v= ({)|�Ke:0 {�=, |w= ({)|�Ke&C({=&{)�=,

and

| y= ({)& y0 } {|�K(=+| y= (0)& y0 | ).

Proof. The estimates for |u= ({)| and |v= ({)| follow again from the
results of Proposition 3.1 in [16]. For |w= ({)| and | y= ({)& y0 } {|, one can
apply the same proof as that of Lemma 4.2 after reversing the time. K

Next, we prove the corresponding technical lemma.

Lemma 4.9. Consider the linear system

!4 =&
*0+,2&,1

=
!+(AI+%I

1) !+%2'+
%3

=
\,

'* =(AII+%II
1 ) '+

%4

=
!+

%5

=
\,

\* =
B+,3&,2

=
\+

%6

=
!+

%7

=
',

where the coefficients AI, AII, B, ,i , and %i are as in (17). Assume the
hypotheses in Lemma 4.8. Then there exist constants K>0 and C>0 such
that, for =>0 small and for { # [0, {1] where {1 is determined by
�{1

0 *=
0(s) ds=0,

|!({)|�K( |!(0)|+= |'(0)|)+Ke&C{= �= |\(0)|,

|'({)|�Ke (1�=) �{
0 *=

0 (s) ds \ |'(0)|+
|!(0)|

= ++Ke&C{= �= |\(0)| ,

and

|\({)|�Ke&C{�= ( |\(0)|+|!(0)|+|'(0)| );

and, for { # [{1 , {=] and for all small =>0,

|!({)|�Ke&C({&{1)�= ( |!(0)|+= |'(0)|)+Ke&C{= �= |\(0)|,

|'({)|�K \ |'(0)|+
|!(0)|

= ++Ke&C{= �= |\(0)|,
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and

|\({)|�Ke&C{�= \ |\(0)|+
|!(0)|

=
+|'(0)|+ .

Proof. We divide the estimate into two steps. First of all, let {1 be the
slow time such that �{1

0 *=
0(s) ds=0. Using the result from Lemma 4.6, we

have, for { # [0, {1],

|!({)|�K( |!(0)|+= |'(0)| )+Ke&C{=�= |\(0)|,

|'({)|�Ke (1�=) �{
0 *=

0 (s) ds \ |'(0)|+
|!(0)|

= ++Ke&(C{=�=) |\(0)| ,

|\({)|�Ke&C{�= ( |\(0)|+|!(0)|+|'(0)| ). (29)

Next, let 81 ({), 82 ({), and 83 ({) be the principal fundamental matrix
solutions at {={1 of the systems with system matrices

&
*0+,2&,1

=
+AI+%I

1 , AII+%II
1 ,

B+,3&,2

=
,

respectively. Then we have

|81 ({) 8&1
1 (s)|�Ke&(1�=) �{

s *=
0 (t) dt, |82 ({) 8&1

2 (s)|�K,

and

|83 ({) 8&1
3 (s)|�Ke&#0 ({&s)�=,

for some constant K>0, for {>s in [{1 , {=], and #0<min[&:0 , ;0].
By the variation of the constant formula and noting that �{

s *=
0(t) dt�

C({&s) for some C>0 and {�s in [{1 , {=], we have, for { # [{1 , {=],

|!({)|�Ke&(1�=) �{
{1

*=
0 (s) ds |!({1)|

+K |
{

{1

e&(1�=) �{
s *=

0 (t) dt \ |%2 | |'(s)|+
|%3 |

=
|\(s)|+ ds

�Ke&C({&{1)�= |!({1)|+K |
{

{1

e&C({&s)�= \ |%2 | |'(s)|+
|%3 |

=
|\(s)|+ ds,

(30)

|'({)|�K |'({1)|+K |
{

{1
\ |%4 |

=
|!(s)|+

|%5 |
=

|\(s)|+ ds, (31)
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and

|\({)|�Ke&#0 ({&{1)�= |\({1)|

+K |
{

{1

e&#0 ({&s)�= \ |%6 |
=

|!(s)|+
|%7 |

=
|'(s)|+ ds. (32)

Substituting the estimate (31) into (32),

|\({)|�Ke&#0 ({&{1)�= |\({1)|+K |
{

{1

e&#0 ({&s)�= |%6 |
=

|!(s)| ds

+K |
{

{1

e&#0 ({&s)�= |%7 |
=

|'(0)| ds

+K |
{

{1

e&#0 ({&s)�= |%7 |
= |

s

{1

|%4 |
=

|!(t)| dt ds

+K |
{

{1

e&#0 ({&s)�= |%7 |
= |

s

{1

|%5 |
=

|\(t)| dt ds.

