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a b s t r a c t

In theMaximum Common Edge Subgraph Problem (MCES), given two graphs G and H with
the samenumber of vertices, onehas to find a common subgraphofG andH (not necessarily
induced)with themaximumnumber of edges. This problemarises in parallel programming
environments, and was first defined in Bokhari (1981) [2]. This paper presents a new
integer programming formulation for the MCES and a polyhedral study of this model.
Several classes of valid inequalities are identified, most of which are shown to define
facets. These findings were incorporated into a branch&cut algorithm we implemented.
Experimental results with this algorithm are reported.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

It is necessary in many applications to compare objects represented as graphs and to determine the degree of the
similarity between them. This is often accomplished by formulating the problemas the one involving themaximumcommon
subgraph between the graphs being considered. We investigate here the following version of the maximum common
subgraph problem.

Maximum Common Edge Subgraph Problem (MCES):
Given: two connected graphs G and H with EG ≠ ∅, EH ≠ ∅ and |VG| = |VH |.
Find: a common subgraph of G and H , not necessarily an induced one, whose number of edges is maximum.

In this paper, graphs are assumed to be simple, finite and undirected. We denote by VG (resp. EG) the set of vertices (resp.
edges) of a given graph G.

The MCES problem was introduced by Bokhari in [2]. Since the MCES problem is often associated with task assignment
issues in parallel programming applications in distributed memory environments, G is usually referred to as the task
interaction graph, and H as the processors graph. Vertices in G represent tasks of a parallel application and its edges join
pairs of tasks with communication demands. As for graph H , the vertices represent processors and an edge joining two
of these vertices is present in H whenever the corresponding processors are directly connected through a communication
channel. We note that two processors directly connected through a communication channel are able to exchange messages
without incurring routing overhead. The problem consists of assigning (mapping) each task to one processor in such a way
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that the number of neighboring tasks assigned to connected processors is maximized. It should be noted that each task is
assigned to exactly one processor, and that each processor can host only one task. This problem, thus, models the situation
where many tasks are simultaneously running, and each one must be attached to one processor, in such a way that the
communication costs areminimized. It should be alsomentioned that MCESmodels the task assignment problem under the
assumption that the flow ofmessages is homogeneous among the edges of the task graph (otherwise, some kind ofweighted
version of the MCES problem would be more appropriate).

Anothermotivating application of theMCESproblemcomes from the fact that similarity between the graphs representing
molecules plays an important role in many aspects of chemistry and biology. Particularly, the maximum common subgraph
problems have become increasingly important in matching 2 and 3-dimensional chemical structures. Raymond and
Willett [13], Raymond et al. [14,15] provide a classification and a review of many maximum common subgraph algorithms,
both exact and approximate, and make recommendations regarding their applicability to typical chemoinformatic tasks.

The MCES problem is also of particular interest since it trivially generalizes several problems on graphs, including the
well-known graph isomorphism problem. Indeed, when G and H have the same number of edges, there exists a common
subgraph with |EG| edges, if and only if, G and H are isomorphic.

Note that if |VG| ≠ |VH |, a suitable number of dummy vertices have to be inserted into the smaller graph in order to
obtain an instance of MCES. Besides, to be in accordance with the problem definition which requires the connectivity of the
input graphs, we can choose one of the original vertices of the graph and add new edges from this vertex to all the dummy
ones. But then, we have to consider again a weighted version of the MCES in which to mappings involving these new edges
we assign an appropriate negative weight while to all other mappings we assign unitary weights.

If |VG| and |VH | are not required to be equal, we obtain a problem which is APX-hard [6], while the MCES problem is
only known to be NP-hard (and it remains NP-hard when restricted to processor graphs that are grids with 4 neighbors per
node) [8].

We suppose in this paper that the graphs G and H are connected. More precisely, we only allow trivial components that
arise by adding dummyvertices, that is, isolated vertices, to the problem in order to force thatG andH have the samenumber
of vertices.

SinceMCES is NP-hard and has some important applications, there have beenmany attempts to devise useful algorithms
forMCES. Some of them approximate the solution of theMCES problem,while others give the exact solution for a specialized
set of graphs or graphs of moderate size. But most of the approaches to MCES propose heuristic procedures intended for
particular architectures [2,4,5,15].

In the present work, integer programming techniques are applied to the MCES problem, aiming at the implementation
of a branch&cut (B&C) algorithm for its resolution. To the best of our knowledge, the only polyhedral study of the MCES
problem so far was done by Marenco [8,10,9,11]. We present in Section 2 basic results obtained by this author.

In Section 3, we present a new integer programming formulation for the MCES problem, and in Section 4 some
valid inequalities and facets that we identified for the corresponding polytope. Finally, in Section 5 we describe our
implementation of the B&C algorithm for the MCES problem, and the computational results obtained.

Basic definitions and notations. For a given vertex i in a graph G, N(i) denotes the set of all its neighbors and dG(i) denotes the
degree of i in G. For a given subset I of vertices of a graph G, δ(I) denotes the set of all edges in G that are incident to at least
one vertex of I . We say that an edge from δ(I) is incident to I . A z-cycle is a cycle with z edges. A vertex cover of a graph G is
a subset U of its vertices such that each edge has at least one endpoint in U .

2. Previous polyhedral study

Integer programming formulation presented by Marenco [8] for the MCES problem has variables yik, for i ∈ VG, k ∈ VH ,
which are 1 in a feasible solution if i is mapped to k, and 0 otherwise. Furthermore, his model also has variables xij, for
ij ∈ EG, which are 1 if there exists kl ∈ EH such that i is mapped to k and j to l, and 0 otherwise. We present now the integer
programming model proposed by Marenco [8].

max

ij∈EG

xij (1)


k∈VH

yik = 1, ∀i ∈ VG (2)


i∈VG

yik = 1, ∀k ∈ VH (3)

xij + yik ≤ 1 +


l∈N(k)

yjl, ∀ij ∈ EG,∀k ∈ VH (4)

yik ∈ {0, 1}, ∀i ∈ VG,∀k ∈ VH (5)
xij ∈ {0, 1}, ∀ij ∈ EG. (6)
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In the above formulation, Eq. (2) forces that every vertex of G is mapped to exactly one vertex of H . Eq. (3) forces that for
every vertex of H , there is exactly one vertex of Gmapped to it.

Consider now inequality (4). Let ij be a fixed edge in G, and k a fixed vertex from H . If yik = 0, then the constraint (4)
is trivially satisfied. On the other hand, if yik = 1, then the constraint (4) has the form xij ≤


l∈N(k) yjl. Thus, if there is no

neighbor l of k such that j is mapped to l, then xij = 0. Note that the variable xij appears in the objective function (1) with a
positive coefficient, and that the x variables are mutually independent. Thus, in the optimum, every xij which can take value
1 will do that. So, when yik = 1, xij = 1 whenever


l∈N(k) yjl = 1, i.e., if j is mapped to a neighbor of k. Then, despite the fact

that the formulation allows xij to be set to zero when yik = 1, we do not need a constraint to eliminate this solution since it
will not be optimal.

Define now S as the set of feasible integer solutions of the problem, and let conv(S) be its convex hull.Marenco [8] showed
that dim(conv(S)) = (|VG|−1)2 +|EG|. We now present the main results of the polyhedral investigations carried out in [8],
that we will refer to later in the text.

The following inequality that involves degrees of vertices is valid for conv(S).
j∈N(i)

xij ≤


k∈VH

min{dG(i), dH(k)}yik, for all i ∈ VG. (7)

Let U be a vertex cover of graph H . Then, the following inequality is valid for conv(S) and, furthermore, it defines a facet
if U is a minimal vertex cover of H .

xij ≤


u∈U

(yiu + yju), for all ij ∈ EG. (8)

Let now ij be a fixed edge in G, and k be a fixed vertex from H . Consider inequality

xij ≤


l∈N(k)

yjl.

The above inequality defines a facet of conv(S ′), where S ′
:= S ∩ {(y, x): yik = 1}, i.e., of the set of feasible integer solutions

that satisfy yik = 1. Instead of considering points with restriction yik = 1, one can think of these points as subject to
equivalent conditions yi′k = yik′ = 0, for i′ ≠ i and k′

≠ k. Thus, lifting can be performed on these 2|VG| − 1 variables,
obtaining the inequality below which defines a facet of conv(S).

xij ≤


k′∈N(k)

yjk′ +


i′≠i

yi′k +


s≠k

ψsyis. (9)

In the above inequality, for k a fixed vertex in H , and all s ∈ VH , s ≠ k, the lifted coefficient ψs is defined as follows:

ψs :=


−1 if N(s) ⊆ N(k)
0 otherwise. (10)

3. A new integer programming formulation

Themain idea of our newmodel is to create variables that represent the assignment of edges of G to the edges of H . More
formally, apart from variables yik that are defined as mentioned in Section 2, we also include variables cijkl, for all ij ∈ EG and
kl ∈ EH which are 1 if ij is mapped to kl, and 0 otherwise. With these definitions, we are in a position to present our integer
programming model for the MCES problem.

max

ij∈EG


kl∈EH

cijkl (11)


k∈VH

yik ≤ 1, ∀i ∈ VG (12)


i∈VG

yik ≤ 1, ∀k ∈ VH (13)


kl∈EH

cijkl ≤


k∈VH

yik, ∀ij ∈ EG (14)


ij∈EG

cijkl ≤


i∈VG

yik, ∀kl ∈ EH (15)


j∈N(i)

cijkl ≤ yik + yil, ∀i ∈ VG,∀kl ∈ EH (16)
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l∈N(k)

cijkl ≤ yik + yjk, ∀ij ∈ EG,∀k ∈ VH (17)

cijkl ∈ {0, 1}, ∀ij ∈ EG,∀kl ∈ EH (18)

yik ∈ {0, 1}, ∀i ∈ VG,∀k ∈ VH . (19)

Inequalities (12) and (13) force that every vertex of G is mapped to at most one vertex of H; and that for every vertex
of H , there is at most one vertex of G mapped to it. Similar inequalities for edges are in (14) and (15). Inequality (16) forces
that for a fixed vertex i from G and a fixed edge kl from H , if some edge incident to i is mapped to kl, then i is mapped either
to k or to l (inequality (17) is analogous).

