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The brain consists of functional units with more-or-less specific information processing capabilities, yet cog-
nitive functions require the co-ordinated activity of these spatially separated units. Magnetoencephalography
(MEG) has the temporal resolution to capture these frequency-dependent interactions, although, due to vol-
ume conduction and field spread, spurious estimates may be obtained when functional connectivity is esti-
mated on the basis of the extra-cranial recordings directly. Connectivity estimates on the basis of
reconstructed sources may similarly be affected by biases introduced by the source reconstruction approach.
Here we propose an analysis framework to reliably determine functional connectivity that is based around
two main ideas: (i) functional connectivity is computed for a set of atlas-based ROIs in anatomical space
that covers almost the entire brain, aiding the interpretation of MEG functional connectivity/network studies,
as well as the comparison with other modalities; (ii) volume conduction and similar bias effects are removed
by using a functional connectivity estimator that is insensitive to these effects, namely the Phase Lag Index
(PLI).
Our analysis approach was applied to eyes-closed resting-state MEG data for thirteen healthy participants.
We first demonstrate that functional connectivity estimates based on phase coherence, even at the source-
level, are biased due to the effects of volume conduction and field spread. In contrast, functional connectivity
estimates based on PLI are not affected by these biases. We then looked at mean PLI, or weighted degree, over
areas and subjects and found significant mean connectivity in three (alpha, beta, gamma) of the five (includ-
ing theta and delta) classical frequency bands tested. These frequency-band dependent patterns of resting-
state functional connectivity were distinctive; with the alpha and beta band connectivity confined to poste-
rior and sensorimotor areas respectively, and with a generally more dispersed pattern for the gamma band.
Generally, these patterns corresponded closely to patterns of relative source power, suggesting that the most
active brain regions are also the ones that are most-densely connected.
Our results reveal for the first time, using an analysis framework that enables the reliable characterisation of
resting-state dynamics in the human brain, how resting-state networks of functionally connected regions
vary in a frequency-dependent manner across the cortex.

© 2011 Elsevier Inc. Open access under CC BY license.
Introduction

The brain consists of billions of interconnected neurons, forming an
extremely complex system (Tononi and Edelman, 1998; Tononi et al.,
1998) in which clusters of neurons are organised as functional units
with more-or-less specific information processing capabilities (e.g.
Born and Bradley, 2005; Grodzinsky, 2000). Yet, cognitive functions re-
quire the coordinated activity of these spatially separated units, where
).

 license.
the oscillatory nature of neuronal activity, and phase relations between
units, may provide a possible mechanism (Fries, 2005; Varela et al.,
2001). Not only has it been shown that rhythmic activity plays an im-
portant role in perception and sensori-motor systems (Arieli et al.,
1996; Forss and Silen, 2001; Hari and Salmelin, 1997; Houweling et
al., 2010; Kenet et al., 2003; Linkenkaer-Hansen et al., 2004; Mima et
al., 2000), as well as in higher cognitive functions (Engel et al., 2001;
Ward, 2003), but it has also been shown that patterns of resting-state
oscillatory activity in patients with neurological disorders differ from
those in healthy subjects, and that these differences correlate with cog-
nitive performance (Uhlhaas and Singer, 2006).

Magnetoencephalography (MEG), with its high temporal resolu-
tion, can be used to characterise the (resting-state) networks formed
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by interacting sources of oscillatory activity (Bassett et al., 2006;
Hyvarinen et al., 2010; Langheim et al., 2006; Liu et al., 2010). However,
in manyMEG studies the required estimation of functional connectiv-
ity is performed at the sensor-level, which impedes comparison with
the rapidly growing literature on resting-state functional connectivity
using functional Magnetic Resonance Imaging (fMRI; van den Heuvel
and Hulshoff Pol, 2010). Another problem is that multiple recording
sites pick up signals from a single source due to both the nature of
the inducedmagnetic flux (see e.g. Domínguez et al., 2007) and volume
conduction, which can lead to erroneous estimates of functional con-
nectivity when these estimates are based on sensor-level measure-
ments. Moreover, the signals originating from spatially separated
brain areas are mixed at the sensor level, which can result in over/un-
derestimation of synchronisation, where the exact effect is dependent
on a complex interplay of modulations in source- and noise-power,
source interactions, as well as relative position and orientation of the
sources (e.g. Grasman et al., 2004; Meinecke et al., 2005; Schoffelen
and Gross, 2009).

These limitations have provoked research into four different direc-
tions: i) using estimates of the expected functional connectivity that is
due to volume conduction/field spread without true interactions, and
subtracting such estimates from the measured functional connectivity
(Nunez et al., 1997), or using such estimates to derive a statistical
threshold for the measured interactions (e.g. Brookes et al., 2011a);
ii) the development of functional connectivity estimators that are in-
sensitive to these confounds of field spread and volume conduction
(Nolte et al., 2004; Stam et al., 2007); iii) development of techniques
such as DCM (Dynamic Causal Modelling; Friston et al., 2011; Moran
et al., 2009) that, given a set of hypotheses, test between different
bio-physically motivated source- or network-models based on their
model evidence; and iv) investigations into the utility of functional
connectivity analysis at the source level. The simplest approach here
is to create a source model to project the (unaveraged) sensor data
into source space (Hoechstetter et al., 2004), although the creation
of such a source montage requires the availability of averaged evoked
data (see Grasman et al., 2004 though). The construction of a source
montage can also be achieved by using a combination of Independent
Component Analysis (ICA) and a multivariate autoregressive (MVAR)
model (Gomez-Herrero et al., 2008; Haufe et al., 2010), or using Prin-
ciple Component Analysis (PCA), ICA or MVAR in combination with an
inverse estimator (Cheung et al., 2010; Mantini et al., 2011; Marzetti
et al., 2008; Nolte et al., 2009). Alternatively, functional networks
can be directly estimated at the source level (Dossevi et al., 2008), al-
though this efficient approach is only applicable when the source ma-
trix is obtained though a distributed linear inversion, and when the
source coupling can be described as a scalar product between the
source signals.

Various modifications of linear estimators have been used to re-
construct the time-series for a large number of locations (de
Pasquale et al., 2010; Ghuman et al., 2011; Harle et al., 2004; Jerbi et
al., 2007; Lin et al., 2004), for a set of cortical patches (e.g. David et
al., 2002, 2003; Gruber et al., 2006; Palva et al., 2010a, 2010b; Supp
et al., 2007), or for a limited set of a-priori defined Regions-of-
Interest (ROIs; e.g. Astolfi et al., 2007; Babiloni et al., 2005; De Vico
Fallani et al., 2007), where the time-series were subsequently used
for the estimation of functional connectivity.

A drawback of the above approaches is that the spatially smooth
estimates of neuronal activity that are obtained contain widespread
correlations between reconstructed source elements, so that esti-
mates of functional connectivity between such sources are likely to
be, as with sensor-level analysis, erroneous (David et al., 2002; Hui
et al., 2010) and/or difficult to interpret.