Since |%7 |�K |v= |�Ke:0 {�=, one has

|
{

{1

e&#0 ({&s)�= |%7 |
=

ds�
K
= |

{

{1

e&#0 ({&s)�=e:0s�= ds�Ke&#0{�=.

Therefore,

|\({)|�Ke&#0({&{1)�= ( |\({1)|+e&#0{1 �= |'({1)| )

+Ke&#0{�= |
{

{1

e#0 s�= |%6 |
=

|!(s)| ds

+Ke&#0{�= |
{

{1

|%4 |
=

|!(s)| ds

+Ke&#0{�= |
{

{1

|%5 |
=

|\(s)| ds.

An application of Gronwall's inequality together with the estimate that

|%5 |�K |u= |�Ke&;0 ({=&{)�=
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yields

|\({)|�Ke&#0 ({&{1)�= ( |\({1)|+e&#0{1 �= |'({1)| )

+Ke&#0{�= |
{

{1

e#0 s�= |%6 |
=

|!(s)| ds+Ke&#0 {�= |
{

{1

|%4 |
=

|!(s)| ds. (33)

Substituting the estimates (31) and (33) into (30),

|!({)|�Ke&C({&{1)�= |!({1)|+K |
{

{1

e&C({&s)�= |%2 | |'({1)| ds

+K |
{

{1

e&C({&s)�= |%2 | |
s

{1

|%4 |
=

|!(t)| dt ds

+K |
{

{1

e&C({&s)�= |%2 | |
s

{1

|%5 |
=

_e&#0(t&{1)�= ( |\({1)|+e&#0{1 �= |'({1)| ) dt ds

+K |
{

{1

e&C({&s)�= |%2 | |
s

{1

|%5 |
=

e&#0 t�= dt ds |
{

{1

e#0s�= |%6 |
=

|!(s)| ds

+K |
{

{1

e&C({&s)�= |%2 | |
s

{1

|%5 |
=

e&#0 t�= dt ds |
{

{1

|%4 |
=

|!(s)| ds

+K |
{

{1

e&C({&s)�= |%3 |
=

e&#0 (s&{1)�= ( |\({1)|+e&#0 {1 �= |'({1)| ) ds

+K |
{

{1

e&C({&s)�= |%3 |
= |

s

{1

e&#0 (s&t)�= |%6 |
=

|!(t)| dt ds

+K |
{

{1

e&C({&s)�= |%3 |
=

e&#0s�= |
s

{1

|%4 |
=

|!(t)| dt ds.

In view of the choice of {1 and a=0 for | y1 |�$0 , we have, for {�{1 ,

|%2 |�K( |u= | |v= |+|a|+|Dwaw| )�K |u= | |v= |�Ke&#0{=�=,

and thus

|
{

{1

e&C({&s)�= |%2 |�K=e&#0{=�=.
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Therefore,

|!({)|�Ke&C({&{1)�= |!({1)|+Ke&C{=�= ( |'({1)|+|\({1)| )

+K |
{

{1

|%4 |
=

|!(s)| ds+Ke&#0{= �= |
{

{1

e#0s�= |%6 |
=

|!(s)| ds.

Applying Gronwall's inequality and using

|%4 |�K( |u= | |v= |+|w= | )�Ke&C({=&{)�=, |%6 |�K |v= |�Ke:0{�=,

we have

|!({)|�Ke&C({&{1)�= |!({1)|+Ke&C{=�= ( |'({1)|+|\({1)| ). (34)

Substituting (34) into (33),

|\({)|�Ke&#0({&{1)�= |\({1)|+Ke&#0{�= ( |!({1)|+|'({1)| ). (35)

Last, substituting (34) and (35) into (31),

|'({)|�K |'({1)|+Ke&C{=�= ( |!({1)|+|\({1)| ).