Notice that (12) and (13) arewritten in the inequality form,whichmeans thatweworkwith amonotonousmodel. As seen
in the next section, the proofs of facet-defining inequalities become substantially easier in this model than in the one given
in [8]. This is because the monotone polytope associated with the above formulation can be shown to be full-dimensional.
Despite the fact we had loosened these constraints, due to the nature of the objective function, it is not difficult to see that
if we switch them to the equality form, the optimum will not change.

Before discussing the dimension of the monotone polytope we introduce a notation used not only in the proof that
follows but also in the next section. In the literature, an e-vector on a t-dimensional space usually denotes a vector having
one component equals to one and all remaining components equal to zero. Moreover, the vector denoted by ei is an e-vector
for which the i-th component is one. In the context of the MCES, the e-vectors are specified by two or four indices. A two-
index e-vector refers to the assignment of a vertex of VG to a vertex in VH . Similarly, a four-index e-vector refers to the
assignment of an edge in EG to an edge in EH . For example, eul denotes the mapping of vertex u from VG to vertex l from VH ,
and eijkl denotes the mapping of edge ij from EG to edge kl from EH .

Theorem 1. The monotone polytope P associated with the monotonous formulation (11)–(19) is full-dimensional.

Proof. To prove this result we show that anH = {(c, y) ∈ R|EG|×|EH |+|VG|×|VH |:πc+βy = β0} hyperplane containing P must
be of the form 0c+0y = 0 (i.e., the only affine space containing P is R|EG|×|EH |+|VG|×|VH |). We do that by plugging some points
(c, y) of P into the equation πc + βy = β0 and deriving the values of the components of vectors π and β and that of β0.

First notice that the null vector belongs to P , which implies that β0 = 0. Moreover, the unique assignment of a vertex i in
VG to a vertex k in VH corresponds to a point (0, eik)which belongs to P . Since P is contained in the hyperplane H , we must
have that (π, β)(0, eik)T = β0 = 0 or, in other words, βik = 0. As the vertices i and k were chosen arbitrarily, we conclude
that β is the null vector.

Now, the unique assignment of an edge ij in EG to an edge kl in EH gives rise to a solution (eijkl, eik + ejl) belonging to P .
Plugging this solution into the equation πc + βy = β0 and, using the fact that β = 0 and that β0 = 0, we end up with
πijkl = 0. Again, as the edges ij and kl were chosen arbitrarily, we derive that π is null. This completes the proof. �

4. Valid inequalities and facets of the polytope P

We present in this section some valid inequalities and facets that we found for the polytope P given by the convex hull of
the integer solutions of the integer programmingmodel (11)–(19). The proofs, based on standard techniques fromPolyhedral
Combinatorics, are sketched in the text. In all of them, we assume the existence of a generic face F̃ of P given by:

F̃ := {(c, y) ∈ P:πc + βy = π0}. (20)

Initially, we show two simple facts that we use in the proof of Theorem 11, but that are also interesting for its own sake.
Namely, Lemmas 1 and 2 show that inequalities (16) and (17) from themodel force that if ij is mapped to kl, then i is mapped
to k and j to l, or vice versa.

Lemma 1. Let ij be an edge in G, and kl an edge in H. If cijkl = 1, then yik = 1 or yil = 1.

Proof. From (12) and (16) we have 1 = cijkl ≤


j∈N(i) cijkl ≤ yik + yil ≤ 1. �

Lemma 2. Let ij be an edge in G, and kl an edge in H. If cijkl = 1 and yik = 1, then yjl = 1.

Proof. From (16) we have 1 = cijkl ≤


i∈N(j) cjikl ≤ yjk + yjl. Now, since yik = 1, from (13) it follows that yjk = 0, and thus
yjl = 1. �

Corollary 2. Let ij be an edge in G. If


pl∈EH
cijpl = 1 and yiw = 1 for w ∈ VH , then


w′∈N(w) yjw′ = 1, i.e., j is mapped to a

neighbor of w in H.

Proof. Let p′l′ be the edge such that cijp′ l′ = 1. Now, using (16), we have 1 = cijp′ l′ ≤


j∈N(i) cijp′ l′ ≤ yip′ + yil′ . Since yiw = 1,
from (12) we get that p′

= w or l′ = w. Suppose, without loss of generality, that p′
= w. From Lemma 2 we thus have that

yjl′ = 1. Hence,


w′∈N(w) yjw′ = 1. �
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The following two theorems show that inequalities (14)–(17) define facets.

Theorem 3. Inequalities (14) and (15) from the model are facet-defining.

Proof. Consider first inequality (14). Let ij be a fixed edge fromG.We define F := {(c, y) ∈ P: (c, y) satisfies (14) at equality}.
Suppose that F ⊆ F̃ with F̃ given as in (20). Then, we have that F defines a facet, if and only if,

(πc + βy ≤ π0) = α


kl∈EH

cijkl −

k∈VH

yik ≤ 0


, for an α > 0. (21)

We first note that 0 ∈ F , and thus, π0 = 0.
Let u ∈ VG, u ≠ i, and l ∈ VH . Note that the point (0, eul) is feasible, that is, it satisfies (11)–(19). Besides, this point is in

F and since F ⊆ F̃ , we have that (0, eul) ∈ F̃ . Thus, π0 + βeul = π0 = 0, that is,

βul = 0, for all u ∈ VG, u ≠ i, and all l ∈ VH . (22)

Let now kl ∈ EH . Note that the point (eijkl, eik + ejl) is feasible. Besides, this point is in F and since F ⊆ F̃ , we have that
πijkl + βik + βjl = 0. From (22) we have that βjl = 0. Thus,

πijkl + βik = 0. (23)

Note that the point (eijkl, eil + ejk) is also feasible and is in F . Similarly as above, using (22) we get

πijkl + βil = 0. (24)

Now, from (23) and (24) we have that βik = βil. Observe that this equality is valid for every kl ∈ EH . Since the graph H is
connected, we can conclude that the values of βik, for all k ∈ VH are equal. Indeed, we could consider another edge incident
to k, say kl′, and conclude analogously as above that βik = βil′ . Hence, βik = βil = βil′ . Continuing, we would obtain that βik,
for all k in VH are equal. Hence, from (21) it follows that all those values are equal to −α, that is,

βik = −α, for all k ∈ VH . (25)

We already saw that πijkl + βik = 0 for all kl ∈ EH (inequality (23)). From (25) we thus have πijkl = α, for all kl ∈ EH .
Let now uv ∈ EG be such that uv is not incident to i, and kl ∈ EH . Note that the point (euvkl, euk + evl) is feasible. Besides,

this point is in F , and thus, πuvkl + βuk + βvl = 0. From (22) we have that βvl = βuk = 0. Thus,

πuvkl = 0, for all uv ∈ EG such that u, v ≠ i and for all kl ∈ EH . (26)

Finally, if dG(i) > 1, let j′ ∈ N(i) such that j′ ≠ j. Let furthermore kl ∈ EH . We can of course suppose that at least one
endpoint of edge kl has degree greater than 1 (otherwise, sinceH is connected, theMCES problemwould be trivial). Suppose
that dH(k) > 1, and let l′ be a neighbor of k in H such that l′ ≠ l. Then the point (eijkl′ + eij′kl, eik + ejl′ + ej′ l) is feasible and
is in F . Thus, πijkl′ + πij′kl + βik + βjl′ + βj′ l = 0. From (22) we have that βjl′ = βj′ l = 0. Furthermore, by inequality (23),
πijkl + βik = 0 for all kl ∈ EH . In special thus, πijkl′ + βik = 0. Hence, we have that πij′kl = 0. Since j′ and kl have been chosen
arbitrarily, we conclude that πij′kl = 0, for all kl ∈ EH and j′ ∈ N(i) such that j′ ≠ j.

The proof that inequality (15) from the model defines a facet is analogous. �

Theorem 4. Inequalities (16) and (17) from the model are facet-defining.

Proof. Consider inequality (16). Let i be a fixed vertex from G, and kl a fixed edge from H . We define F := {(c, y) ∈ P: (c, y)
satisfies (16) at equality}. Suppose that F ⊆ F̃ with F̃ given as in (20). Then, we have that F defines a facet, if and only if,

(πc + βy ≤ π0) = α


j∈N(i)

cijkl − yik − yil ≤ 0


, for an α > 0. (27)

We first note that 0 ∈ F , and thus, π0 = 0.
Similarly as in the proof of (22) from Theorem 3, we get

βup = 0, for all u ∈ VG such that u ≠ i, and all p ∈ VH . (28)

Now let p ∈ VH , such that p ≠ l, p ≠ k. The point (0, eip) is feasible and is in F . Since F ⊆ F̃ , we have that (0, eip) ∈ F̃ .
Thus, π0 + βeip = π0 = 0, that is,

βip = 0, for all p ∈ VH , such that p ≠ l, k. (29)

Let now j ∈ N(i). The point (eijkl, eik + ejl) is feasible and is in F . Thus, πijkl + βik + βjl = 0. From (28), βjl = 0. Hence,

πijkl + βik = 0. (30)
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Analogously, the point (eijkl, eil + ejk) is feasible and is in F . Again, from (28), βjk = 0. Hence,

πijkl + βil = 0. (31)

Now, from (30) and (31) we have that βik = βil. From (27) we conclude that

βik = βil = −α. (32)

Since vertex j has been chosen arbitrarily from N(i), equalities (30) and (32) imply that πijkl = α, for all j ∈ N(i).
Similarly as in the proof of (26) from Theorem 3, we have πuvpw = 0, for uv ∈ EG such that u, v ≠ i, and all pw ∈ EH .
Finally, let j ∈ N(i), and pw an edge from H such that pw ≠ kl. Then, of course, at least one endpoint of pw is neither

k nor l. We suppose, without loss of generality, that p ≠ k, l. The point (eijpw, eip + ejw) is feasible and is in F . Thus,
πijpw + βip + βjw = 0. From (29) we have that βip = 0 and from (28) we have that βjw = 0. Hence, πijpw = 0, for all
j ∈ N(i), and all pw ∈ EH such that pw ≠ kl.