Here we propose to use a source reconstruction approach that re-
sults in sharper 3-dimensional images of neuronal activity, known as
beamforming, which has recently been used to map functional con-
nectivity across the entire brain (Brookes et al., 2011a; Guggisberg
et al., 2008; Hinkley et al., 2010; Hipp et al., 2011; Kujala et al.,
2006, 2008; Martino et al., 2011; Wibral et al., 2011), or to character-
ise interactions between a few ROIs (Siegel et al., 2008); see also Ding
et al. (2007) and Ioannides et al. (2002) for related approaches. We
use beamforming to estimate time-series for a set of atlas-based
ROIs that cover the brain, where the use of a standard brain-atlas
aids the interpretation of our results, gives a robust platform for
group-level statistics, and enables a straightforward comparison
with results obtained using other modalities. Functional connectivity
between these ROIs is then estimated, and we first demonstrate that
the effects of volume conduction and biases introduced by the beamfor-
mer can be removed by using the Phase Lag Index (PLI) for the estima-
tion of functional connectivity. Applying this approach to resting-state
MEG data in healthy controls reveals clearly distinct frequency-band
dependent patterns of resting-state functional connectivity. Generally,
these patterns corresponded closely to patterns of relative source
power, suggesting that the most active brain regions are also the ones
that are most-densely connected.
Methods

Participants and recording protocol

We used previously analysed MEG data from 13 healthy subjects,
where they formed part of studies on Parkinson's disease for which
approval was obtained from the medical ethics committee of the VU
University Medical Center. In these studies oscillatory power, as
well as functional connectivity and network characteristics at the
sensor level, were estimated and compared between healthy controls
and demented and non-demented patients with Parkinson's disease
(Bosboom et al., 2006, 2009).

All subjects gave written informed consent prior to participating.
MEG data were acquired in the morning, using a 151-channel whole
head MEG system (CTF Systems Inc., Port Coquitlam, Canada), situat-
ed in a magnetically shielded room (Vacuum-schmelze GmbH, Hanau,
Germany). The data were sampled at 312.5 Hz, with a recording pass-
band of 0–125 Hz, and a third-order software gradient was applied
(Vrba and Robinson, 2002). Each session started with an approxi-
mately 5 minutes eyes-closed (EC) resting-state recording, followed
by an approximately 5 minutes eyes-open (EO) recording. We only
analysed the data recorded during the eyes-closed resting-state. Due
to technical problems, 1–3 channels were discarded from the analysis
(3, 3, and 7 datasets contained 148, 149, and 150 channels, respective-
ly). For the construction of the beamformer weights, the eyes-closed
data were band-pass filtered from 0.5 to 48 Hz, and after visual in-
spection, trials containing artefacts were removed. A time-window
of, on average, 264.2 seconds (range: 175–360 s.) was used for the
computation of the data covariance matrix. Broadband data were
used for the estimation of the beamformer weights as this avoids
overestimation of covariance between channels (Barnes and
Hillebrand, 2003).

For each subject, an anatomical MRI of the head was obtained at
1 T (Impact, Siemens, Erlangen, Germany), with an in-plane resolu-
tion of 1 mm and slice thickness of 1.5 mm. Vitamin E capsules
were placed at anatomical landmarks, the pre-auricular points and
the nasion, to guide co-registration with the MEG data. In the MEG
setting, three head position indicator coils were placed at the same fi-
ducial locations, and these coils were activated at the start of each
MEG acquisition. Head position and orientation were computed on
the basis of the magnetic fields produced by these coils. Using these
two corresponding sets of fiducial markers, the MEG and MRI coordi-
nate systems were matched. The co-registered MRI was subsequently
segmented, and the outline of the scalp was used to compute a multi-
sphere head model (Huang et al., 1999) for the calculation of the
lead-fields.



1 The lead field is defined as the MEG sensor signal that is produced by a source of
unitary strength.

Fig. 1. Flow chart of analysis steps. The anatomical MRI is co-registered with the MEG
and subsequently spatially normalised to a template MRI. Voxels in the template MRI
are labelled using the Talairach Daemon Database. Voxels with the same label are de-
fined as a ROI and transformed to the individual's co-registered MRI. The volume con-
ductor model, based on the co-registered MRI, together with the data covariance
created from selected time-frequency windows in the MEG data, is used to compute
beamformer weights for the target locations in these ROIs. The MEG data are then pro-
jected through the beamformer weights in order to create time-series (virtual elec-
trodes) for these voxels. For each frequency band separately, a single time-series is
constructed for each ROI (see Methods) and the functional connectivity between the
different ROIs is estimated by computing the Phase Lag Index (PLI) or Phase Coherence.
Graph theory can subsequently be applied to the resulting adjacency matrix in order to
characterise the functional network formed by the interacting ROIs (see Supplementa-
ry material).
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Analysis

Fig. 1 provides an overview of the analysis framework. The initial
step is to project the MEG sensor signals in a meaningful way to a
set of time-series of neuronal activation in the brain. To this end, we
use a popular beamforming technique, known as Synthetic Aperture
Magnetometry (SAM, Robinson and Vrba, 1999). The details of this
technique are described elsewhere (Robinson and Vrba, 1999, see
also Hillebrand et al. (2005) for a review), but we will describe its
main features below.

Beamformer analysis

The beamformer output at a target location, for a given orientation
of the target source, can be defined as the weighted sum of the output
of all (N) signal channels (van Veen et al., 1997), or mathematically:

V ¼ W�B; ð1Þ

with V the beamformer output (source strength in nAm), W the 1xN
weight vector (units: nAm/T), and B the NxT1 matrix of the magnetic
field (in Tesla) at the sensor locations at all (T1) latencies. V is often
referred to as a virtual electrode, and has the same temporal resolu-
tion as the recorded MEG signals.

The weights determine the spatial filtering characteristics of the
beamformer and are designed to increase the sensitivity to signals
from a location of interest whilst reducing the contribution of signals
from (noise) sources at different locations. The beamformer weights
for a source at a location of interest are completely determined by
the data covariance matrix and the forward solution (lead field) for
the target source (see Mosher et al., 2003; Robinson and Vrba,
1999; van Drongelen et al., 1996; van Veen et al., 1997):

V ¼ Cj L
T C�1

b Β; ð2Þ
with Cj the source current covariance matrix, Cb the data covariance
matrix, L the lead field1 and T the matrix transpose.