Combining this with the estimate (29), we can then conclude the
lemma. K

We are now ready to obtain the corresponding C1 Exchange Lemma
(Fig. 4).

Theorem 4.10. Assume (H1)�(H3) and (A1$)�(A3$). If M= enters B

through the point q0
= which depends on = smoothly and exits B through the

point q1
= =,{=

= (q0
= ) on the face |u|=2 or |w|=2 with {= � {0 and

:(q1
0)oP0 (|(q0

0)), then for some $>0 small independent of =, M= is C1

O(=)-close at q1
= to the manifold

Wcu (S0)| |(N0) } ({0&$, {0+$)=[(u, 0, w, y) : y # |(N0) } ({0&$, {0+$)].

Proof. Let !({), '({), and \({) again denote the vectors of the types I,
II, and III (k+_)-forms corresponding to the tangent space of M= along
the solution (u= ({), v= ({), w= ({), y= ({)). Let '0 ({) denote the vector of the
type-II forms at ==0 corresponding to the tangent space

T(0, 0, 0, y 0 } {) W cu (|(N0) } ({&$, {+$)).

The corresponding !0 and \0 are identical zeros.
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FIG. 4. The Third Exchange Lemma.

Differing from the first two exchange lemmas, the statement of the
theorem is now equivalent to the estimate

|!({=)|+|\({=)|+|'({=)&'0({=)|�K=.

Starting with the differential equation for the (k+_)-forms,

=!4 =(tr U+,1) !+=(AI+%I
1) !+=%2'+%3 \,

='* =(tr U+*0+,2) '+=(AII+% II
1 ) '+%4 !+%5\,

=\* =(tr U+B+*0+,3) \+%6 !+%7',

and using the integrating factor (1� |'(0)| ) e&(1�=) �{
0 (tr U+*0+,2), we get

!4 =&
*0+,2&,1

=
!+(AI+%I

1) !+%2'+
%3

=
\,

'* =(AII+%II
1 ) '+

%4

=
!+

%5

=
\,

\* =
B+,3&,2

=
\+

%6

=
!+

%7

=
'. (36)
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The normalization gives rise to

|!(0)|�K=, |'(0)|=1, and |\(0)|�
K
=

for some constant K. Applying Lemma 4.9 to the system (3.6), we have
that, for 0�{�{= ,

|!({)|�Ke&C{�= |!(0)|+K= |'(0)|+|\(0)| e&C{= �=,

|'({)|�K |'(0)|+e&C{=�= ( |!(0)|+|\(0)| ),

and

|\({)|�Ke&#0{�= ( |\(0)|+|'(0)|+|!(0)| ).

In particular, |!({=)|+|\({=)|�K=. Next, we show that |'({=)&'0 ({=)| is
O(=) small. The equation that '0 satisfies is

'* 0 ({)=AII ( y0 } {) '0 ({),

and that ' satisfies is

'* ({)=(AII ( y= ({))+%II
1 ) '({)+

%4

=
!+

%5

=
\.

Using the equations of ' and '0 and the estimates for %i , !, ', and \,

|'({)&'0 ({)|�|'(0)&'0 (0)|+|
{

0
(|DyAII| | y= (s)& y0 } s|+|%II

1 | ) |'(s)| ds

+K |
{

0
|'(s)&'0 (s)| ds+|

{

0

|%4 |
=

|!(s)| ds+|
{

0

|%5 |
=

|\(s)| ds

�|'(0)&'0 (0)|+K= |'(0)|+Ke&C{0 �= |\(0)|+K |!(0)|

+K |
{

0
|'(s)&'0 (s)| ds

�|'(0)&'0 (0)|+K=+K |
{

0
|'(s)&'0 (s)| ds.

An application of Gronwall's inequality then yields

|'({)&'0 ({)|�K(=+|'(0)&'0 (0)| ).

Note that '(0) is the vector of type-II (k+_)-forms of Tq̂0
=
W cu (|(N0) }

(&$, $)). We have that |'(0)&'0 (0)| is O(=) small. The proof is complete. K
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5. APPLICATION TO BOUNDARY VALUE PROBLEMS

In this section we apply the exchange lemmas to singular boundary value
problems with turning points.