The proof that inequality (17) from the model defines a facet is analogous. �

We show next that a counterpart of inequality (7) can be strengthened in our model. Inequalities so obtained involve
mapping of ‘‘stars’’. That is, for any two fixed vertices i ∈ VG and k ∈ VH , and sets I ⊆ N(i), K ⊆ N(k), we estimate the
number of edges ij such that j ∈ I that can be mapped to edges kl from H such that l ∈ K . Inequalities that we obtained
involve the cardinality of sets I and K , and are presented in the next theorem.

Theorem 5. Let i be a fixed vertex from G, k a fixed vertex from H, I ⊆ N(i) and K ⊆ N(k). Then, the following inequalities are
valid. 

j∈I


l∈K

cijkl ≤ min{|I|, |K |}yik +


p∈K

yip, (33)


j∈I


l∈K

cijkl ≤ min{|I|, |K |}yik +


p∈I

ypk. (34)

Furthermore, if |I| < |K | and |I| ≥ 2, then inequality (33) defines a facet, and if |I| > |K | and |K | ≥ 2, then inequality (34) defines
a facet.

Note: the special case of the above theorem is, of course, when I = N(i) and K = N(k). Inequality (33) for example, then,
becomes

j∈N(i)


l∈N(k)

cijkl ≤ dG(i)yik +


p∈N(k)

yip, if dG(i) ≤ dH(k).

Proof. We first prove that (33) is valid. Note that, if cijkl = 0 for every j ∈ I and l ∈ K , the inequality is trivially satisfied,
since the right hand side of (33) is always greater or equal to zero. Suppose now that i is mapped to k. Then, the number
of edges ij with j ∈ I that can be mapped to edges kl from H such that l ∈ K is at most min{|I|, |K |} (see Fig. 1(a)). Hence,

j∈I


l∈K cijkl ≤ min{|I|, |K |} ≤ min{|I|, |K |}yik +


p∈K yip, and inequality (33) is satisfied. If, however, i is mapped to a
vertex k′

∈ VH such that k′
≠ k, then the value of


j∈I


l∈K cijkl is at most 1. Note, furthermore, that if


j∈I


l∈K cijkl = 1
then i must be mapped to a vertex from K , that is, k′

∈ K , and some j ∈ I must be mapped to k (see Fig. 1(b)). Thus, we
have that


p∈K yip = 1. Hence, 1 =


j∈I


l∈K cijkl =


p∈K yip ≤ min{|I|, |K |}yik +


p∈K yip, and the inequality is again
satisfied.

We now prove that inequality (33) defines a facet if |I| < |K |. Let F := {(c, y) ∈ P: (c, y) satisfies (33) at equality}.
Suppose that F ⊆ F̃ . Again we assume that F̃ is given as in (20). Then, we have that F defines a facet, if and only if,

(πc + βy ≤ π0) = α


j∈I


l∈K

cijkl − |I|yik −


p∈K

yip ≤ 0


, for an α > 0. (35)

We first note that 0 ∈ F , and thus, π0 = 0. Similarly as in the proof of (22) from Theorem 3, we get

βul = 0, for all u ∈ VG \ i, and all l ∈ VH . (36)

Furthermore, similarly as in the proof of (26) from Theorem 3, we have πuvpl = 0, for uv ∈ EG such that u, v ≠ i, and for
any pl ∈ EH .

Now, define [K ] to denote K ∪{k} and let k′
∈ VH \ [K ]. The point (0, eik′) is feasible and is in F . Since F ⊆ F̃ , we have that

βik′ = 0, for k′
∈ VH \ [K ]. (37)

Let j ∈ N(i), and pl ∈ EH such that p ∉ [K ]. The point (eijpl, eip + ejl) is feasible and is in F . From (37) we have that βip = 0,
and from (36) we have that βjl = 0. Hence, πijpl = 0, for j ∈ N(i), pl ∈ EH such that p ∉ [K ].
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Fig. 1. (a) Case when yik = 1. In this example, edge ij1 (resp. ij2) is mapped to kl1 (resp. kl3). Note that the number of edges ij for j ∈ I that can be mapped
to edges kl for l ∈ K is at most 2 = |I|. (b) Case when i is mapped to a vertex from K (in this case, vertex l1) and a vertex from I (in this case j2) is mapped
to k.

Since |I| < |K |, we can rename vertices in V and H in such a way that I = {1, 2, . . . , p} and K = {1′, 2′, . . . , p′, . . . , q′
},

with q′
≥ (p+ 1)′. That is, we just rename the vertices in I and K according to an arbitrary order in such a way that the rank

in these orders defines a natural one-to-one correspondence between I and an appropriate subset of K . Before we continue,
we should mention that despite this renaming of the vertices, i and k are still used in the sequel to denote the vertices cited
in the theorem’s statement.

If I ≠ N(i), then let j ∈ N(i)\ I . Observe that bymapping all edges ix to kx′, for all x ∈ {1, 2, . . . , p}, and edge ij to k(p+1)′
we obtain a point that satisfies (33) at equality. That is, the point (ei1k1′ +· · ·+eipkp′ +eijk(p+1)′ , eik+e11′ +· · ·+epp′ +ej(p+1)′)
is feasible and is in F . Hence,

πi1k1′ + · · · + πipkp′ + πijk(p+1)′ + βik + β11′ + · · · + βpp′ + βj(p+1)′ = 0. (38)

But also, mapping all edges as above, except for ij to k(p + 1)′, results in a point that satisfies (33) at equality. Hence,
(ei1k1′ + · · · + eipkp′ , eik + e11′ + · · · + epp′) is feasible and is in F , that is,

πi1k1′ + · · · + πipkp′ + βik + β11′ + · · · + βpp′ = 0. (39)

From (36), βj(p+1)′ = 0, and thus, by subtracting (39) from (38), we obtain that πijk(p+1)′ = 0. Observe that we could map
edges ix, for x ∈ {1, 2, . . . , p} to different edges that are incident to both k and K . For example, we could map ix to kx′, for all
x ∈ {1, 2, . . . , p− 1}, edge ij to kp′, and ip to k(p+ 1)′. Analogously as above we would get that πijkp′ = 0. We can conclude
thus that πijkl = 0, for all j ∈ N(i) \ I and l ∈ K .

We now observe that the points (ei1k1′ , ei1′ + e1k), (ei2k1′ , ei1′ + e2k), . . . , (eipk1′ , ei1′ + epk) are feasible and are in F . That
is, mapping edges ix to k1′ (where x ∈ {1, 2, . . . , p}), vertex i to 1′, and x to k results in a point that satisfies (33) at equality.
From (36), β1k = · · · = βpk = 0. Hence, we obtain that πi1k1′ = · · · = πipk1′ . In an analogous manner, by mapping edges ix
to kl (where x ∈ {1, 2, . . . , p}), for different l ∈ K , we conclude that

πi1kl = πi2kl = · · · = πipkl, for all l ∈ K . (40)

As we already saw, mapping all edges ix to kx′, for all x ∈ {1, 2, . . . , p} results in a point that satisfies (33) at equality,
and this mapping gives origin to (39). But also, (ei1k1′ +· · ·+ ei(p−1)k(p−1)′ + eipk(p+1)′ , eik + e11′ +· · ·+ e(p−1)(p−1)′ + ep(p+1)′)
is feasible and is in F , that is,

πi1k1′ + · · · + πi(p−1)k(p−1)′ + πipk(p+1)′ + βik + β11′ + · · · + β(p−1)(p−1)′ + βp(p+1)′ = 0. (41)

From (36), all the values of β (except for βik) present in the inequalities (41) and (39) are zero. Thus, by subtracting (41)
from (39), we obtain that πipkp′ = πipk(p+1)′ . In an analogous manner, we can obtain

πijkl = πijks, for all j ∈ I and l, s ∈ K . (42)

Using (40) and (42) we now obtain that the values of πijkl for all j ∈ I , l ∈ K are equal. From (35), it follows that they are
all equal to α, that is,

πijkl = α, for all j ∈ I and l ∈ K . (43)

Now, for an element j ∈ I and an element l ∈ K , the point (eijkl, ejk + eil) is feasible and is in F . From (36) we have that
βjk = 0, and from (43) that πijkl = α. Since l has been chosen arbitrarily from K , we get, βil = −α, for all l ∈ K .

Finally, from (36), (39) and (43) we have that βik = −α|I|. As for inequality (34), the proof of its validity is analogous to
that of inequality (33). The proof that it defines a facet when |I| > |K | is also similar to the one given above for inequality
(33) when |I| < |K |. However, there are some minor differences between the two, and that is why we give it here. Let
F := {(c, y) ∈ P: (c, y) satisfies (34) at equality}. Suppose that F ⊆ F̃ , where F̃ is given by (20). Then, we have that F defines
a facet, if and only if,

(πc + βy ≤ π0) = α


j∈I


l∈K

cijkl − |K |yik −


p∈I

ypk ≤ 0


, for an α > 0. (44)
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We first note that 0 ∈ F , and thus, π0 = 0. Similarly as in the proof that (33) defines a facet if |I| < |K |, we get

βul = 0, for u ∈ VG, u ≠ i, and l ∈ VH , l ≠ k. (45)

βik′ = 0, for k′
∈ VH such that k′

≠ k. (46)

βj′k = 0, for j′ ∈ VG, j′ ∉ I. (47)

Let uv ∈ EG such that uv is not incident to i, and at least one of u, v is not in I . We can suppose, without loss of generality,
that u ∉ I . Let furthermore pl ∈ EH . Of course, at least one of p, l is different from k (we suppose here that l ≠ k). Note that
the point (euvpl, eup + evl) is feasible. Besides, this point is in F and since F ⊆ F̃ , we have that πuvpl + βup + βvl = 0. From
(45) and (47) we have that βvl = βup = 0. Thus, πuvpl = 0, for all uv ∈ EG such that u, v ≠ i, with at least one of u, v not in
I and pl ∈ EH .