Differences between various source reconstruction algorithms
arise from the different assumptions that are made about the source
current covariance matrix (see Hillebrand et al., 2005; Mosher et al.,
2003). In the case of the beamforming approach it is assumed that
all sources are linearly uncorrelated, i.e. Cj is a diagonal matrix, and
that each diagonal element in Cj, corresponding to a location θ, can
be related to the measured data as follows (Mosher et al., 2003)

σ2
θ ¼ LTθ C

�1
b Lθ

� �−1
: ð3Þ

Eq. (3) is the crux of the beamformer algorithm. It is here that the
source covariance Cj is estimated based on the data. Combination of
the above three equations allows for the computation of the beamfor-
mer weights and beamformer output.

So far we assumed that the source orientation is known. SAM per-
forms a search for the orientation that optimises the normalised
beamformer output (Robinson and Vrba, 1999), defined as

Z�2
θ ¼ Pθ

Nθ
¼ WT

θ CbWθ

WT
θ ΣWθ

; ð4Þ

with Σ the sensor noise covariance matrix, Nθ the power of the pro-
jected sensor noise, and Z�θ the pseudo-Z statistic for location and ori-
entation θ.

Alternatively, an eigendecomposition (Sekihara et al., 2004) can
be used to determine the optimum source orientation, or one can
simply compute the beamformer weights for the two tangential ori-
entation components for each source (or all 3 orthogonal components
in the case of electroencephalography (EEG); Sekihara et al., 2001;
van Veen et al., 1997).

The standard approach is to subsequently form a 3-dimensional
image of source activity (see Huang et al. (2004) for review) that
quantifies the (change) in activity for a given time-segment in the
MEG recording. Our approach however is to compute beamformer
weights for those voxels that contained an anatomical label (see
below), and use the complete time-series for all these virtual elec-
trodes for further analysis, notably functional connectivity and net-
work analysis.

Defining ROIs for an individual

Our aim here is to define a set of regions-of-interest (ROIs) that is
consistent across individuals. To this end, we spatially normalised a
subject's anatomical MRI, using SPM99 (Friston et al., 1995), to a tem-
plate MRI. The nonlinear transformation matrix that is necessary to
perform this normalisation was stored.

The Talairach Daemon Database (TCDB), as built in the MEG/
fMRI visualisation package mri3dX (https://cubric.psych.cf.ac.uk/
Documentation/mri3dX), was used to label the voxels in the tem-
plate MRI (Lancaster et al., 1997, 2000). We used the labels in the
database at the level of description of Brodmann areas, and re-
moved deeper structures, resulting in a set of 68 ROIs in template
space (see Appendix A for a list of the labels that were used). The
number of voxels per ROI varies, and is dependent on the chosen
spatial sampling — voxels with side lengths of 5 mm were used in
this study. The inverse of the nonlinear transformation matrix
was applied to these ROIs, to create labelled target voxels in a sub-
ject's MRI for computation of the beamformer weights.

http://www.hindawi.com/journals/ijbi/2010/840416/
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Fig. 2. Mean PLI (upper panel) and mean Phase Coherence (lower panel) for the alpha
band, displayed as a colour-coded map (unthresholded) on a schematic of the parcel-
lated template brain.
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Assigning time-series to a ROI

Once the beamformer weights were estimated, Eq. (1) was used to
reconstruct the time-series for each voxel. These virtual electrode
time-series exhibit a non-uniform projection of sensor noise (the
weights increase with depth, but the sensor level noise remains con-
stant throughout the volume). In order to compensate for this inher-
ent bias, we therefore normalise each beamformer weight by its
vector norm before reconstructing the time-series (Cheyne et al.,
2007).

A ROI in a subject's MRI contains several voxels, all with their own
time-series (virtual electrodes). The direction of each estimated virtual
electrode is arbitrary (a source pointing inwardswith negative amplitude
produces the same external magnetic field as a source pointing outwards
with positive amplitude), hence the estimated time-series for neighbour-
ing virtual electrodes may have opposite polarities, rendering averaging
of time-series across a ROI meaningless.We therefore proceeded to com-
pute the spectrum for each virtual electrode time-series and divided the
spectrum into the 5 classical EEG bands (delta (0.5–4 Hz), theta (4–
8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–48 Hz)). For
each ROI and frequency band separately, we selected the voxelwithmax-
imum power in that frequency band, and used the time-series for this
voxel for further analysis, resulting in a total of 5 sets of 68 time-series
(one for each frequency band). Note that this procedure was carried out
for each subject independently, such that the voxels that were selected
to represent the ROIs were allowed to vary across subjects, mitigating
the effects of co-registration, normalisation, and modelling errors (see
e.g. Beal et al. (2010) for a similar strategy).

Estimating functional connectivity between ROIs

Functional interactions between sources of oscillatory activity can
be captured by quantifying the phase relationship between their
time-series (see Pereda et al. (2005) for a review of coupling mea-
sures). Unfortunately, despite the assumptions underlying beam-
formers, the beamformer reconstructed sources may still show
spurious, field spread and volume conduction related, interactions,
which manifests itself as locking with zero-phase lags. To show
that this is the case, and to demonstrate how this problem can be
solved, we use both Phase Coherence (PC) and PLI to estimate func-
tional connectivity between ROIs.

The Phase Coherence quantifies the phase coupling between two
signals as follows (Mardia, 1972; Mormann et al., 2000):

PC ¼ 〈eiΔφ〉 ¼ 1
S

XS−1

k¼0

eiΔφ tkð Þ
�����

�����; ð5Þ

where ΔΦ is the phase difference between the instantaneous phases
for the two time-series, defined in the interval [0, 2π], tk are discrete
time-steps and S is the number of samples.

Phase Coherence captures consistent phase differences and is, un-
like coherence, not influenced by the amplitude of the signals. Phase
Coherence is maximal when the phase difference has a constant
value, whatever the value of this phase difference is, and is therefore
equally sensitive to both trivial (zero-phase) and true (zero-phase
and nonzero-phase) interactions.

In contrast, the PLI is defined as (Stam et al., 2007):

PLI ¼ 〈sign sin Δφ tkð Þð Þ½ �〉
���

���; ð6Þ

where the phase difference is defined in the interval [−π, π] and b>
denotes the mean value. The PLI is non-zero when there is an asym-
metry in the distribution of the instantaneous phase differences,
and therefore only quantifies non-trivial connections, at the expense
of potentially discarding true interactions with zero-phase lag.
For the computation of the functional connectivity, using software
developed by one of the authors (CS; Brainwave, version 0.8.92;
http://home.kpn.nl/stam7883/brainwave.html), 5 artefact-free data-
segments of 4096 samples were selected from the ROI time-series
after careful visual inspection.

For each ROI we computed the mean PLI and Phase Coherence
with all other areas. This is also known as the weighted degree or
node strength in terms of graph theory (Rubinov and Sporns, 2010),
where individual values reflect the importance of nodes in the net-
work, the mean across ROIs indicates the total ‘wiring-cost’, and the
distribution of degrees is an important marker of network develop-
ment and resilience. We then computed the mean of this quantity
across trials and subjects to get group mean node strength values
per ROI.