Consider the singularly perturbed system

=u* = f (u, v, {; =),
(37)

v* = g(u, v, {; =)

where (u, v) # Rm_Rn with the boundary conditions

(u(0), v(0)) # D0 and (u(1), v(1)) # D1 (38)

where D0 and D1 are two submanifolds of Rm+n of dimension d0 and d1 ,
respectively.

The singularly perturbed boundary value problem has been one of the
most important problems in singular perturbation theory due to its
fundamental role in applications and its rich structures. A great amount of
effort has been devoted to its study and a fruitful theory has been
developed. The solution has the following general features. Part of the solu-
tion lies in the vicinity of the slow manifold governed by the dynamics of
the slow variables v, which is far from meeting the boundary conditions in
general; the correction around the boundary gives rise to the so-called
boundary layers of the solution, which move rapidly from D0 (D1) toward
the slow manifold in the forward (backward) time direction along the
stable (unstable) manifold of the slow manifold��this is reflected by the
dynamics of the fast variables u; there might be internal (transition) layers
or others. From the classical asymptotic theory, one tries to find the
asymptotic expansions of each part and to match them to form a global
solution. From the geometric or dynamical system point of view, one tries
to find the limiting singular solution formed piecewise by solutions of the
limiting slow and fast systems and examine the possibility of lifting the
singular solution to a true solution for =>0. Put another way, the question
is, under what conditions is the singular solution shadowed by a true solu-
tion? With respect to the latter consideration, the problem has been well
studied in e.g., [10, 21, 30], for the case where the relevant portion of the
slow manifold is normally hyperbolic. In particular, exchange lemmas have
been developed toward and successfully applied to the existence of the solu-
tion and the qualitative structure of its problem. Roughly speaking, in this
case, a reasonable singular solution will be shadowed by a true solution
[21, 30]. This is not true anymore for problems with turning points��the
situation is so complicated that a general theory seems far beyond our
reach (see [1, 4, 17, 18, 23, 31] and the references therein). For the
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problems with the type of turning points discussed in the previous sections,
the answer depends significantly on the position of the limiting solution on
the slow manifold relative to the pairing map as indicated in Theorem 2.2.
We demonstrate the results of existence and non-existence for the extrema
situations below. To start, we will convert the boundary value problem
(37) and (38) to a connecting problem as, for example, in [30].

Regarding the time { as a new variable, say w={, and augmenting the
equation w* =1 to the system (37), the above boundary value problem can
be rephrased as the connecting problem: the existence of a solution
(u({), v({), w({)) # Rm_Rn_R connects D0_[0] to D1_[1]. The con-
necting problems thus obtained are special in that the time spent from
D0_[0] to D1_[1] will always be one. In the follows, we will study the
general connecting problem.

Consider the singularly perturbed system

=x* = f (x, y; =),
(39)

y* = g(x, y; =),

where (x, y) # Rm_Rn with the connecting problem

(x(0), y(0)) # DL and (x({=), y({=)) # DR (40)

for some {=>0 and where DL and DR are two submanifolds of Rm+n of
dimension dL and dR , respectively.

We assume that the hypotheses (H1)�(H3) are satisfied by system (39),
and hence a Fenichel-type coordinate system as in Lemma 3.1 exists with
k unstable, l stable, and one sign changing eigenvalues. As before, we
denote the relative part of the slow manifold by S0 , the pairing map on the
slow manifold by P0 , and B denotes a neighborhood of the slow manifold
where the Fenichel-type coordinate system is valid. In the description, we
use y } { for the flow on the slow manifold at ==0 and ,{

= for the flow with
=>0 small.

Let M L
= and M R

= denote the traces of DL and DR under the flow (39) or
the equivalent fast system (so that M L

0 and M R
0 are also well-defined),

respectively. As in [21, 30], the well-poseness of the boundary value
problem requires that dL+dR+1=m+n. Since dim M L

0 =dL+1=k+_,
conditions (A1)�(A3) imply 1�_�n, and thus k�dL�k+n&1 and
l+1�dR�l+n. Similarly, under conditions (A1$)�(A3$), we have
k+1�dL�k+n and l�dR�l+n&1. As pointed out before, the result
depends on the positions of the singular solution on the slow manifold,
which can be characterized by the pairing map into three cases. Each case
is studied using the corresponding exchange lemma. Thus, Theorems 5.1,
5.3, and 5.5 for the existence and their corollaries for the non-existence
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below are applications of the exchange lemmas and Theorems 4.4, 4.7, and
7.10.