Let uv ∈ EG, and pl ∈ EH such that p and l are different from k. Then (euvpl, eup + evl) is feasible and is in F . Hence, from
(45) and (46) we get πuvpl = 0, for all uv ∈ EG and pl ∈ EH such that pl is not incident to k.

Let uv ∈ EG such that uv is not incident to i, and both u and v are in I . Let pl ∈ EH such that pl is incident to k. Suppose that
p = k. Let furthermore w′ be a vertex from K that satisfies w′

≠ l (such a vertex w′ exists since |K | ≥ 2). Then of course,
(eiukw′ + euvkl, eiw′ + euk + evl) is feasible and is in F . But also, (eiukw′ , eiw′ + euk) is feasible and is in F . Since βvl = 0, we have
πuvpl = 0, for all uv ∈ EG such that u, v ≠ i, both u, v are in I and pl is incident to k.

If I ≠ N(i), then let j ∈ N(i) \ I , and let pl be an edge incident to k (we suppose here that p = k). Observe that the point
(eijpl, eil + ejp) is feasible and is in F . From (46) and (47) we thus get πijpl = 0. Hence, πijpl = 0, for all j ∈ N(i) \ I and pl
incident to k.

Now, analogously to what we did in the proof that (33) defines a facet, since |I| > |K |, we can rename the vertices in V
and H in such a way that I = {1, 2, . . . , p, . . . , q} and K = {1′, 2′, . . . , p′

}, with p′
≥ (q+ 1)′. Following a reasoning similar

to that for the case |I| < |K |, one can obtain that

πijkl = πijks, for all j ∈ I and l, s ∈ K , (48)

and

πi1kl = πi2kl = · · · = πiqkl, for all l ∈ K . (49)

Using (48) and (49) we now obtain that the values of πijkl for every j ∈ I , l ∈ K are all equal. From (44), it follows that
they are all equal to α, that is,

πijkl = α, for all j ∈ I, l ∈ K . (50)

Next, note that for an element j ∈ I and an element l ∈ K , the point (eijkl, ejk + eil) is feasible and is in F . From (46) and
(50) we have βjk = −α, for all j ∈ I .

Observe that the point (ei1k1′ + · · · + ei(p−1)k(p−1)′ + eipkp′ , eik + e11′ + · · · + epp′) is feasible and is in F , and thus,

πi1k1′ + · · · + πi(p−1)k(p−1)′ + πipkp′ + βik + β11′ + · · · + βpp′ = 0. (51)

But also, the point (ei1k1′ + · · · + eipkp′ + ei(p+1)kl, eik + e11′ + · · · + epp′ + e(p+1)l)where l ∉ [K ] is feasible and is in F , and
thus,

πi1k1′ + · · · + πipkp′ + πi(p+1)kl + βik + β11′ + · · · + βpp′ + β(p+1)l = 0. (52)

From (45), we have that β(p+1)l = 0. Hence, by substracting (51) from (52), we get πi(p+1)kl = 0. By similar reasoning, we
can conclude that πijkl = 0, for all j ∈ I, l ∉ [K ].

Finally, from (45), (50) and (51) we get βik = −α|K |. �

We show next that if the conditions that involve cardinality of sets I and K in Theorem 5 are not satisfied, then
corresponding inequalities from that theorem are not facet-defining.

Theorem 6. Let vertices i, k and sets I, K be as defined in Theorem 5. Then the following inequalities are valid but are not facet-
defining.

j∈I


l∈K

cijkl ≤ min{|I|, |K |}yik +


p∈K

yip, if |I| ≥ |K |, (53)


j∈I


l∈K

cijkl ≤ min{|I|, |K |}yik +


p∈I

ypk, if |I| ≤ |K |. (54)

Proof. As shown in the proof of Theorem 5, inequalities (53) and (54) are valid.



L. Bahiense et al. / Discrete Applied Mathematics 160 (2012) 2523–2541 2531

a
b

Fig. 2. (a) Highlighted edges are edges in Eij . (b) Highlighted edges are edges inWkl .

Now, let i ∈ VG, k ∈ VH , I ⊆ N(i) and K ⊆ N(k) such that |I| ≥ |K |. Using inequality (16) from the model we have that
for each edge kl such that l ∈ K ,

j∈I

cijkl ≤


j∈N(i)

cijkl ≤ yik + yil.

By summing above inequalities for each l ∈ K , we get


j∈I


l∈K cijkl ≤ |K |yik +


p∈K yip = min{|I|, |K |}yik +


p∈K yip.
Hence, inequality (53) does not define a facet.

The proof that (54) does not define a facet is similar (and uses inequality (17) instead of (16)). �

We present now inequalities that generalize results obtained in Theorem 5. Here, given an edge ij in G, and kl in H , sets
I ⊆ N(i) \ {j}, J ⊆ N(j) \ {i}, K ⊆ N(k) \ {l} and L ⊆ N(l) \ {k}, we want to estimate the number of edges from the set
Eij := {ij} ∪ (δ(i)∩ δ(I))∪ (δ(j)∩ δ(J)) that can be mapped to edges from the setWkl := {kl} ∪ (δ(k)∩ δ(K))∪ (δ(l)∩ δ(L))
(see Fig. 2).

Theorem 7. Let ij be a fixed edge in G, and kl a fixed edge in H. Let furthermore I, J, K , L, Eij and Wkl as defined above. Then
following inequalities are valid

e∈Eij


w∈Wkl

cew ≤ min{|I|, |K |}yik + min{|I|, |L|}yil + min{|J|, |K |}yjk

+ min{|J|, |L|}yjl + cijkl +

p∈K∪L

(yip + yjp). (55)
e∈Eij


w∈Wkl

cew ≤ min{|I|, |K |}yik + min{|I|, |L|}yil + min{|J|, |K |}yjk

+ min{|J|, |L|}yjl + cijkl +

p∈I∪J

(ypk + ypl). (56)

If, in addition, |I| < |K |, |I| < |L|, |J| < |K |, |J| < |L|, and |I| ≠ 0, |J| ≠ 0, then inequality (55) defines a facet. If, however,
|I| > |K |, |I| > |L|, |J| > |K |, |J| > |L|, and |K | ≠ 0, |L| ≠ 0 then inequality (56) defines a facet.

Note 1: a special case of the above theorem is when I = N(i) \ {j}, J = N(j) \ {i}, K = N(k) \ {l} and L = N(l) \ {k}. In
that case, for given edges ij in G, and kl in H , inequalities from Theorem 7 bound the number of edges in G incident to ij that
can be mapped to edges incident to kl in H .

Note 2: we can of course suppose, without loss of generality, that in the above theorem |J| ≤ |I| and |L| ≤ |K |. Observe
that for the case when |J| = |L| = 0 and 0 ≠ |I|, |K |, inequality (55) is


e∈Eij


w∈Wkl

cew ≤ min{|I|, |K |}yik + cijkl +
p∈K (yip + yjp), and is thus dominated by inequality (33) in Theorem 5 (indeed, using (33) we get


e∈Eij


w∈Wkl

cew =
j′∈I


l′∈K cij′kl′ + cijkl ≤ min{|I|, |K |}yik +


p∈K yip + cijkl).

Proof (Of Theorem 7). We now prove that (55) is valid. If ij is mapped to kl we suppose first that yik = yjl = 1. In this case,
it is clear that


e∈δ(i)∩δ(I)


w∈δ(k)∩δ(K) cew ≤ min{|I|, |K |} and, analogously, we have that


e∈δ(j)∩δ(J)


w∈δ(l)∩δ(L) cew ≤

min{|J|, |L|}. Hence,


e∈Eij


w∈Wkl

cew ≤ min{|I|, |K |}yik+min{|J|, |L|}yjl+cijkl (see Fig. 3(a)), and (55)must hold. Similarly,
we conclude that (55) is satisfied if yil = yjk = 1.