Statistics

In order to determine the significance of the empirical groupmean
values, we created 100 sets of null data by phase randomising (whilst
maintaining the power spectra) the ROI time-series. For each realisa-
tion, this gave rise to 68 new ROI time-series per subject, which were
analysed in exactly the same way as the recorded data, giving a mean
PLI value per ROI. Taking the maximum mean-PLI value over ROIs on
each realisation gave a null distribution of PLI corrected for multiple
comparisons across the volume.

Results

Fig. 2 displays the mean functional connectivity for each ROI
with all other ROIs. Note the differences between the maps for PLI
and Phase Coherence, where Phase Coherence shows strongest
functional connectivity for deeper structures, whereas the stron-
gest PLI is found mainly for superficial areas in the occipital and pa-
rietal lobe and the superior temporal gyrus, as well as in the
posterior cingulate.

These differences can be explained by the different sensitivity of
these measures to volume conduction/field spread (in the form of
correlation between beamformer weights). Fig. 3 shows that

http://home.kpn.nl/stam7883/brainwave.html
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Fig. 3. Functional connectivity and relationship with the beamformer weights for the alpha band. a) Mean PLI adjacency matrix. The separation between anatomical groupings
(from left to right: occipital, parietal/central, temporal, frontal) is denoted by a solid line, the separation between left and right hemisphere within each anatomical grouping is
denoted by a dotted line (see Appendix A for details); b) mean Phase Coherence adjacency matrix; c) mean (squared) correlation between beamformer weights for each ROI
(with the diagonal set to zero). Each element in this matrix was computed as follows: for each subject, the square of the correlation between the beamformer weights for a ROI
and another ROI was computed. The mean over subjects of this value was then computed; d) Scatter plot of the (squared) correlation between beamformer weights and the PLI
and (e) Phase Coherence.
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there is a close correspondence between the weight correlations
(Fig. 3c) and the Phase Coherence (Fig. 3b). This is confirmed in
Fig. 3e, where a strong relationship between the weight correla-
tions and Phase Coherence can be seen. This means that it is likely
that any observed Phase Coherence could have been caused by
the beamformer itself. Such a clear relationship between the
mean PLI and the weight correlations is not observable in Fig. 3d.

Fig. 4 displays the mean PLI for the alpha, beta and gamma
bands (the adjacency matrices themselves are given in Supplemen-
tary Fig. 1), as well as the mean relative power for these frequency

image of Fig.�3
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Fig. 4.Mean PLI (left column, thresholded at p=0.05) and mean relative power (right column) for alpha, beta and gamma bands (top to bottom), displayed as a colour-coded map
on a schematic of the parcellated template brain (see Supplementary Fig. 4 for unthresholded results). See Appendix B for a list of the areas with significant mean PLI.
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bands. The mean PLI for the delta and theta bands did not reach sta-
tistical significance (see Supplementary Fig. 2 for the unthresholded
PLI maps and maps of relative power for the delta and theta bands;
Supplementary Fig. 3 shows results for the alpha1 and alpha2
bands).

The most strongly connected, as well as most strongly active, re-
gions in the alpha band were the posterior cingulate, regions in visual
cortex and parietal lobe, as well as in the superior and inferior tempo-
ral lobe.

The connectivity and power maps in the beta band showed a rel-
atively restricted pattern of highly connected and strongly activated
regions in the sensorimotor cortex, extending into the inferior parie-
tal lobe and the dorsolateral prefrontal cortex (for source power).

In the gamma band, the most strongly connected regions were in
the temporal lobe, sensorimotor cortex and the inferior frontal and
parietal lobes. Dominant power was also found in these regions, but
covered more of the frontal lobe and also included the visual cortex,
with notably less power in the parietal lobe and posterior part of
the sensorimotor cortex.

It is clear from Fig. 4 that the patterns for PLI and power are sim-
ilar, but that there are also notable exceptions where regions with
high power do not have corresponding high PLI values, and vice
versa (compare for example the power and PLI values for the occipital
pole and parietal lobe in the gamma band). This is further illustrated
in Fig. 5, where the relationship between PLI and power for the differ-
ent frequency bands is shown. For all frequency bands, except the
gamma band, there is a significant positive linear relationship be-
tween PLI and relative power (for delta, theta, alpha, beta and
gamma bands respectively: F(1,66)=69.98, pb10−11; F(1,66)
=8.99, pb0.01; F(1,66)=194.31, pb10−15; F(1,66)=167.97,
pb10−15; F(1,66)=1.30, p=0.26). However, the PLI values are not
trivially related to the power values, as, for example, the relative
power for the beta band and delta bands do not differ significantly
(two-sample t(134)=−1.56, p=0.12), whereas the mean PLI values
are significantly higher in the delta band than in the beta band (two-
sample t(134)=118.66, pb10−15). Similarly, the PLI for the theta and
alpha bands do not differ significantly (two-sample t(134)=−1.45,
p=0.15), whereas the mean power values are significantly higher in
the alpha band than in the theta band (two-sample t(134)=10.83,
pb10−15).

Discussion and conclusions

We have presented a robust method for assessing significant func-
tional connectivity across a groupof subjects that is insensitive to volume
conduction and statistically well controlled. We first demonstrated that
when using Phase Coherence, functional connectivity estimates, even
at the source-level, are biased due to the effects of volume conduction
and field spread. In contrast, functional connectivity estimates based on
PLI are not affected by these biases. Subsequently, we used the method
to show significantly higher than chance interactions between regions
in three of the five frequency bands studied, revealing distinct
frequency-band dependent patterns of functional connectivity across
the brain.

Alpha band

Strong connectivity was observed in the visual cortex and in the pa-
rietal and temporal lobes, consistent with the findings by Guggisberg
et al. (2008). However,we could notfindanydirect evidence in the exist-
ing literature for the strong resting-state functional connectivity in the
posterior cingulate for the alpha band.

Similarly, the dominant alpha power in the posterior part of the
brain is consistent with the established patterns of eyes-closed
resting-state alpha activity (e.g. Pfurtscheller, 1992; Rosanova et al.,
2009). Additionally, several studies, using different methodologies

image of Fig.�4


Fig. 5. Mean PLI versus mean relative power for the different frequency bands. Note
that there is a significant positive linear relationship between PLI and relative power,
for all frequency bands, except the gamma band. Also note that, for each frequency
band separately, the mean PLI varies over only a limited range, and that the variance
in PLI that can be explained by source power is relatively small (R2=51%, 12%, 75%,
72% and 2% for the delta, theta, alpha, beta and gamma bands respectively).
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andmodalities, have reported activations similar to ours for the visual
cortex, parietal and temporal lobe (Congedo et al., 2010; Srinivasan et
al., 2006) as well as the posterior cingulate (Congedo et al., 2010).