Theorem 5.1. Assume

(a) The hypotheses (H1)�(H3) are satisfied by system (39).

(b) ( f (x, y; 0), 0) � T(x, y) DL and ( f (x, y; 0), 0) � T(x, y) DR.

(c) (A1)�(A3) hold for M L
0 and N L

0 =M L
0 & W cs (S0).

(d) M R
0 intersects Wu (S+) transversally, the set :(N R

0 ) is a
(dim N R

0 &1)-dimensional submanifold of S+ where N R
0 =M R

0 & Wu (S0).

(e) On S0 , the sets :(N R
0 ) } R& and |(N L

0 ) } R+ intersect transversally.
Thus, there exist (0, yL) # |(N L

0 ), (0, yR ) # :(N R
0 ), and {0 such that

yL } {0= yR.

If (0, yR)OP0 (0, yL), then, for =>0 small, there exists a {= which is O(=)
close to {0 such that the connecting problem (39) and (40) has a locally
unique solution.

Proof. Condition (b) simply implies that M L
0 and M R

0 are smooth
manifolds of dL+1 and dR+1 dimensional, respectively. The assumptions
(c) and (d) imply that

dim N L
0 =dim M L

0 +dim W cs (S&)&(m+n)=dL&k+1

and

dim N R
0 =dim M R

0 +dim W u (S+)&(m+n)=dR&l,

and thus dim |(N L
0 )=dL&k, dim :(N R

0 )=dR&l&1. The assumption (e)
implies that

dim[(:(N R
0 ) } R&) & (|(N L

0 ) } R+)]=(dL&k+1)+(dR&l )&n=1.

Thus, locally, the trajectory on the slow manifold from (0, yL) to (0, yR)
is the intersection (:(N R

0 ) } R&) & (|(N L
0 ) } R+). We now have a singular

solution 1 :=1L _ 10 _ 1R to the boundary value problem, where

1L :=[#L (t) : #L (0) # DL, #L (t) � (0, yL) as t � +�];

10 :=[#0 ({) : #0 (0)=(0, yL), #0 ({0)=(0, yR)];

1R :=[#R (t) : #R (t) � (0, yR) as t � &�, #R (0) # DR].

Since #L and #R are fast ``jump'' solutions, we use the fast time t to
parameterize the solutions. The singular solution #0 on the slow manifold
is then naturally parameterized by the slow time {.
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Let qL=(uL, vL, wL, yL)=1L & �B and qR=(uR, vR, wR, yR)=1R

& �B. Since qL # N L
0 and qR # N R

0 , uL=vR=wR=0. If (0, yR)OP0 (0, yL),
then there exists qL

= # M L
= & �B which is O(=) close to qL such that

,{
=(qL

= )=qR
= is O(=) close to qR and { being O(=) close to {0 . The conditions

of the First Exchange Lemma (Theorem 4.4) are satisfied for M L
= entering

B at qL
= and exiting B at qR

= . Applying the theorem, we conclude that, at
qR

= , M L
= is C1 O(=) close to Wu (S0)| (|(N0

L) } ({0&$, {0+$)) for some $>0. Con-
dition (d) and Proposition 1 in [30] then imply that M R

= intersects M L
=

transversally which gives rise to a solution connecting DL to DR. Note that
the time spent by #L and #R are O(=) close to zero in the time scale of {.
Thus, there exists a locally unique solution to the connecting problem with
{= O(=) close to {0 . K

The following non-existence result is probably very surprising compared
to the results in [30], for example.

Corollary 5.2. Assume (a)�(e) in Theorem 5.1. Let 1 be the singular
orbit constructed in the proof of Theorem 5.1. Suppose #L (0)=(0, vL (0),
wL (0), yL) � W s (S0); that is, wL (0){0. If (0, yR)oP0 (0, yL), then there is
no solution for the connecting problem (39) and (40) in a neighborhood of 1;
that is, the singular orbit 1 is not shadowed by any true solution.