Suppose now that ij is not mapped to kl, but one endpoint of ij is mapped to one endpoint of kl. We suppose that yik = 1
(the proof for the case yil = 1 is similar). Then,


e∈δ(i)∩δ(I)


w∈δ(k)∩δ(K) cew ≤ min{|I|, |K |}. Note that since yik = 1, we have
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Fig. 3. Edges that are mapped are highlighted. (a) Case when yik = yjl = 1. (b) Case when yik = 1 and


p∈K yjp = 1.

a b

Fig. 4. (a) yik = 1 and


p∈L yjp = 1. (b)


p∈K yip =


v∈I yvk = 1 and


p∈L yjp =


v∈J yvl = 1.

that ij can be mapped only to an edge that is incident to k. And if ij is mapped to an edge that is incident to both k and K ,
then j is mapped to a vertex from K . Hence,


e=ij


w∈δ(k)∩δ(K) cew ≤


p∈K yjp (see Fig. 3(b)). Furthermore, since yik = 1

and j is not mapped to l, at most one edge that is incident to both j and J can be mapped to an edge from Wkl. Note that
if an edge incident to both j and J is mapped to an edge from Wkl, it is mapped to an edge that is incident to both l and L,
and in that case, j must be mapped to a vertex from L. That is,


e∈δ(j)∩δ(J)


w∈δ(l)∩δ(L) cew ≤


p∈L yjp (see Fig. 4(a)). Hence,

e∈Eij


w∈Wkl

cew ≤ min{|I|, |K |}yik +


p∈K∪L yjp, and (55) is satisfied.
Finally, if ij is not mapped to kl and none of endpoint of ij is mapped to endpoint of kl, then at most one edge incident to

i (resp. j) is mapped toWkl. Note, furthermore, that if an edge incident to i is mapped toWkl, then


p∈K yip =


v∈I yvk = 1
or


p∈L yip =


v∈I yvl = 1. We have analogous equalities if an edge incident to j is mapped to Wkl (see Fig. 4(b)). Thus,
e∈Eij


w∈Wkl

cew ≤


p∈K∪L(yip + yjp), and again, (55) is satisfied.
The proof that (56) is valid is similar.
The proofs that inequality (55) defines a facet under the assumptions |I| < |K |, |I| < |L|, |J| < |K |, |J| < |L|, and |I| ≠ 0,

|J| ≠ 0, and that inequality (56) defines a facet under the assumptions |I| > |K |, |I| > |L|, |J| > |K |, |J| > |L|, and |K | ≠ 0,
|L| ≠ 0 are similar to the proof that (33) defines a facet. However, the proofs are a bit more extensive and will thus be
omitted here. �

In the next theorem we introduce a facet-defining inequality where the benefit of having an extended formulation
including the variables cijkl becomes apparent. More precisely, we are able to express a very simple inequality whose
equivalent in the model given in [8] may be hard to find.

Theorem 8. Let G′ be an induced subgraph of G and M a maximal matching in H. If |VG′ | = 2p + 1 for some p ≥ 1 and G′ has
a Hamiltonian cycle, then the inequality

ij∈EG′


kl∈M

cijkl ≤ p (57)

is valid. If, furthermore, |M| ≥ p + 1, then inequality (57) defines a facet.
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Fig. 5. (a) Dashed lines indicate G′ . (b) Dashed lines indicate a maximal matching.

We show on Fig. 5 an example of an instance for which G has a subgraph G′ that consists of a 5-cycle together with 2
chords, and H is such that it has a maximal matching with 7 edges. We can thus apply Theorem 8 with p = 2.

Proof. Since |VG′ | = 2p + 1 and G′ has a Hamiltonian cycle, there are at most p vertex-disjoint edges in G′, and hence, the
inequality is trivially satisfied.

Suppose now that |M| ≥ p+1.We next prove that inequality from the theoremdefines a facet. Let F := {(c, y) ∈ P: (c, y)
satisfies (57) at equality }. Suppose that F ⊆ F̃ , where F̃ is given by (20). Then, F defines a facet, if and only if,

(πc + βy ≤ π0) = α


ij∈EG′


kl∈M

cijkl − p ≤ 0

 , for an α > 0. (58)

Let C = ⟨v1, v2, . . . , v2p+1⟩ be a Hamiltonian cycle in G′. Let, furthermore, u be any vertex in C . We suppose, without loss
of generality, that u = v2p+1. Note that G′

−v2p+1 has a Hamiltonian path ⟨v1, . . . , v2p⟩, and hence, it has a perfect matching
defined by edges v1v2, v3v4, . . . , v2p−1v2p. Let w1w2, w3w4, . . . , w2p−1w2p, w2p+1w2p+2 be edges of M (those edges exist
since |M| ≥ p + 1). Then the point (ev1v2w1w2 + ev3v4w3w4 + · · · + ev2p−1v2pw2p−1w2p , ev1w1 + ev2w2 + · · · + ev2pw2p) is feasible
and is in F . That is, mapping of edges v1v2, v3v4, . . . , v2p−1v2p from G′ to edgesw1w2, w3w4, . . . , w2p−1w2p from M satisfy
(57) at equality. Since F ⊆ F̃ , we have that

πv1v2w1w2 + πv3v4w3w4 + · · · + πv2p−1v2pw2p−1w2p + βv1w1 + βv2w2 + · · · + βv2pw2p = π0. (59)

Now, if apart from mapping of edges v1v2, v3v4, . . . , v2p−1v2p to edges w1w2, w3w4, . . . , w2p−1w2p, we also map u to l
(where l ≠ w1, . . . , w2p), the corresponding point satisfies (57) at equality. That is,

πv1v2w1w2 + πv3v4w3w4 + · · · + πv2p−1v2pw2p−1w2p + βv1w1 + βv2w2 + · · · + βv2pw2p + βul = π0. (60)

Of course, from (59) and (60) we have that βul = 0 (where u = v2p+1 and l ≠ w1, . . . , w2p). In fact we could map edges
v1v2, v3v4, . . . , v2p−1v2p from G′ to other edges of M , say w3w4, . . . , w2p+1w2p+2. Analogously as above we would obtain
that βul = 0 (where u = v2p+1 and l ≠ w3, . . . , w2p+2). Observe furthermore that u was chosen arbitrarily from VC . Thus,
we can conclude that βul = 0, for all u ∈ VC , l ∈ VH .

By reasoning similar as above, it is easy to see that, in fact, inequality (60) is satisfied for all u ≠ v1, . . . , v2p. Hence, more
generally, we get

βul = 0, for all u ∈ VG, l ∈ VH . (61)

Let now ij be an edge from G but not in G′. If ij is incident to a vertex from C , we can suppose without loss of generality,
that i ∈ VC and that i = v2p+1 (where C = ⟨v1, v2, . . . , v2p+1⟩ is a Hamiltonian cycle in G′, as defined above). We remember
that (59) is satisfied. Now, if apart from mapping of edges v1v2, v3v4, . . . , v2p−1v2p to edges w1w2, w3w4, . . . , w2p−1w2p,
we also map ij to kl (where kl ≠ w1w2, . . . , w2p−1w2p), the corresponding point satisfies (57) at equality.
That is,

πv1v2w1w2 + πv3v4w3w4 + · · · + πv2p−1v2pw2p−1w2p + πijkl + βv1w1 + βv2w2 + · · · + βv2pw2p + βik + βjl = π0. (62)

From (59), (61) and (62) we have that πijkl = 0 (where kl ≠ w1w2, . . . , w2p−1w2p). Note that we could map edges
v1v2, v3v4, . . . , v2p−1v2p from G′ to other edges of M , say w3w4, . . . , w2p+1w2p+2. Analogously as above we would obtain
that βijkl = 0 (where kl ≠ w3w4, . . . , w2p+1w2p+2). Observe furthermore that ij was chosen arbitrarily from EG \ EG′ . Thus,
by reasoning similar as above we can conclude that

πijkl = 0, for all ij ∈ EG \ EG′ , kl ∈ EH . (63)
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Let now ij be an edge from G′. We define G′′
:= G′

− {i, j}. We consider two cases:

• If ij is an edge of the Hamiltonian cycle C in G′, then G′′ has a Hamiltonian path with 2p − 1 vertices, and hence, G′′ has
p − 1 disjoint edges.

• If ij is not an edge of the Hamiltonian cycle C in G′, then let P (resp. W ) be the path from i to j (resp. from j to i) defined
by the edges of a Hamiltonian cycle C in G′. Since |VC | = 2p + 1, we have that P has odd number of vertices andW even
number of vertices (or vice versa). Note that in both cases G′′ has p − 1 disjoint edges.

Let, thus, x1x2, x3x4, . . . , x2p−3x2p−2 be disjoint edges from G′′. Then the point (ex1x2w1w2 + ex3x4w3w4 + · · · +

ex2p−3x2p−2w2p−3w2p−2 + eijw2p−1w2p , ex1w1 + ex2w2 + · · · + ex2p−2w2p−2 + eiw2p−1 + ejw2p) is feasible and is in F . That is, mapping
of edges x1x2, x3x4, . . . , x2p−3x2p−2 to edgesw1w2, w3w4, . . . , w2p−3w2p−2 fromM , and mapping ij tow2p−1w2p satisfy (57)
at equality. Since F ⊆ F̃ , we have

πx1x2w1w2 + · · · + πx2p−3x2p−2w2p−3w2p−2 + πijw2p−1w2p + βx1w1 + · · · + βx2p−2w2p−2 + βiw2p−1 + βjw2p = π0. (64)

Similarly, we could map ij tow2p+1w2p+2 (instead tow2p−1w2p) obtaining

πx1x2w1w2 + · · · + πx2p−3x2p−2w2p−3w2p−2 + πijw2p+1w2p+2 + βx1w1 + · · · + βx2p−2w2p−2 + βiw2p+1 + βjw2p+2 = π0. (65)

From (61) and the two inequalities above, we get πijw2p−1w2p = πijw2p+1w2p+2 . Note that we obtained the above inequality
using the hypothesis that edges x1x2, x3x4, . . . , x2p−3x2p−2 were mapped to edges w1w2, w3w4, . . . , w2p−3w2p−2 from M .
Analogously, by mapping x1x2, x3x4, . . . , x2p−3x2p−2 to another edges from M , and using the same reasoning as above, it is
easy to conclude that

πijkl = πijps, for an edge ij ∈ EG′ and all kl, ps ∈ M. (66)

Let now i be any vertex of the Hamiltonian cycle C , and let ij, iv be edges of C incident to i. Graph G′′
:= G′

− {i, j, v} has
a Hamiltonian path with 2p − 2 vertices, and hence, G′′ has p − 1 disjoint edges. Let x1x2, x3x4, . . . , x2p−3x2p−2 be disjoint
edges from G′′. Mapping of edges x1x2, x3x4, . . . , x2p−3x2p−2 to edges w1w2, w3w4, . . . , w2p−3w2p−2 from M , and mapping
ij tow2p−1w2p leads to a point that satisfies (57) at equality. Since F ⊆ F̃ , we have that (64) is valid. Note that we could map
edge iv tow2p−1w2p (instead of mapping ij tow2p−1w2p). We would obtain