Beta band

We found strong resting-state beta-band functional connectivity
in the sensorimotor cortex, in agreement with a previous MEG
resting-state functional connectivity study (Brookes et al., 2011a).
Moreover, the large body of literature on beta-band synchrony in sen-
sorimotor systems involved in co-ordinated movement and posture
(e.g. Farmer, 1998), suggests that these systems are also connected
in this frequency band during rest. Further evidence for this hypoth-
esis comes from single-pulse TMS studies that have shown that TMS
synchronises the phase of beta-oscillations (van der Werf and Paus,
2006; van der Werf et al., 2006), and that stimulating one region of
the sensorimotor system can induce activity in another part of this
system (e.g. Caramia et al., 2000).

Our finding of strong resting-state beta power in sensori-motor cor-
tex and inferior parietal lobe is consistent with studies that have
revealed event-related beta-power reductions in these regions follow-
ing somatosensory stimulation or movement (e.g. Gaetz and Cheyne,
2006; Jurkiewicz et al., 2006; Maratos et al., 2007; Taniguchi et al.,
2000), or that showed that the beta-band is the natural frequency of
these circuits (Rosanova et al., 2009). Our observed beta band power
in the dorsolateral prefrontal cortex can tentatively be related to the
reorienting of attention (Altamura et al., 2010).

Gamma band

We had naively expected that gamma band PLI (like alpha band
PLI) would predominate in the visual cortex. We found little litera-
ture to corroborate the resting-state functional connectivity in
the temporal lobe, sensorimotor cortex and the inferior frontal and
parietal lobe for the gamma band. Recent invasive electrode
(Griffiths et al., 2010) and non-invasive studies on pitch perception
(Sedley et al., 2012) have pointed to a functional role for the
gamma band in the region of human auditory cortex. It would
make sense that similar functional units are also to some degree
engaged during the resting-state.

In terms of source power however, the observed dominant power
in the frontal and temporal lobe is in agreement with previous EEG
findings (Chen et al., 2008). Our observations are also in agreement
with reports of both resting-state measures of gamma power in the
primate (Leopold and Logothetis, 2003) and event-related changes
in gamma power in visual cortex following visual stimulation (e.g.
Adjamian et al., 2004; Hall et al., 2005b, 2005a; Hoogenboom et al.,
2006).

Relationship between source power and functional connectivity
We found a positive relationship between the patterns of source

power and functional connectivity, using a connectivity measure
that is not sensitive to power or volume conduction. The fact that
we found this relationship for all frequency bands (except the
gamma band) suggests that there may be a general mechanism that
explains this relationship. The simplest explanation is that a positive
relationship between source power and connectivity was introduced
by our analysis approach, since the functional connectivity measure
that we used relies on accurate estimation of phase differences, and
therefore on a high-enough SNR. Consequently, functional connectiv-
ity between regions with low source power may be missed or under-
estimated, introducing a bias towards a positive correlation between
power and connectivity. However, we did find regions with strong
connections despite low source power (e.g. parietal lobe for the
gamma band, Fig. 4), hence it is unlikely that the positive relationship
between source power and connectivity can be fully explained by
such a methodological bias. One possible physiological mechanism
that could provide an alternative explanation has been identified
through modelling studies (Chawla et al., 1999, 2000), which have
shown that increased mean spiking activity within two connected
neuronal populations leads to increased intra- and interregional
phase locking, or in other words, to simultaneous increases in
power and functional connectivity. This coupling between functional
connectivity and mean activity was mainly achieved through a reduc-
tion in meanmembrane integration times as activity increased, which
then introduced a bias towards synchronous firing (Chawla et al.,
1999). Recent modelling work has also shown an amplitude depen-
dency of interregional phase locking, albeit that this dependency
was more complex (Daffertshofer and van Wijk, 2011).

Methodological considerations

General analysis framework
A frequent criticism of sensor-level connectivity/network analysis

is that the results are biased by the effects of volume conduction/field
spread (Schoffelen and Gross, 2009). Our results show that this prob-
lem is not completely solved by going to source-space (Fig. 3), as it
reveals itself, in our case, in the form of correlation between beamfor-
mer weights. As a solution, we used the PLI, which quantifies func-
tional interactions that are not caused by volume conduction or
common sources. The main reason for going to the source-level, in
combination with an atlas-based analysis approach, is therefore that
it provides a general framework that allows for a direction anatomical
interpretation of MEG data, as well as a direct comparison with
(functional) connectivity and network studies based on anatomical
MRI (Diffusion Tensor Imaging, Voxel-based Morphometry) and func-
tional MRI (e.g. Gong et al., 2009; van den Heuvel and Hulshoff Pol,
2010). We envisage that the understanding of resting-state networks
will be much enhanced by such a combination of different modalities.
Similarly, our approach enables the integration and direct comparison
of data recorded with different MEG systems. Although we have
focussed here on the eyes-closed resting-state, our approach can also
be applied to compare patterns of oscillatory activity and functional
networks for different cognitive states.
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One can consider the choice of using a set of atlas-based ROIs as a
compromise between all-to-all connectivity estimates (Schoffelen
and Gross, 2011) and methods based on a-priori selection of a small
number of regions (Astolfi et al., 2007; Friston et al., 2011; Siegel et
al., 2008). The use of atlas-based ROIs does certainly compromise
the potential spatial resolution, but could be the most efficient level
of description given the inter-individual variability. Similarly, the
use of predefined anatomical regions does mean that one samples
from all sources rather than just those with highest source power (al-
though within each ROI we did select the voxel with highest source
power), thereby avoiding the danger that weakly activated, but
strongly interacting, sources are missed (compare for example the
connectivity and power in the parietal lobe for the gamma band
(Fig. 4)).

Choice of source reconstruction approach
We chose to reconstruct the resting-state sources, and their time-

series, using a beamforming approach, as this approach does not suf-
fer from the problems associated with linear inverse solutions (wide-
spread correlations between reconstructed source elements and
problematic interpretation of reconstructed images of source power).

A potential limitation of the beamformer-based approach is that
the beamformer weights are based on source power and interacting
sources with small amplitude could therefore be missed (but see
Fig. 4, gamma band power and connectivity). Moreover, the beamfor-
mer weights are designed so that the sensitivity to signals from a lo-
cation of interest is increased, whilst reducing the contribution of
signals from (noise) sources at different locations. As a consequence
the contribution from sources that are perfectly linearly correlated
is cancelled or underestimated (which might in particular be prob-
lematic for weak long-distance interactions). At first sight, this prop-
erty of beamforming seems therefore at odds with our aim to
estimate interactions between sources. However, there are several
reasons why beamforming can still be applied in studies on functional
connectivity: i) it is important to stress that only (zero-lag) linearly
correlated sources are problematic for the beamformer. Non-linear
measures of functional connectivity should therefore be less affected;
ii) even for linearly correlated sources, there is a remarkable tolerance
to deviations from the uncorrelatedness-assumption, such that
source interdependencies can be accurately reconstructed even
when these sources are correlated for 30–40% of the analysis time-
window (Hadjipapas et al., 2005); iii) anatomical and electrophysio-
logical data suggest that the uncorrelatedness-assumption is plausible
(Hillebrand and Barnes, 2005); and iv) modified beamformer ap-
proaches are available to deal with those rare cases where sources
with strong linear interactions are present (Brookes et al., 2007;
Dalal et al., 2006; Diwakar et al., 2011; Hui et al., 2010; Quraan and
Cheyne, 2010). In addition, the PLI and beamformer blindspots sit
comfortably together — the beamformer will potentially mis-localise
sources with zero-lag correlation but by using the PLI we ignore
these effects.