Proof. If wL (0){0, then Corollary 2.3 and Lemma 4.2 imply that, for
any q0

= close to #L (0), the solution ,{
=(q

0
= ) with the initial condition q0

=

leaves B either before or near the hypersurface [ y=P0 ( yL)]. Therefore, if
(0, yR)oP0 (0, yL), then M L

= will not intersect 1R and the conclusion of
the corollary follows. K

Theorem 5.3. Assume:

(a) The hypotheses (H1)�(H3) are satisfied by system (39).

(b) ( f (x, y; 0), 0) � T(x, y) DL and ( f (x, y; 0), 0) � T(x, y) DR.

(c) (A1)�(A3) hold for M L
0 , N L

0 =M L
0 & W cs (S0), and N L

0 /%
W s (S0).

(d) M R
0 intersects W cu (S+) transversally,

N R
0 =M R

0 & W cu (S0)/% Wu (S0),

and :(N R
0 ) is a (dim N R

0 &1)-dimensional submanifold of S+ .

(e) On S0 , the sets :(N R
0 "Wu (S0)) and P0 (|(N L

0 "W s (S0))) intersect
transversally. Thus, there exist (0, yL) # |(N L

0 "W s (S0)), (0, yR) # :(N R
0 "

Wu (S0)), {0 , such that yL } {0= yR and P0 (0, yL)=(0, yR).
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Then, for ==% 0 small, there exists {= which is O(=) close to {0 such that the
connecting problem (39) and (40) has a locally unique solution.

Proof. Condition (b) again implies that M L
0 and M R

0 are smooth
manifolds of (dL+1) and (dR+1) dimension, respectively. The assump-
tions (c) and (d) imply that

dim N L
0 =dim M L

0 +dim W cs (S&)&(m+n)=dL&k+1

and

dim N R
0 =dim M R

0 +dim W cu (S+)&(m+n)=dR&l+1,

and thus dim |(N L
0 )=dL&k, dim :(N R

0 )=dR&l. The assumption (e) then
implies that

dim[:(N R
0 ) & P0 (|(N L

0 ))]=(dL&k)+(dR&l )&n=0.

Thus, locally, (0, yL) is the unique point in |(N L
0 ) such that P0 (0, yL) #

:(N R
0 ). In view of Theorem 2.5, there exists a locally unique singular solu-

tion 1 :=1L _ 10 _ 1R , where

1L :=[#L (t) : #L (0) # DL, #L (t) � (0, yL) as t � +�];

10 :=[#0 ({) : #0 (0)=(0, yL), #0 ({0)=(0, yR)];

1R :=[#R (t) : #R (t) � (0, yR) as t � &�, #R (0) # DR].

Let qL=(uL, vL, wL, yL)=1L & �B and qR=(uR, vR, wR, yR)=1R & �B.
Since (0, yL) # |(N L

0 "W s (S0)) and (0, yR) # :(N R
0 "W u (S0)), we have

uL=0, wL=% 0, vR=0, and wR=% 0. Since (0, yR)=P0 (0, yL), Theorem 2.5
implies that there exists qL

= # M L
= & �B which is O(=) close to qL such that

,{ (qL
= )=qR

= is O(=) close to qR
= and { is O(=) close to {0 . An application of

the Second exchange lemma (Theorem 4.7) to M L
= concludes that, at qR

= ,
it is C1 O(=) close to W cs (P0 (|(N L

0 ))). Condition (d) and Proposition 1 in
[30] implies that M R

= intersects M L
= transversally. Since the time spent by

#L and #R are O(=) close to zero in the time scale of {, there exists a locally
unique solution to the connecting problem with {= O(=) close to {0 . K

Similarly, we have the following non-existence result.