πx1x2w1w2 + · · · + πx2p−3x2p−2w2p−3w2p−2 + πivw2p−1w2p + βx1w1 + · · · + βx2p−2w2p−2 + βiw2p−1 + βvw2p = π0. (67)

Now, from (61), (64) and (67) we get that πijw2p−1w2p = πivw2p−1w2p . Note that we obtained the above inequality using
the hypothesis that edges x1x2, x3x4, . . . , x2p−3x2p−2 from G′′ were mapped to edgesw1w2,w3w4, . . .,w2p−3w2p−2 from M .
Observe that by mapping x1x2, x3x4, . . . , x2p−3x2p−2 from G′′ to other edges fromM , and using the same reasoning as above,
we can get that πijkl = πivkl for all kl ∈ M . Since vertex i has been chosen arbitrarily from VC , we can conclude that

πijkl = πivkl, for all ij, iv ∈ EC , kl ∈ M. (68)

Let now ij be an edge from G′ such that ij is not an edge of the Hamiltonian cycle C in G′. Let P (resp.W ) be the path from
i to j (resp. from j to i) defined by the edges of the Hamiltonian cycle C in G′. Since |VC | = 2p+ 1, we have that P has an odd
number of vertices and W an even number of vertices (or vice versa). We suppose, without loss of generality, that P has an
odd number of vertices. Let P = ⟨i, v, . . . , j⟩ (that is, v is the vertex that follows i on path P). Then, P −{i, v, j} andW −{i, j}
both have an even number of vertices, that is, G′′

:= G′
− {i, j, v} has a perfect matching that contains p− 1 edges. Mapping

those p − 1 edges of G′′ to edges of M , and mapping ij (resp. iv) to an edge of M , analogously as in the proof of inequality
(68), we get

πijkl = πivkl, for all ij ∈ EG′ , ij ∉ EC , iv ∈ EC , kl ∈ M. (69)

Since every edge in G′ but not in C is incident to an edge from C , using (68) and (69) we can conclude that

πijkl = πtwkl, for all ij, tw ∈ EG′ , kl ∈ M. (70)

Finally, from (58), (66) and (70) we can conclude that πijkl = α, for all ij ∈ EG′ , kl ∈ M .
Let now ij be an edge fromG′ such that it is an edge of theHamiltonian cycle C inG′ (we suppose,without loss of generality

that ij = v1v2p+1). Let kl be an edge of H not in M . Since M is maximal, at least one vertex of kl is covered by M . Suppose
first that both k and l are covered by M . Suppose, without loss of generality that k = w1 and l = w2p+1. Then the point
(eijkl + eiv2kw2 + ev3v4w3w4 +· · ·+ ev2p−3v2p−2w2p−3w2p−2 + ev2pjw2p+2 l, eik + ev2w2 +· · ·+ ev2p−2w2p−2 + ev2pw2p+2 + ejl) is feasible
and is in F . That is, mapping edges ij to kl, iv2 to kw2, v3v4 to w3w4, . . . , v2p−3v2p−2 to w2p−3w2p−2 and v2pj to w2pl results
in a point that satisfies (57) at equality. But, mapping all those edges, except for ij to kl also leads to a point that satisfies
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a b

Fig. 6. An instance of the MCES problem. (a) G has 6 edge disjoint triangles (highlighted edges). (b) H has no triangles. Since |EG| ≤ |EH |, considering
triangles and applying inequality (71) from Theorem 10 we get


ij∈EG


kl∈EH

cijkl ≤ |EG| − (zG − zH ) = 36− (6− 0) = 30. It is not hard to obtain a lower
bound of 30 for this instance and, therefore, to show that this is indeed the optimum value.

(57) at equality. Hence, πijkl = 0. Suppose next that only k is covered by M (we suppose here that k = w1). Then the point
(eijkl + eiv2kw2 + ev3v4w3w4 + · · · + ev2p−1v2pw2p−1w2p , eik + ev2w2 + · · · + ev2pw2p + ejl) is feasible and is in F . That is, mapping
edges ij to kl, iv2 to kw2, v3v4 to w3w4, . . . , v2p−1v2p to w2p−1w2p results in a point that satisfies (57) at equality. But also,
mapping all those edges, except for ij to kl also results in a point that satisfies (57) at equality. Hence, we again have that
πijkl = 0. We thus conclude that πijkl = 0, for all ij ∈ EG′ , ij is an edge of the Hamiltonian cycle C in G and kl ∉ M .

Observe that in the case when ij is an edge from G′ such that it is not an edge of the Hamiltonian cycle C in G′, by
considering edges of C in G′ and by mapping ij to a kl ∉ M , and some of the edges of the Hamiltonian cycle C to edges
of M (similarly as above), we can also conclude that πijkl = 0, for all ij ∈ EG′ , ij is not an edge of the Hamiltonian cycle C in
G and kl ∉ M . �

We next observe that if the condition that |M| ≥ p + 1 is not satisfied in Theorem 8 then inequality (57) is not facet-
defining.

Theorem 9. Let G′ be an induced subgraph of G and let M be a maximal matching in H. If |VG′ | = 2p + 1 for some p ≥ 1, G′

has an Hamiltonian cycle, and |M| ≤ p then


ij∈EG′


kl∈M cijkl ≤ p does not define a facet.

Proof. Using (15) we have that


ij∈EG′
cijkl ≤


ij∈EG

cijkl ≤


i∈VG
yik ≤ 1, for every kl ∈ M . Since |M| ≤ p, it follows that

ij∈EG′


kl∈M cijkl ≤ p. �

We observed that most of the hardest benchmark instances used in the experiments reported in Section 5 have a highly
symmetric structure. For example, task interaction or processors graph of some of the instances are 2-, 4- or 8-regular grids.
That is the reason we tried to find some classes of valid inequalities that explore the structure of the task interaction graph
and processors graph given as input instances. Indeed, using the following theorem that explores the structure of the input
graphs we obtained better upper bounds for some instances.

Theorem 10. Let zG be the maximum number of edge disjoint z-cycles in G and let zH be the maximum number of edge disjoint
z-cycles in H. If zG ≥ zH , then the following inequality is valid.

ij∈EG


kl∈EH

cijkl ≤ |EG| − (zG − zH), if |EG| ≤ |EH |. (71)

Proof. It is clear that the maximum number of z-cycles in G for which we can map all of its z edges to H is equal to zH .
Suppose now that we have mapped zH edge disjoint z-cycles of G to zH edge disjoint z-cycles of H . Let KG denote the set of
those zH edge disjoint z-cycles of G that we have mapped to z-cycles of H .

Note that for every z-cycle of G not in KG, we can map at most z − 1 of its edges to H , that is, at least one edge of every
such z-cycle will not be matched in H . Of course, the number of z-cycles not in KG is zG − zH . Since |EG| ≤ |EH |, the total
number of edges mapped from G to H is at most |EG| − (zG − zH). �

We highlight that with inequality (71) we were able to find the optimum for the instance shown in Fig. 6.
We remark that one can write an inequality similar to (71) from Theorem 10 in the case when zG ≤ zH . Note also that

Theorem 10 can be generalized in a way that, given any special graph, say S, inequality (71) is valid for numbers zG and zH
where zG (resp. zH ) is the maximum number of edge disjoint subgraphs in G (resp. in H), such that each of those subgraphs
is isomorphic to S.

We observe next that the inequality that corresponds to inequality (8) (the inequality that involves a minimal vertex
cover ofH andwas obtained byMarenco [8]) does not define a facet in ourmodel, because it is dominated by inequality (17).



2536 L. Bahiense et al. / Discrete Applied Mathematics 160 (2012) 2523–2541

Indeed, let ij be a fixed edge from G, and U be a minimal vertex cover of H . We note that by summing inequalities (17) for
all u ∈ U we get

kl∈EH

cijkl ≤


u∈U


l∈N(u)

cijul ≤


u∈U

(yiu + yju).

Let now ij be a fixed edge in G, and k a fixed vertex from H . We note that we can rewrite inequality (9) obtained by
Marenco [8] as

xij ≤


k′∈N(k)

yjk′ +


i′≠i

yi′k + yik


− yik +


s≠k

ψsyis

=


k′∈N(k)

yjk′ +


l∈VH

yil − yik


+


s≠k

ψsyis

=


k′∈N(k)

yjk′ +


l≠k

yil +

s≠k

ψsyis

=


k′∈N(k)

yjk′ +


s≠k

(1 + ψs)yis.

We next show that a slight modification of this inequality is valid in our model.

Theorem 11. Let k be a fixed vertex in H. For all s ∈ VH , s ≠ k let ψs as defined in (10). Let furthermore ij be a fixed edge in G.
Then the following inequality is valid.

pl∈EH

γ cijpl ≤


k′∈N(k)

yjk′ +


s≠k

(1 + ψs)yis, (72)

where γ = 2, if pl is such that both p and l are neighbors of k, otherwise γ = 1.

Proof. If


pl∈EH
γ cijpl = 0, then the above inequality is trivially satisfied, since its right hand side is always greater or equal

to zero.
Suppose now that


pl∈EH

γ cijpl = 1 and yik = 1. Then


s≠k yis = 0, that is,


s≠k(1 + ψs)yis = 0, and inequality (72)
becomes 1 ≤


k′∈N(k) yjk′ . It thus suffices to show that


k′∈N(k) yjk′ = 1, but this follows directly from Corollary 2.