Other methods, such as minimum norm based approaches, have
no such constraints on source correlation. However, this flexibility
comes at the price of poorer noise rejection capability. The work of
Ghuman et al. highlights the problems that occur when combining a
minimum norm approach with a phase-locking (rather than phase-
lagging) approach, in that one has to rely on the subtraction of
empty room data in order to try to remove the large number of spu-
rious interactions (Ghuman et al., 2011). A particular worry here is
that minimum norm based source reconstruction approaches inher-
ently model all the data and therefore project artefacts (such as heart-
beat or from external noise sources) into the source space. In contrast,
beamforming approaches only localise those components in the data
that match the lead field for a source at a particular location, giving
beamformers the ability to reject artefacts (e.g. Adjamian et al.,
2009). Importantly, these projected artefacts lead to further spurious
connectivity estimates when using methods that are sensitive to
zero-phase interactions (i.e. methods based on phase-locking, rather
than PLI).

Beamformer implementations exist that use the matrix of connec-
tions (Gross et al., 2001) or higher order statistics (Huang et al.,
2004), rather than the data covariance matrix, for the computation
of the beamformer weights (Eq. (2)). One could also consider the di-
rect replacement of the data covariance matrix by the PLI adjacency
matrix when computing the beamformer weights, thereby avoiding
problems related to volume conduction and zero-lag phase relations
between sources. This may be problematic though, since the PLI is in-
dependent of signal amplitude. However, further research could show
whether the use of the imaginary coherence, which also minimises
the influence of volume conduction, proves to be more fruitful in
this type of approach.

Selection of ROIs
We chose to parcellate the source space on the basis of the Talair-

ach Daemon Database, although alternative atlases are available (e.g.
Collins et al., 1995; Tzourio-Mazoyer et al., 2002). Instead, one could
also use a parcellation-scheme that is based on the source-sensor ge-
ometry in order to obtain a set of maximally independent patches
(Palva et al., 2010a), or perform parcellation in the native MRIs
(Seibert and Brewer, 2011). This latter option would in particular be
preferably for patients who's MRI match poorly to a template MRI,
for example due to atrophy. In addition, it remains an open question
how best to deal with ROIs of unequal size. One could argue that all
ROIs should contain an equal number of voxels so that estimates of
interdependencies are not affected by differences in ROI size. In con-
trast, perhaps the size of a ROI should reflect the variations in sensi-
tivity of MEG to neuronal activity in different regions of the brain
(Hillebrand and Barnes, 2002). Overall, these disadvantages of using
a standard brain-atlas are outweighed by the important advantage
that its use enables a more direct comparison between data from dif-
ferent modalities (Plis et al., 2011).

Beamformer weight estimation
Here, we used the beamformer formulation for point sources, i.e.

the lead fields for equivalent current dipoles were used for the weight
computations. In order to take into account the spatial extent of the
ROIs for which representative time-series are estimated, one could
use the lead fields for spatially extended sources (Hillebrand and
Barnes, 2011), use a set of basis functions (Limpiti et al., 2004,
2006), or use Singular Value Decomposition (SVD) to define a
lower-dimensional representation for each ROI (Gross and
Ioannides, 1999). Similarly, a combination of Signal Space Separation
(SSS) and beamforming allows for the estimation of time-series for
pre-defined spherical ROIs (Ozkurt et al., 2009), although with this
approach one would lose the advantages of using a standard brain
atlas. Instead, the direct replacement of the SAM beamformer by the
recently developed SSS-beamformer (Vrba et al., 2010) would fit
more naturally in our proposed analysis framework.

Recently, Hui et al. (2010) have proposed a nulling-beamformer,
which removes potential cross-talk between ROIs by incorporating
additional (nulling-) constraints for these ROIs into the beamfor-
mer design. It is not clear though how the reduction in the degrees
of freedom due to the use of many ROIs in a standard atlas (i.e.
many nulling-constraints would be needed) would affect both the
ability to reject noise and the accuracy of the reconstructed time-
series.

We used a multi-sphere head model for the computation of the lead
fields, whichprovides an accurate approximation of the volume conduc-
tor for MEG (Huang et al., 1999), although more complex numerical
models may provide increased accuracy in certain situations
(Lalancette et al., 2011). Inaccuracies in the volume conductor model
may lead to underestimation of source power (Hillebrand and Barnes,
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2003, 2005). However, given that PLI is independent of amplitude, it is
unlikely that connectivity biases were introduced, even if there were re-
gions for which source power was underestimated.

The length of the data covariance window that was used for the
weight computations was determined by the amount of data that
was available from each recording session, the duration of which
was set at what was common practice for a resting-state MEG session
at the time of recording (2003/2004). Simulation studies have shown
that the required number of samples for beamforming depends,
among other factors, on the frequency-band of interest, sampling
rate and source power (Brookes et al., 2008). The results by Brookes
et al. suggest that even for our worst case scenario (small band
width of 3.5 Hz for the delta band and smallest co-variance window
of 175 s) the errors in the estimation of the data covariance, and
therefore in source power estimates, were minimal (less than 10% un-
derestimation in source power).

It is feasible to apply noise-regularisation during the compu-
tation of the beamformer weights (not used in this study),
which would lead to increased signal-to-noise ratio (SNR) for
the estimated time-series, and would also mitigate against the
effects of using a limited set of (atlas-based) voxels in template
space (activation could be missed due to co-registration and nor-
malisation errors — see e.g. Beal et al. (2010) for a similar strate-
gy). However, regularisation comes at the expense of a decreased
ability to distinguish spatially separate sources (Gross and
Ioannides, 1999). The optimal trade-off between this temporal
and spatial accuracy for studies that aim to compute the topogra-
phy and topology of functional networks, has yet to be deter-
mined for empirical data.

