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KEYWORDS Abstract In this paper, a fractional model for the computation of temperature and heat flux

distribution in a semi-infinite solid is discussed which is subjected to spatially decomposing, time-
dependent laser source. The apt dimensionless parameters are identified and the reduced tempera-
ture and heat flux as a function of these parameters are presented in a numerical form. Some special
cases of practical interest are also discussed. The solution is derived by the application of the
Laplace transform, the Fourier sine transform and their derivatives. Also, we developed an alterna-
tive solution of it by using the Sumudu transform, the Fourier transform and their derivatives.
These results are received in compact and graceful forms in terms of the generalized Mittag-
Leffler function, which are suitable for numerical computation.
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1. Introduction tion [2]. Automatic control is also a field in which many
applications of fractional differentiations have been antici-
pated. Recently, it is demonstrated that the real state of a
fractional order system is not exactly observable [3]. However,
the authors have also have demonstrated that the pseudo state

vector of the pseudo state space description can be estimated

In the modeling of many physical and chemical processes and
engineering systems fractional differentiation has been widely
used. The instances are electrochemistry and electromagnetic
waves, diffusion waves, fractal electrical networks, electrical

machines, nanotechnology, viscoelastic supplies and systems,
quantum evolution of complex systems [1], and heat conduc-
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using a Luenberger like observer. As fractional order deriva-
tives and integrals explain the memory and genetic properties
of different substances, the above mentioned new models are
more sufficient than the earlier used integer order models [4].
This is the biggest advantage of the fractional order models
in comparison with integer order models in which such effects
are neglected. A semi-infinite solid is an idealized body that has
a single plane surface and extends to infinity in all directions.
This idealized body is used to specify that the temperature
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change in the part of the body in which we are interested is due
to the thermal situation on a single surface. The earth, for
instance, can be considered as a semi-infinite medium in deter-
mining the variation of temperature close to its surface. A
thick wall can also be modeled as a semi-infinite medium if
we are interested in the variation of temperature in the region
near one of the surfaces, and the other surface is extreme to
have any impact on the region of interest during the time of
surveillance. In view of great importance of fractional differen-
tial equations many authors have paid attention for handling
linear and nonlinear fractional differential equations [5-7]. In
recent years many authors have employed various analytical
schemes to investigate nonlinear problems arising in scientific
and technological fields such as nonlinear oscillation of a cen-
trifugal governor system [8], dynamic analysis of generalized
conservative nonlinear oscillators [9], nonlinear vibrating sys-
tems [10], and frequency analysis of strongly nonlinear gener-
alized duffing oscillators [11].

2. Preliminary results

Consider semi-infinite solid initially at temperature 7;. The left
face of the solid is suddenly raised to temperature 7 at time
zero and defining 0 = T TO

. If we suppose, constant thermal
conductivity, no mternal heat generation and insignificant
temperature variation in the y and z directions. The relevant
differential equation is given by classical non-homogenous
heat equation defined by [12]:
90 90 )
ot ox2’

where K is the thermal diffusivity. Subject to boundary condi-
tions are

t=0; =0

x=0; 0=1 (2)

xX—o00; 0—0

The following well-known facts are considered to study the
temperature distribution and heat flux in the semi infinite solid.
The Laplace transform is defined by [13]

LY} = [ e s Re(s) >0, 3)
0
The Fourier sine transform is defined by [14]
Fn, 1) = \ﬁ / f(x, t)sinnx dx. (4)
TJo
The error function of x is defined by [15]
2 X
erf(x :—/ exp(—z*)dz 5
(x) 7, (—=29) ©)

and the complimentary error function of x is defined as

erf.(x \/‘ / exp(—z%)dz. (6)

A generalization of the Mittag-Leffler function [16,17]

1

E,(2) ziﬁwe C,R(x) > 0) (7)

n=l

was introduced by [18] in the general form

ZF (no+p)’

also derived by [19] in the following integral

o d ks> P
e E p(xt)dt = ————.
/0 dz* #(x17) (52— x)k+l

The fractional derivative of order o > 0 is presented by
Caputo [20] in the form

a0 f e C,R(x) > 0) )

©)

ey ] A
o D% flx) = F(m—oc)/(, (x—r)“””“dr’ m—1<oa<m
:%,ifa:m;meN (10)

where < d[m Lis the mth derivative of order m of the function f(r)
with respect to ¢. The Laplace transform of this derivative is
given by [4]

m—1

L[ D% fx);s] = sf(s) — Zs“’k’lj(k) (0+),

k=0

m—1<a<m.