Suppose next that


pl∈EH
γ cijpl = 1 and yis = 1 for some s ≠ k. If N(s) ⊆ N(k) then ψs = −1 and again, inequality

(72) becomes 1 ≤


k′∈N(k) yjk′ . Since yis = 1, from Corollary 2 we have


k′∈N(s) yjk′ = 1. But, as N(s) ⊆ N(k), we get
1 =


k′∈N(s) yjk′ ≤


k′∈N(k) yjk′ , as desired. If, however, N(s) ⊈ N(k) then ψs = 0, that is,


s≠k(1 + ψs)yis = 1. Since

k′∈N(k) yjk′ is always greater or equal to zero, we have that (72) is trivially satisfied.
Suppose finally that


pl∈EH

γ cijpl = 2. Thus, there is an edge p′l′ in H such that cijp′ l′ = 1, and p′, l′ are both neighbors of
k in H . From (16), we have that yip′ = 1 or yil′ = 1. Suppose, without loss of generality, that yip′ = 1. Now, Lemma 2 implies
that yjl′ = 1. Furthermore, since p′ is neighbor of k, we have that k ∈ N(p′), that is N(p′) ⊈ N(k), and thusψp′ = 0. It follows
that


s≠k(1 + ψs)yis = 1. Since l′ ∈ N(k), we also have


k′∈N(k) yjk′ = 1. Hence, the right hand side of (72) is in this case

2, as desired. �

5. Computational results

The polyhedral investigation described in the previous section was the starting point for the development of a branch-
and-bound (B&B), cut-and-branch (C&B) and branch-and-cut (B&C) algorithms that we implemented to assess the strength
of our formulation and of the valid inequalities we encountered. In the model used in our experiments, constraints (12)
and (13) are given in equality form since preliminary tests indicated that the algorithms perform slightly better in this way.
We considered all the valid inequalities discussed in the previous section. However, for some of them, only a few special
caseswere taken into account. Belowwe summarize themain aspects of our implementation and discuss our computational
results.
Inequalities and separation.

We added a priori in the model inequalities (33) and (34) from Theorem 5 for the special case when both I = N(i) and
K = N(k). For this particular case, facet-defining inequalities (33) and (34) are indeed easy to implement, since they become

j∈N(i)


l∈N(k)

cijkl ≤ dG(i)yik +


p∈N(k)

yip, if dG(i) < dH(k),
j∈N(i)


l∈N(k)

cijkl ≤ dH(k)yik +


p∈N(i)

ypk, if dG(i) > dH(k).
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Furthermore, a fast polynomial time algorithm was designed to separate inequalities (33) and (34) for the case when I
may be different from N(i), but K = N(k). The polynomial time algorithm to separate inequalities (33) and (34) in that case
works as follows. We define csolijkl, for all ij ∈ EG and kl ∈ EH , to be the real-valued edge mapping variables (calculated
during the execution of our program). For each vertex i in G and k in H , the algorithm creates an array csort containing dG(i)
positions, in a way that for every edge ij incident to i we have csort(ij) :=


l∈N(k) csolijkl. We then sort all edges incident

to i in ascending order of their csort value. Furthermore, for every value p ∈ {1, 2, . . . , dG(i)} we calculate the left and the
right-hand sides of inequality (33) or (34) (depending if p < dH(k) or p > dH(k), respectively), by defining the set I as the
set of the first p edges incident to i, ordered by their csort value. If the difference between the left and the right-hand side is
greater than a pre-established and sufficiently small value ϵ (that is, a tolerance parameter), inequality is considered to be
violated and the corresponding cut is found.

We also added a priori in the model both inequalities from Theorem 7, but only when I = N(i) \ {j}, J = N(j) \ {i},
K = N(k) \ {l} and L = N(l) \ {k}. Observe that in this case, it is easy to implement both inequalities (55) and (56). We
implemented inequality (55) when |I| < |K |, |I| < |L|, |J| < |K |, |J| < |L|, and |I| ≠ 0, |J| ≠ 0, since in this case inequality
(55) is facet-defining. However, when |I| > |K |, |I| > |L|, |J| > |K |, |J| > |L|, and |K | ≠ 0, |L| ≠ 0 we implemented
inequality (56), since in this particular case, the latter defines a facet.

Besides, a fast polynomial time algorithm was designed for the separation of the maximum matching inequalities (57)
from Theorem 8, but only for two specific situations. The first one is when p = 1, that is, when G′ is a triangle (3-cycle)
of G. In this case, the algorithm works as follows. Let T be a triangle of G, and let e1, e2, e3 be edges of T . Then, for every
edge w ∈ EH , we define SepCostEdge(w) := csole1w + csole2w + csole3w (where csol are the real-valued edge variables, as
defined above). Finally, we compute amaximumweightedmatching inH . It is worth noting that we also separated and used
inequalities (57) with the roles of G and H interchanged.

Let z be the weight of the optimal matching computed above. If z − 1 is greater than the pre-established sufficiently
small value ϵ, then inequality (57) is violated and the corresponding cut is


w:uw=1(ce1w + ce2w + ce3w)− 1. We repeat the

procedure above for every triangle T of G.
We also separate inequality (57) for when p = 2, that is, when G′ is an induced subgraph of G with 5 vertices and a

Hamiltonian cycle. For that, we proceed as follows. For every subset of 5 vertices from G we first examine whether the
subgraph induced by those 5 vertices has a Hamiltonian cycle. If so, we find cuts by using a technique analogous to the one
described above for triangles.

As for the implementation of inequalities (71) from Theorem 10, we remark that the following form of these inequalities
is also valid. Let G′ be an induced subgraph of G. Let, furthermore, zG′ be the maximum number of edge disjoint z-cycles in
G′ and let zH be the maximum number of edge disjoint z-cycles in H . If zG′ ≥ zH , then the following inequality is valid.

ij∈EG′


kl∈EH

cijkl ≤ |EG′ | − (zG′ − zH), if |EG′ | ≤ |EH |. (73)

We implemented inequality above for two situations. The first one is when z = 3, G′ is a triangle of G, zH = 0, and |EH | ≥ 3.
Then, inequality (73) becomes very simple to implement, since it reads

ij∈EG′


kl∈EH

cijkl ≤ 2.

The second case is when z = 5, G′ is an induced 5-cycle of G, zH = 0, and |EH | ≥ 5. For this case, inequality (73) has the
following very simple form

ij∈EG′


kl∈EH

cijkl ≤ 4.

For the two particular cases implemented above, there is the requirement that the inequalities only apply whenH has no
triangles (when k = 3) or no 5-cycles (when k = 5). To check the existence of a 5-cycle inH , we examine all possible subsets
of 5 vertices of H . More precisely, we check the subgraph (denoted by H ′) induced by every possible subset of 5 vertices of
H . If H ′ has exactly 5 edges, and the degree of every vertex of H ′ is 2, then H ′ is a 5-cycle in H . Checking the existence of a
3-cycle in H can be done similarly.

Even though we did not implement inequalities (71) for the general case, as mentioned is Section 4, we did it for the
instance depicted in Fig. 6. Before we include this inequality, the duality gap for the corresponding instance was 6.25%.

As a final remark concerning the inequalities we used in our algorithm, it is worth noting that we also added a priori in
the model the inequalities (72) from Theorem 11.

Now, in theory, mapping G into H , is the same as mapping the other way around. However, in our computational
experiments we noticed that when |EH | < |EG|, even though the number of variables in the IP model stays the same,
our algorithm performs better when we map H into G. In principle, this rather simple trick could also be applied to the
model given in [8]. In this case, there is a reduction on the number of constraints of the formulation but, apparently,
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this was unnoticed by the author. In our case, this observation was instrumental to solve 4 additional instances to
optimality.
Primal bounds. Another feature of our algorithmwas the implementation of a naïve, though efficient, primal heuristic based
on the solutions of the linear relaxations computed during the enumeration. Namely, for every i ∈ VG and k ∈ VH , we define
ysolik to be the solution of mapping vertex i to k of the linear relaxation computed during the enumeration. We then sort
the values of ysol in decreasing order, and assign vertices of G to vertices in H according to the preference suggested by the
sorted values. Next, for every edge ij of G, we check if the vertex of H that is assigned to i is a neighbor of the vertex of H
assigned to j. That is, we count the number of edges of G that are mapped to edges in H , which is the value returned by our
primal heuristic.
Instances.We tested 67 instances also used by Marenco in [8]. Most of those instances come from other papers and archives
that deal with the MCES problem. In this set, 16 instances are very small, with the input graphs having less than 10 vertices
each; in 19 instances the graphs have from 10 to 19 vertices, in 18 instances they have 20 vertices, in 7 instances they have
between 21 and 29 vertices and, finally 7 instances have at least 30 vertices. The largest instance has 36 vertices. All the
graphs are quite sparse and present a high degree of symmetry, with most of them being regular grids (see Figs. 5(b) and
6(a) for examples).

The instance set is divided in several groups. The group of str instances was proposed by Bokhari [2], all of them
having a 8-regular grid as one of the input graphs. Fig. 5 illustrates an example of a str instance. Instances of dc group
have complete binary trees as one of the input graphs and a 4-regular grid as the other one. They are adaptations of
instances belonging to the ANDES library for scheduling problems with precedence constraints (cf., [3]). The df group
is also composed of instances adapted from the ANDES library. An example of such an instance is displayed in Fig. 6.
As it can be seen, one of the input graphs has two rows of vertices. Each node in the first row is connected to 3
closest nodes from the second row of vertices, except for the end vertices, which are also connected to the opposite
end vertices. There are two more special vertices. The first one is connected to each vertex in the first row of vertices,
while the second one is connected to each vertex in the second row of vertices. In addition, there is one more special
edge. The other input graph of the df instances is a regular grid. Instances in the wars group have the graph representing
the three-dimensional cube as one of the input graphs. These instances were proposed by Lee and Aggarwal [7] as
examples that occur in parallel computer architectures. Instances of the Gauss group model situations that appear
when solving systems of linear equations using the Gauss method in parallel environments. Instances in the group
prb are characterized by having small input graphs, with up to 16 vertices. Some of these instances were generated
randomly, while others were built by hand to have some special structures (trees, Hamiltonian graphs, etc.). Finally,
instances of the group called memsy, first presented in [12], have 20 vertices each. They are also meant to represent
the situation where one has to assign tasks to processors in a parallel programming environment. The processors graphs
have 44 edges each, while the task interaction graphs consist of a pyramidal group of 6 processors, organized into two
levels.
Computational environment. We used a Pentium IV, 2.66 GHz, 1 GB of RAM to perform our tests. The xpress-mp Optimizer
version v17.01.02 was used as the integer programming solver, and our programs were coded with the xpress-mp mosel
modeling language. Computation times were limited to 3600 s.
Our results.Wedivide our analysis into two families of instances: thosewewere able to solve to optimality and thosewewere
not. In this analysis, an attempt is made to compare our results with those reported by Marenco [8]. The two experiments
were carried out in very distinct computational environments both in terms of software (e.g., different linear programming
solvers were used) and hardware. In this latter aspect, the computer reported in [8] is a Ultra Sparc 1 workstation with
140 MHz processor, with 64 MB of RAM memory and an estimated power of 205 MFlops, whereas our computer has an
estimated power of 243 MFlops. Thus, in order to perform a fair comparison between the computational times, we use the
rate of 205/243 Mflops as an adjusting factor. We must call the reader’s attention to the fact that this factor is a quite rough
estimation of the difference between the two machines and, therefore, one has to be very careful before drawing definitive
conclusions.