Defining representative time-series for a ROI
To deal with the issue of arbitrary sign for the orientation of the

source at each voxel, which makes straightforward averaging of
source waveforms across a ROI impossible, we selected the voxel
with maximum source power within a ROI. It has been shown previ-
ously (Barnes et al., 2004) that the time-series estimated at local
maxima best describe the underlying source activity. For datasets
with large artefacts, these artefacts could leak into the reconstructed
time-series and potentially bias the selection of the voxel with maxi-
mum power. Alternative approaches include: i) performing a check
on (and adjustment of) the polarity of the time-series of neighbouring
voxels before averaging time-series across a ROI. This assumes that the
source orientation varies smoothly when moving through the source
space; ii) using SVD to find the eigenvectors (time-series) that best rep-
resent the time-series of the ROI (see e.g. Supp et al., 2007); and iii)
using the time-series that most strongly correlates with the time-
series for the other voxels in the ROI.

A consequence of selecting the voxels with maximum power to
represent the ROIs is that, particularly when source activation spreads
over multiple ROIs, the peak voxels for neighbouring ROIs can be
close together (Supplementary Fig. 5), i.e. such voxels share (almost)
the same signal. For such cases, the source reconstruction approach
could not unambiguously determine whether the activity is coming
from one or the other ROI (or both). Importantly, PLI is insensitive
to the spurious zero-lag interactions that could exist between voxels
that are close together, hence the voxel selection will not lead to
overestimates of (local) connectivity.

Alternatively, one could, for each voxel, extract the power mod-
ulations of the time-series using the Hilbert transform (Byron and
Fuller, 1992) and average these envelopes across a ROI. This ap-
proach has already demonstrated interesting relationships between
functional networks constructed on the basis of fluctuations in MEG
band-limited power and those based on low-frequency modulations in
BOLD fMRI time-series (Liu et al., 2010). A limitation of this approach is
that differences in ROI size might result in biases due to differences in
SNR.
Connectivity estimation
In this work we contrasted PLI with Phase Coherence as mea-

sures of functional connectivity between ROIs. As expected, the
Phase Coherence suffers from spurious correlations between ROIs
due to correlations between their beamformer weights (Fig. 3).
PLI on the other hand is a conservative measure that is insensitive
to such spurious interactions, albeit at the expense that true zero-
lag correlations are also missed. Zero-lag correlations are most-
likely to be short-range (e.g. Gray et al., 1989), but see (Rodriguez
et al., 1999; Roelfsema et al., 1997; Tognoli and Kelso, 2009;
Vicente et al., 2008), and functional networks constructed on the
basis of PLI could therefore have a topology for which the clustering
and/or modularity are underestimated. Note that this is a general
issue for all MEG/EEG connectivity studies, and not a problem that
is specific for the proposed analysis framework. In fact, when im-
proved connectivity estimators become available, then they can
easily be incorporated in our analysis framework. Vinck et al.
(2011) have recently described a promising modification of PLI with
reduced underestimation of connectivity between sources with small-
lag interactions, as well as a reduced estimator bias, although this
comes at the expense of introducing an arbitrary bias favouring large
phase differences and mixing of the estimation of consistency of phase
differences with the estimation of the magnitude of the phase difference.
An alternative approach that would avoid these issues, and at the same
time reduce the effects of noise on PLI-based connectivity estimates (par-
ticularly when interactions occur with almost zero-phase lag) would be
to ignore phase differences within a small window around zero and
around±π. However, although the use of such an offset could potentially
be useful when considering small numbers of trials, noise-related counts
of positive and negative phase lags (regardless of magnitude) should not
bias the statistics.

We should note that the time window for the connectivity anal-
ysis was fixed here at 13.1 s, and that we analysed 5 of such
artefact-free data-segments. Clearly, the choice of time window de-
termines not only the expected period of stationarity of the interac-
tions, but also the bandwidth over which interactions can occur.
Further investigations may reveal whether different forms of inter-
actions are highlighted for different choices of time-frequency pa-
rameters. Indeed, empirical observations have revealed that
relatively short epochs (~10 s) are quasi-stationary, and that such
short epochs can already be representative of a subject's cognitive
fingerprint (see Schomer and Lopes da Silva, 2010). Moreover, the
work by Honey et al. (2007) has shown that functional networks
at these time-scales are stable yet dynamic (on longer time-scales
the functional networks resemble the underlying (static) anatomi-
cal network, whereas on shorter timescales the functional net-
works are highly variable). Additionally, it has been shown that
using 5 epochs of 10 s resting-state data results in fairly good to
good levels of test–retest reliabilities, depending on the frequency
band and metrics analysed (Jin et al., 2011). It should be noted
that Lin et al. analysed magnetometer data at the sensor level and
computed complex network metrics, whereas in our study third-
order gradiometer data was analysed using a beamformer ap-
proach, both resulting in improved SNR, and that we used simple
metrics to characterise the functional networks; these factors all
contribute to an increased stability of the estimated resting-state
network properties (Deuker et al., 2009; Jin et al., 2011). Finally,
using the same number of epochs as we routinely use in our clinical
studies, which has proven to give stable estimates of resting-state
activity/network parameters (e.g. Douw et al., 2011), renders our
developed methodology and the results from the current study di-
rectly relevant to our clinical work.

We looked at the average overall connectivity for a ROI, not, as is
typical in fMRI, specifically at connections between certain ROIs. For
example, the average connectivity for a ROI could be relatively low,
but the ROI could still have strong connections with (only) some
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ROIs in, let's say, the default mode network. A more in depth com-
parison with the fMRI literature would be an interesting topic for fu-
ture research. Indeed, recent work (Brookes et al., 2011b) has
shown the correspondence between beamformer estimated power
envelope correlations and fMRI defined resting-state networks. It
will be interesting to see the make-up of the fMRI defined
networks in terms of the relative contributions of electrical
interactions over dimensions of power, phase and frequency.
Statistics
For the creation of the phase-randomised surrogates we did not

take into account any jumps at the boundaries, which could have
introduced high-frequency artefacts in our surrogate data (Kantz
and Schreiber, 1997). However, any biases introduced in our statistics
will have been minimal, as we subsequently filtered the surrogate
data to relatively low frequencies (maximal 48 Hz for the gamma
band).

We have introduced a general MEG analysis framework for the
reconstruction of frequency-dependent profiles of source power
and functional connectivity, which is robust to artefactual connec-
tivity estimates caused by volume conduction, due to the use of
the PLI; robust to artefactual connectivity estimates caused by
physiological (e.g. heartbeat) and environmental (e.g. power-line)
noise, due to the use of the beamformer approach; robust to co-
registration errors, due to the use of unconstrained source
List of the Brodmann areas, and the labels, that were used. L denotes left hemisphere, R deno

frontal (42, 62, 66, 68, 4, 56, 54, 52, 6, 58, 26, 32, 24, 34).