(11)

A generalization of the Caputo fractional derivative opera-
tor Eq. (10) is given by [21], by introducing a right-sided frac-
tional derivative operator of two parameters of order

O<a<land 0 < f<1as
) d
o, B(1—a) (1=p)(1-a)
o DEEA) = 10 (1) ). (12)

If we put =1, Eq. (12) reduces the Caputo fractional
derivative operator assigned from Eq. (10).
Laplace transform formula for this operator [21] is given by
L[, D" f(x);s] = s*f(s) — " VL f04); 0 < < 1.
(13)

Sumudu transform formula for this operator [21,22], holds
the formula

S[yD%" f(x);5] P [P0 104); 0 < a< 1,

(14)

= uf(u) —u”

where the initial value term

1770104, (15)

involves the Riemann—Liouville fractional integral operator of
order (1 — f)(1 — o) evaluated in the limit as x — 0+. For
more details and properties of this operator see in [23].

The simplest Wright function is defined by [24]

e o
Zorotk+ﬁ R where o, f§,z € C. (16)
Generalized k-Wright function is an exciting generalization
of Wright function Eq. (16). Some exciting properties of the
generalized k-Wright function are obtained by [25].

Following integral [26] is required for simplification

*© n o —Xx
n sinnx E, .\ (—n*Kt*)dn = W(f—, I; )
/o AR Tl I
(17)
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The correlation between the Wright function and the com-
plementary Error function is given as

w( ; ; )-erﬁ() (18)

We will also use the following consequence obtained by
Chaurasia and Singh [27] as

s [u”’l (1- (uu/‘)fé] =7'E) (of). (19)
3. Mathematical modeling

Now, we consider a new model in the form of fractional partial
differential equation

i 2’0
Dl‘ﬁH(.x, t) CW, (20)
T - T
where 0 < o < 1;0(f < 1;1)0,x € R and 0 = 0 (21)
T, — T,

The significant boundary conditions are as follows
0(x,0) =0

0(0,1) =1 (22)
lim0(x,) =0

X—00

If we put § = 1, then Eq. (20) reduces into the Caputo frac-
tional derivative operator, and then we arrive at recently
obtained result by [28].

If we consider o« =1 and f =1 then Eq. (20) reduces in
standard heat Eq. (1).

4. Solution of problem

Applying the Fourier Sine transform on Eq. (20), yields

D*Fg, f/ p] sin nx dx. (23)

Integrating by parts gives
o, f 2
D¥Fos(n,t) = C - s1nnx— — cosnxdx
o 2 2
or D*F0y(n,t) =0 —nC [GCosnx]0 —nC -
X / 0 sin nxdx
0

or  D*PO(n,1) = fnC\/é(O —1) = n*CO,(n, 1) (24)
Y

Now, using Eq. (13), taking Laplace transform of Eq. (24),
gives

$*0,(n, s) — sﬂ(“’l)Iél_ﬁ)(l_“)éx(OJr) = nC\/g A n*Chy(n, s)
s
(25)

This reduces to

0,(n,s) = nC\/E{m} (26)

The inverse Laplace transform of Eq. (26) is given by [29]

2
0,(n, 1) = nC\/:t“EWH (—n*Cr?). (27)
Y

Now, taking inverse Fourier sine transform of Eq. (27), we
get

0(x,1) = \/2/ 05(n, t) sin nxdn,
f/ ant E,yi1 (=1 Ct*) sin nxdn,

=—Ct/ nsinnxE, .1 (—n*Cr*)dn. (28)
n 0

Using Eq. (17), then Eq. (28) can be reduced in the form of
Wright function as

0(x, 1) = W(%“ 1%) (29)

If we assume « = 1, then Eq. (29) reduces to

0(x,t) = erf, ( (30)

2\/5)

5. Alternative method for solving fractional partial differential
equation

In this section, we solve the fractional partial differential
Eq. (20) by an alternative method by using Sumudu
transform.