Corollary 5.4. Assume (a)�(e) in Theorem 5.3. Let 1 be the singular
orbit constructed in the proof of Theorem 5.3 and let #L (0)=
(0, vL (0), wL (0), yL) be the point as in the construction of 1L . If (0, yR){
P0 (0, yL) but close, then there is no solution for the connecting problem (39)
and (40) in a neighborhood of 1; that is, the singular orbit 1 is not shadowed
by any true solution.
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Proof. Note that it is already assumed that wL (0){0. Corollary 2.3
and Lemma 4.5 then imply that, for any q0

= close to #L (0), the solution
,{

=(q0
= ) with the initial condition q0

= leaves B either before the hypersurface
[ y=P0 ( yL)] along Wu (S0) or near [ y=P0 ( yL)]. Note also that
1R & Wu (S0)=<. Therefore, if (0, yR){P0 (0, yL), then M L

= will not
intersect 1R . This completes the proof. K

Theorem 5.5. Assume

(a) The hypotheses (H1)�(H3) are satisfied by system (39).

(b) ( f (x, y; 0), 0) � T(x, y) DL and ( f (x, y; 0), 0) � T(x, y) DR.

(c) (A1$)�(A3$) hold for M L
0 and N L

0 =M L
0 & W s (S0).

(d) M R
0 intersects W cu (S+) transversally, the set :(N R

0 ) is a
(dim N R

0 &1)-dimensional submanifold of S+ where N R
0 =M R

0 & W cu (S0);

(e) On S0 , the sets :(N R
0 ) } R& and |(N L

0 ) } R+ intersect transversally.
Thus, there exist (0, yL ) # |(N L

0 ), (0, yR ) # :(N R
0 ), and {0 such that

yL } {0= yR.

If (0, yR)oP0 (0, yL), then, for =>0 small, there exists a {= which is O(=)
close to {0 such that the connecting problem (39) and (40) has a locally
unique solution.

Proof. As in the proof of Theorem 5.1, we have a locally unique
singular solution 1 :=1L _ 10 _ 1R to the boundary value problem, where

1L :=[#L (t) : #L (0) # DL, #L (t) � (0, yL) as t � +�];

10 :=[#0 ({) : #0 (0)=(0, yL), #0 ({0)=(0, yR)];

1R :=[#R (t) : #R (t) � (0, yR) as t � &�, #R (0) # DR].

Since #L and #R are fast ``jump'' solutions, we use the fast time t to
parameterize the solutions. The singular solution #0 on the slow manifold
is then naturally parameterized by the slow time {.

Let qL=(uL, vL, wL, yL)=1L & �B and qR=(uR, vR, wR, yR)=1R

& �B. Then uL=wL=vR=0. If (0, yR)oP0 (0, yL), then there exists
qL

= # M L
= & �B which is O(=) close to qL such that ,{ (qL

= )=qR
= is O(=)

close to qR and { is O(=) close to {0 . The conditions of the Third Exchange
Lemma (Theorem 4.10) are satisfied for M L

= entering B at qL
= and exiting

B at qR
= . We then conclude that, at qR

= , M L
= is C1 O(=) close to

Wcu (|(N L
0 ) } ({0&$, {0+$)) for some $>0. Condition (d) and Proposi-

tion 1 in [30] then imply that M R
= intersects M L

= transversally which gives
rise to a solution connecting DL to DR. Note that the time spent by #L and
#R are O(=) close to zero in the time scale of {. Thus, there exists a locally
unique solution to the connecting problem with {= O(=) close to {0 . K

176 WEISHI LIU



The related non-existence result is as follows.

Corollary 5.6. Assume (a)�(e) in Theorem 5.5. Let 1 be the singular
orbit constructed in the proof of Theorem 5.5. Suppose #R (0)=
(uR (0), 0, wR (0), yR) � Wu (S0); that is, wR (0){0. If (0, yR)OP0 (0, yL)
but close, then there is no solution for the connecting problem (39) and (40)
in a neighborhood of 1; that is, the singular orbit 1 is not shadowed by any
true solution.

Proof. Since #L (0)=(0, vL (0), 0, yL), for any q0
= close to #L (0), the

solution ,{
=(q

0
= ) with the initial condition q0

= leaves B either along Wu (S0)
or near [ y=P0 ( yL)]. Note that 1R & Wu (S0)=<. Therefore, if
(0, yR)OP0 (0, yL), then Corollary 2.3 and Lemma 4.8 imply that M L

= will
not intersect 1R . This completes the proof. K

APPENDIX

In this appendix we construct a locally invariant foliation of the center-
unstable W cu

= (S0) (resp., center-stable manifold W cs
= (S0)) over the center

manifold W c
=(S0) for the singular perturbation problem 2. This result is

used in the proof of Lemma 3.1.