Let us first examine the family of instances for which we found the optimum. We managed to solve to optimality 42 of
the 67 instances, compared to the 27 solved by Marenco [8]. In general, for these instances, the optimum is proven quite
fast. Indeed, only four instances required more than 10 min to be solved and the execution time in this case never exceeded
16 min.

In Table 1, for each instance we solved to optimality, we list the number of vertices of the respective instance, as well
as the number of edges in the graphs G and H . Furthermore, we list the optimum value, and also which strategy among
the ones that we implemented, that is, B&B, C&B, or B&C of our model, was the fastest in obtaining that solution. We also
present the time needed by each strategy to find the optimal solution, whenever this could be done within the fixed time
limit. All execution times in the table are given in seconds and the best time achieved for each instance is detached in
bold. The last column of the table gives the time needed in [8] (adjusted by the 205/243 factor as described earlier) to
compute the same instances. Fifteen instances of Table 1 could not be solved by Marenco within the one hour computation
limit (in the Ultra machine, i.e., without using the correction factor) fixed for his experiments. In these cases we report
the percentage gaps obtained by Marenco. In contrast, the B&B, B&C and C&B strategies failed to prove optimality of
only, 4, 12 and 2 instances, respectively. Besides, B&B, B&C and C&B computed, respectively, 32, 25 and 31 out of the
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Table 1
Solved instances.

Instance |V | |EG| |EH | Opt IP best strategy B&B time B&C time C&B time Marenco’s besttime

prb1 3 2 3 2 B&B 0.01 0.04 0.02 0.06
prb2 4 4 4 3 C&B 0.02 0.05 0.01 0.04
prb3 5 5 6 5 B&B 0.01 0.05 0.03 0.07
prb4 5 6 6 5 B&B 0.01 0.15 0.03 0.08
str2 6 15 8 8 B&B 0.01 0.10 0.02 0.13
prb5 8 10 10 9 B&B 0.04 1.45 0.62 0.14
prb6 8 13 10 10 C&B 0.39 1.33 0.10 0.18
prb7b 8 13 12 11 C&B 1.66 3.49 0.76 0.17
prb8b 8 10 10 6 B&B 0.02 0.13 0.04 0.14
prb9b 8 13 10 10 C&B 0.98 1.96 0.66 0.21
wars1 8 10 12 10 B&B 0.03 1.05 0.41 0.11
wars2 8 9 12 9 B&B 0.04 0.07 0.06 0.13
wars3 8 13 12 11 C&B 1.26 1.89 0.78 2.19
wars4 8 12 12 6 C&B 0.03 0.06 0.02 0.14
wars5 8 13 12 9 C&B 2.60 3600.00 1.55 1.50
str1 9 36 14 14 C&B 0.17 0.11 0.09 0.87
prb7 10 16 14 13 B&B 3.64 15.73 3.88 0.45
prb8 11 23 15 13 C&B 8.99 32.60 3.93 14.70
prb9 11 17 15 14 C&B 7.41 10.70 1.83 0.72
df11 12 21 36 18 B&B 66.00 3600.00 77.06 403.75
df12 12 26 36 23 B&B 101.55 3600.00 149.86 (gap 4.35%)
df13 12 26 36 23 B&B 106.00 3600.00 138.00 (gap 8.70%)
df1 12 26 18 18 C&B 2.60 4.82 1.74 451.17
gauss1 12 16 24 15 B&B 3.00 73.50 37.96 455.40
dc2 15 14 30 14 C&B 1.79 3.12 1.59 0.55
str3 15 60 26 26 C&B 30.55 50.42 12.48 (gap 4.00%)
str4 15 60 26 25 B&B 172.21 3600.00 232.48 (gap 4.00%)
gauss3 16 25 32 22 C&B 127.00 59.86 48.66 (gap 4.55%)
prb10 16 26 26 20 C&B 303.00 3600.00 193.75 (gap 10.53%)
dc1 18 14 36 14 C&B 2.63 3.83 2.47 0.62
df8 18 41 36 30 Inequality (71) – – – (gap 6.67%)
gauss2 20 25 40 22 B&B 911.00 3600.00 1077.37 (gap 4.55%)
memsy3 20 24 44 22 C&B 285.00 3600.00 90.52 (gap 9.09%)
memsy6 20 24 44 24 B&B 7.01 104.28 20.25 11.62
memsy8 20 24 44 22 C&B 276.00 835.74 213.77 (gap 9.09%)
str13 25 100 38 38 C&B 628.00 3600.00 478.18 (gap 8.57%)
str7 25 100 48 48 B&B 918.00 3600.00 3600.00 (gap 2.13%)
str9 25 100 37 37 B&C 3600.00 601.92 857.19 152.02
str17 30 120 54 54 C&B 3600.00 1611.20 426.55 475.92
str19 30 120 48 48 C&B 3600.00 3600.00 720.88 (gap 4.34%)
str15 30 120 59 59 B&B 311.38 1691.74 929.44 (gap 9.26%)
str18 30 120 50 50 C&B 674.74 1691.74 243.59 (gap 6.38%)

42 instances at least as rapidly as Marenco’s algorithm. From the data displayed in Table 1 one can see that the cut-
and-branch strategy performs slightly better than the pure branch-and-bound and both are much more efficient than the
branch-and-cut one (22, 18 and 1 wins, respectively). We should notice that no strategy was able to solve instance df8.
However, with the a priori addition of inequalities (73), the optimum was found after the computation of the first linear
relaxation.

Table 2 exhibits a summary of the results for the family of 25 instances that could not be solved by none of our algorithms.
Again, we list the number of vertices of the respective instance, aswell as the number of edges in the graphsG andH . Besides,
we list the best solution together with the best upper bound we found and the corresponding duality gap. The last column
shows the gaps achieved by Marenco in his experiments. For all unsolved instances our best gap was obtained using the
B&C strategy. Among them, 12 have a duality gap of at most 10%, 11 have a gap between 10% and 20%, and only 2 have a gap
greater or equal than 20%. In 22 out of the 25 instances not solved by our algorithms we could generate smaller duality gaps
than those reported earlier in the literature. The three other instances belong to group df and, for all of them, our duality
gap did not surpass the smallest gap known in more than 3%.

6. Concluding remarks

We showed that with our extended integer programming formulation, which includes variables that interlace edges
of G with edges of H , we gain on expressiveness with respect to the model given in [8]. We carried out a polyhedral
investigation of this new model and presented some valid inequalities and facets. As a result, we developed simple
enumeration algorithms that use these inequalities as cutting planes and which were able to prove the optimality of 15
additional instances when compared to the results reported in [8].
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Table 2
Unsolved instances.

Instance |V | |EG| |EH | OurBestSol OurBestBound OurGap Marenco’sGap

str10 20 80 37 36 37 2.70 2.78
str6 20 80 37 36 37 2.70 2.78
dc3 35 30 70 29 30 3.33 11.11
df6 16 36 32 28 29 3.45 7.41
df5 20 36 40 27 29 3.57 11.54
str16 30 120 54 52 54 3.70 8.00
memsy7 20 27 44 25 26 3.85 8.00
str11 24 96 48 46 48 4.17 4.35
gauss4 18 25 36 21 22 4.55 9.52
memsy1 20 32 44 28 30 6.67 10.71
str12 21 84 37 34 37 8.11 8.82
df4 15 31 30 20 24 9.09 30.00

memsy5 20 30 44 25 28 10.71 16.00
memsy4 20 36 44 29 33 12.12 20.69
df7 20 41 40 29 33 12.12 10.34
df18 20 46 60 34 40 12.82 18.18
df2 30 61 60 38 45 15.56 12.82
memsy2 20 40 44 32 38 15.79 18.75
df3 18 31 36 21 25 16.00 23.81
df16 20 41 60 31 37 16.22 20.00
df17 20 41 60 31 37 16.22 16.13
df19 24 51 72 36 43 16.28 16.67
df20 25 56 75 38 46 17.39 18.42

df14 20 31 60 24 30 20.00 30.43
df15 20 36 60 27 34 20.59 22.22

Despite these promising advances, the MCES remains a very difficult problem to be solved exactly. The graphs we
could deal with are limited to less than 40 vertices which is still far from the sizes of the graphs arising in many relevant
applications of the problem. A possible research direction that could allow us to handle larger instances would be to deepen
the polyhedral investigation of our model in order to obtain new facet-defining inequalities for the associated polytope.
In particular, inequalities (12)–(15) indicate that a feasible solution is a stable set of a certain conflict graph in the sense
of [1]. A question which remains is to determine the impact of (16)–(17) in the stable set polytope defined by the conflict
graph, which would allow writing new facet-defining inequalities and using separation algorithms, in particular the edge
projection heuristic [16].
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