Index ROI label

1 BA 1: primary somatosensory cortex (L)
2 BA 1: primary somatosensory cortex (R)
3 BA 10: anterior prefrontal cortex (L)
4 BA 10: Anterior prefrontal cortex (R)
5 BA 11: orbitofrontal cortex (L)
6 BA 11: orbitofrontal cortex (R)
7 BA 17: primary visual cortex (L)
8 BA 17: primary visual cortex (R)
9 BA 18: secondary visual cortex (L)
10 BA 18: secondary visual cortex (R)
11 BA 19: associative visual cortex (L)
12 BA 19: associative visual cortex (R)
13 BA 2: primary somatosensory cortex (L)
14 BA 2: primary somatosensory cortex (R)
15 BA 20: inferior temporal gyrus (L)
16 BA 20: inferior temporal gyrus (R)
17 BA 21: middle temporal gyrus (L)
18 BA 21: middle temporal gyrus (R)
19 BA 22: superior temporal gyrus (L)
20 BA 22: superior temporal gyrus (R)
21 BA 23: ventral posterior cingulate (L)
22 BA 23: ventral posterior cingulate (R)
23 BA 24: ventral anterior cingulate (L)
24 BA 24: ventral anterior cingulate (R)
25 BA 25: ventromedial prefrontal cortex (L)
26 BA 25: ventromedial prefrontal cortex (R)
27 BA 3: primary somatosensory cortex (L)
28 BA 3: primary somatosensory cortex (R)
29 BA 31: dorsal posterior cingulate cortex (L)
30 BA 31: dorsal posterior cingulate cortex (R)
31 BA 32: dorsal anterior cingulate cortex (L)
32 BA 32: dorsal anterior cingulate cortex (R)
33 BA 33: anterior cingulate cortex (L)
34 BA 33: anterior cingulate cortex (R)
orientation at each voxel; and robust to modelling errors (e.g. intro-
duced by co-registration errors or by ignoring source extent), due
to the use of coarse spatial sampling (defined by the ROIs). Finally,
the results are based on non-parametric statistics with few under-
lying assumptions.

The analysis framework contains two important elements: i) ac-
tivity is reconstructed for an atlas-based set of ROIs in order to facil-
itate interpretation and comparison with results obtained with
other modalities; and ii) effects of volume conduction/field spread
on estimated interactions between ROIs are removed using PLI, a
measure that is insensitive to these effects. Using this framework
we have revealed distinct frequency-dependent patterns of source
power and source interactions. We envisage that this approach
will be used to further elucidate the patterns of resting-state activ-
ity in health and disease (Fox and Greicius, 2010; Guggisberg et al.,
2008; Martino et al., 2011; Ortega et al., 2008).

Supplementary materials related to this article can be found online
at doi:10.1016/j.neuroimage.2011.11.005.
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Appendix A
tes right hemisphere. For the display of the adjacency matrices, the following groupings
Appendix B
were defined based on the indices in this table: left occipital (7, 9, 11), right occipital (8, 10, 12), left parietal/central (1, 13, 27, 59, 63, 39, 43, 49, 29, 21), right parietal/central (2, 14,
28, 60, 64, 40, 44, 50, 30, 22), left temporal (45, 47, 19, 17, 15, 35, 37), right temporal (46, 48, 20, 18, 16, 36, 38), left frontal (41, 61, 65, 67, 3, 55, 53, 51, 5, 57, 25, 31, 23, 33), right
Index ROI label

35 BA 37: fusiform gyrus (L)
36 BA 37: fusiform gyrus (R)
37 BA 38: temporopolar area (L)
38 BA 38: temporopolar area (R)
39 BA 39: angular gyrus (L)
40 BA 39: angular gyrus (R)
41 BA 4: primary motor cortex (L)
42 BA 4: primary motor cortex (R)
43 BA 40: supramarginal gyrus (L)
44 BA 40: supramarginal gyrus (R)
45 BA 41: primary and auditory association cortex (L)
46 BA 41: primary and auditory association cortex (R)
47 BA 42: primary and auditory association cortex (L)
48 BA 42: primary and auditory association cortex (R)
49 BA 43: primary gustatory cortex (L)
50 BA 43: primary gustatory cortex (R)
51 BA 44: pars opercularis (L)
52 BA 44: pars opercularis (R)
53 BA 45: pars triangularis (L)
54 BA 45: pars triangularis (R)
55 BA 46: dorsolateral prefrontal cortex (L)
56 BA 46: dorsolateral prefrontal cortex (R)
57 BA 47: inferior prefrontal gyrus (L)
58 BA 47: inferior prefrontal gyrus(R)
59 BA 5: somatosensory association cortex (L)
60 BA 5: somatosensory association cortex (R)
61 BA 6: premotor cortex and supplementary motor area (L)
62 BA 6: premotor cortex and supplementary motor area (R)
63 BA 7: somatosensory association cortex (L)
64 BA 7: somatosensory association cortex (R)
65 BA 8: frontal cortex including frontal eye fields (L)
66 BA 8: frontal cortex including frontal eye fields (R)
67 BA 9: dorsolateral prefrontal cortex (L)
68 BA 9: dorsolateral prefrontal cortex (R)



Ranked list of the Brodmann areas that had significant (pb0.05) mean PLI with all other ROIs. BA denotes Brodmann area, L denotes left hemisphere, R denotes right hemisphere.

Alpha Beta Gamma

BA 31: dorsal posterior cingulate (R) BA 4: primary motor (L) BA 21: middle temporal gyrus (R)
BA 19: associative visual (R) BA 40: supramarginal gyrus (L) BA 3: primary somatosensory (R)
BA 23: ventral posterior cingulate (L) BA 3: primary somatosensory (L) BA 45: pars triangularis (R)
BA 23: ventral posterior cingulate (R) BA 1: primary somatosensory (L) BA 41: primary auditory (R)
BA 39: angular gyrus (R) BA 4: primary motor (R) BA 43: gustatory cortex (R)
BA 22: superior temporal gyrus (R) BA 1: primary somatosensory (R) BA 44: pars opercularis (R)
BA 18: secondary visual (R) BA 6: secondary motor (R) BA 2: primary somatosensory (R)
BA 17: primary visual (R) BA 2: primary somatosensory (L) BA 40: supramarginal gyrus (R)
BA 37: fusiform gyrus (R) BA 3: primary somatosensory (R) BA 4: primary motor (R)
BA 19: associative visual (L) BA 6: secondary motor (L) BA 42: primary auditory (R)
BA 7: somatosensory association (R) BA 2: primary somatosensory (R) BA 38: temporopolar area (R)
BA 37: fusiform gyrus (L) BA 40: supramarginal gyrus (R) BA 2: primary somatosensory (L)
BA 7: somatosensory association (L) BA 5: somatosensory association (L) BA 1: primary somatosensory (R)
BA 17: primary visual (L) BA 31: dorsal posterior cingulate (L) BA 6: secondary motor (R)
BA 18: secondary visual (L) BA 20: inferior temporal gyrus (R)
BA 31: dorsal posterior cingulate (L) BA 3: primary somatosensory (L)

BA 9: dorsolateral prefrontal (L)
BA 22: superior temporal gyrus (R)
BA 1: primary somatosensory (L)
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