Now, using Eq. (14), taking Sumudu transform of Eq. (24),
we get

_ 2 _
u—xos(n’ u) _ u*/f(oc—l)+lI(()17/)’)(1—o<)0x(0+) _ I’ZC\/; _ I’ZZCOS(I'Z, u)

(31)

This reduces to

0,(n,u) = nc\F {m} (32)

Taking inverse Sumudu transform both sides in Eq. (32)
and using Eq. (19), we get

2
0,(n, 1) = nC\/;t“EMH (-r*Cr). (33)

Now, taking inverse Fourier Sine transform both sides in
Eq. (33), yields

O(x,1) = \/2/ 0,(n, t) sin nxdn,
\/7/ nC\/7t E, i1 (—n*C1”) sin nxdn,

*fCt/ nsinnxE, .\ (—n* Cr*)dn. (34)
T 0

Using Eq. (17), then Eq. (34) can be reduced in the form of
Wright function as

0(x,1) = w(%“ 1, \/_Cit) (35)
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Figure 1 Plot of Heat flux v/s Time at
k=14W/mK; C=0.75x 10 °m?/s for different values of «
(Eq. (36)).

6. The surface heat flux

The heat flux at the surface is identified as

oT
“= * <$> x=0

1o} —a —X
= kA T+ (T, — TOW([ =21, ——
g p (T )

_ T-Tp
where 0 = T

0
qSZ—k 0+(T;— TO)_X

or ¢ =—k(T,—Ty) 2| 1- () N <fc*)2 -

x=0

1
Ccr*
= K(T,— Ty [ =Y
or  q,=—k(T,—Ty) (F(—%—Q—l))’

k(Tr - TO)

qs:x/@-r(fgﬂ)' (36)

7. Numerical evaluation

A 15cm thick concrete firewall has a black silicone paint
surface. The wall is approximated as a black body at
1000 K. It will take 2 min for the surface to reach 500 K,
if the initial temperature of the wall is 300 K. Find the sur-
face heat flux.

Solution: We have T, = 500 K; 7, = 300 K.

The required concrete properties are

k=14W/mK; C=0.75x 10°m?/s; t = 2 min = 120 s.

In particular for o = § = 0.25, the heat flux is obtained by
using Eq. (36) as follow

1.4(500 — 300)

© 075 x 10751200 1))
1.4 x 200

T 0.001575536 x 1.08965235742
280

~0.001717
= 163075.131 W/m>.

q

The numerical results for the heat flux (36) for different val-
ues of rand o at 7, = 500 K, 7, = 300K, k = 1.4 W/mK and
C=0.75 x 107* m?/s are shown in Fig. 1. It can be observed
from Fig. | that heat flux (g,) decreases with increase in time
t and increases with the increase in o but afterward its nature
is opposite.

8. Conclusions

In this paper, we have presented a solution of a fractional par-
tial differential equation. The solution has been developed in
terms of the generalized Mittag-Leffler and Wright function
form with the help of Fourier transform, Laplace transform
and its inverse after deriving the related formulae for fractional
integrals, and derivatives. The modifications to generalization
of the Caputo fractional derivative operator proposals carried
out here by developing and discussing an alternate mathemat-
ical model with the help of Fourier transform, the Sumudu
transform and their derivatives to psychoanalyze the behavior
of temperature distribution and heat flux in semi infinite solid
represent just an example of what needs to be done to increase
our general understanding and use of these concepts. The exis-
tence and uniqueness of solution have been discussed in both
strong and weak senses. Furthermore, a numerical method
based on the boundary conditions has been devised in order
to obtain constant and exact numerical solutions.
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