Lemma A.1. Assume that the hypotheses (H1)�(H3) are satisfied by
system (2). Then there exists a locally invariant foliation of the center-
unstable manifold W cu

= (S0) (resp. center-stable manifold W cs
= (S0)) over the

center manifold W c
=(S0).

Proof. The idea is to embed the local dynamic into a system of the
same dimension with a normally hyperbolic invariant manifold M such
that locally W c

=(S0) is an open subset of M. The standard normally hyper-
bolic invariant manifold theory [7, 11] implies the result.

For simplicity, we provide the procedure for the case that n=1 and l=0.
In Step 2 of the proof of Lemma 3.1 we show that there exists a local

coordinate system such that system (2) has the form

u$=U(u, w, y; =) u,

w$=*(u, w, y; =) w, (41)

y$==(h( y; =)+a(u, w, y; =) w),

177EXCHANGE LEMMA WITH TURNING POINTS



with R(;j)>;0>*, where ; j are eigenvalues of U(0, 0, y; =) for j=1, ..., k.
Assume that system (41) holds true in

N :=[(u, w, y) : |u|<2, |w|<22, | y|<2]

for some small 2, and the neighborhood of interest is

B :=[(u, w, y) : |u|<2, |w|<2, | y|<1].

Choose a smooth cut-off function /: (&22, 22)_(&2, 2) � [0, 1] so
that

/(w, y)={1, if (w, y) # (&2, 2)_(&1, 1)

0, if |w|>
32
2

or | y|>
3
2

,

and define a new system as

u$=/(w, y) U(u, w, y; =) u+(1&/(w, y)) ;0u,

w$=/(w, y) *(u, w, y; =) w, (42)

y$==/(w, y)(h( y; =)+a(u, w, y; =) w).

Let us denote the vector field of system (42) by F(u, w, y; =). Note that the
plane [u=0] is invariant under system (42) and

F(u, \22, y; =)=F(u, w, \2; =)=(;0u, 0, 0).

We may then identify the point (u, 22, y) with (u, &22, y) and the point
(u, w, 2) with (u, w, &2) to obtain a system on R_T2 where T2 denotes
the two dimensional torus. After this identification, [u=0] becomes an
invariant torus. We now show that, for = small, the invariant torus is
normally hyperbolic.

At ==0, the system (42) reduces to

u$=/(w, y) U(u, w, y; 0) u+(1&/(w, y)) ;0u,

w$=/(w, y) *(u, w, y; 0) w, (43)

y$=0.

From the last equation, we see that the invariant torus is foliated by the
family of invariant circles Sy :=[(0, w, y)] parameterized by y. On each
invariant circle there is at least one equilibrium and all non-equilibrium
solutions are heteroclinic orbits. Thus, to check the normal hyperbolicity of
the invariant torus at ==0, it suffices to do so at equilibria.
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The linearization of F at a point (0, w, y) is

/U+(1&/) ;0 0 0

\ /*uw (/ww+/) *+/*ww /y*w+/*yw+ .

0 0 0

If 2 is small enough, then the real parts of the eigenvalues of
/U+(1&/) ;0 are greater than ;0 . Therefore, it suffices to show that
e :=(/ww+/) *+/*ww<;0 at equilibria. The equilibria are determined by
/(w, y) *(0, w, y; 0) w=0. If /(w, y)=0, then /w(w, y)=0 and hence
e=0<;0 . If *=0, then e=/*ww<2 |*w |2<;0 if 2 is small enough.
Finally, if w=0, we have e=/*<;0 . Therefore, the invariant torus is nor-
mally hyperbolic at ==0. The standard theory implies that the invariant
torus for = small is also normally hyperbolic and thus there exists an
invariant unstable foliation over it. Systems (41) and (42) agree in B, and
hence system (41) has a locally invariant foliation over the center manifold
[u=0, |w|<2, | y|<1]. K
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