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Abstract

In this paper, the effect of several axisymmetric elastic singularities (i.e., point forces, double forces, sum of two double
forces and centers of dilatation) on the elastic response of a multilayered solid is investigated. The boundary conditions in
an infinite solid at the plane passing through the singularity are derived first using Papkovich–Neuber harmonic functions.
Then, a Green’s function solution for multilayered solids is obtained by solving a set of simultaneous linear algebraic equa-
tions using both the boundary conditions for the singularity and the layer interfaces. Finally, the elastic solutions in a sin-
gle layer on an infinite substrate due to point defects and infinitesimal prismatic dislocation loops are presented to illustrate
the application of these Green’s function solutions.
Published by Elsevier Ltd.
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1. Introduction

The elastic solutions of elastic singularities (nuclei of strain) such as double forces, centers of dilatation, and
centers of rotation, etc., in a solid of infinite extent may be obtained from Lord Kelvin’s point force solution
(1848) by methods of synthesis and superposition. The number of elastic singularities that may be obtained by
this method is virtually unlimited and leads to solutions for a number of problems of practical importance.
The solution for a point force acting in the interior of a semi-infinite solid was first solved by Mindlin
(1936). By using Galerkin vector stress functions, solutions for the complete set of 40 nuclei of strain that have
physical significance have been presented by Mindlin and Cheng (1950a) for a half-space, and by Yu and San-
day (1991a) for two joined half-spaces (bimaterials). By using a matrix representation of stresses and displace-
ments, and solving the matrix equations, Vijayakumar and Cormack (1987a,b) obtained the stresses and
displacements for different nuclei of strain in bimaterials. By superposition of the Mindlin’s solution, infinite
series solutions are found for a point force (Ling, 1992) and a center of dilatation (Yu and Sanday, 1992) in a
plate.
0020-7683/$ - see front matter Published by Elsevier Ltd.
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A general solution for two- and three-layer elastic half-spaces (in integral form) was first given by Burmister
(1945a,b,c). Chen (1971) presented a general formulation using Fourier integrals for a three-layer system. By
using a Fourier transform, Benitez and Rosakis (1987) obtained the point force solutions for a single and mul-
tilayered media. Yu and Sanday (1993) presented a solution for the center of dilatation in three-layer materials
using the mirror image method. Since then, extensive study has been performed on the boundary value prob-
lems in multilayered elastic materials (e.g., Yue, 1996; Pan, 1997; Ai et al., 2002, additional references can be
found in these papers). In previous investigations, a number of methods including propagator matrix, forward
transfer matrix, backward transfer matrix, stiffness matrix, flexibility matrix, thin layer method, finite layer
method, and Sneddon and Muki’s method have been proposed. However, most of these investigations are
on problems for point forces or surface loading.

In this paper, a general method for solving problems involving axisymmetric elastic singularities in multi-
layered materials is presented. The solution involves using boundary conditions (derived from the prior work
cited above) to solve these problems. In Section 2, the boundary conditions at the plane passing through the
singularities in an infinite solid will be derived from known solutions. The applicable singularities discussed
here include point force, double forces, sum of two double forces and center of dilatation. In Section 3, addi-
tional boundary conditions due to layer interfaces will be used to obtain the elastic response in a multilayered
system due to these singularities. Applications of this method will be demonstrated in the following two sec-
tions for a single layer, perfectly bonded to a homogeneous, semi-infinite substrate. The problems of practical
importance reported in Sections 4 and 5 involve point defects and infinitesimal prismatic dislocation loops,
respectively. The point defect is approximated by a center of dilatation. The elastic response due to a prismatic
dislocation loop is the linear superposition of the double forces in the z-direction and the center of dilatation.

2. The fundamental equations

To establish the method, we will consider an infinite homogeneous elastic solid (Fig. 1a) with shear mod-
ulus l and Poisson’s ratio m with an elastic singularity at the object point (0, c). Since the problems are axisym-
metric, a cylindrical coordinate (r,h,z) will be used. This allows the simplification of most expressions since the
solutions are independent of h (i.e., (r,z) = (r,h,z)). The Papkovich–Neuber functions u(r,z) and w(r,z) are
used to formulate the problems. The displacements and stresses are
2lur ¼ �zw;r � u;r; 2luz ¼ jw� zw;z � u;z;

rr ¼ 2mu;z � zu;rr � w;rr; rh ¼ 2mu;z �
z
r
u;r �

1

r
w;r;

rz ¼ 2ð1� mÞw;z � zw;zz � u;zz; rrz ¼ ð1� 2mÞw;r � zw;rz � u;rz;

ð2:1Þ
where j = 3 � 4m. The suffixes following a comma denote differentiation with respect to the indicated cylindri-
cal coordinates, e.g., u,rz = o2u/oroz. The harmonic functions u(r,z) and w(r,z) are expressed in terms of a set
of unknown functions Ai(n), (i = 1,2,3,4) as given in the following Hankel integrals
w� ¼
Z 1

0

A1enzJ 0ðrnÞdn; u� ¼
Z 1

0

A2enzn�1J 0ðrnÞdn; ð2:2Þ
for z 6 c, and
wþ ¼
Z 1

0

A3e�nzJ 0ðrnÞdn; uþ ¼
Z 1

0

A4e�nzn�1J 0ðrnÞdn; ð2:3Þ
for z P c, where Jn(rn) is the Bessel function of the first kind of order n. Substituting (2.2) and (2.3) into (2.1),
one obtains

ur� ¼
Z 1

0

ûr�ðz; nÞJ 1ðrnÞdn; uz� ¼
Z 1

0

ûz�ðz; nÞJ 0ðrnÞdn;

rz� ¼
Z 1

0

r̂z�ðz; nÞJ 0ðrnÞndn; rrz� ¼
Z 1

0

r̂rz�ðz; nÞJ 1ðrnÞndn;

ð2:4Þ



c

0
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Fig. 1. (a) An infinite solid with an elastic singularity at the point (0,c). (b) Two perfectly bonded semi-infinite solids with an elastic
singularity at the point (0,c).
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for z 6 c, and
urþ ¼
Z 1

0

ûrþðz; nÞJ 1ðrnÞdn; uzþ ¼
Z 1

0

ûzþðz; nÞJ 0ðrnÞdn;

rzþ ¼
Z 1

0

r̂zþðz; nÞJ 0ðrnÞndn; rrzþ ¼
Z 1

0

r̂rzþðz; nÞJ 1ðrnÞndn;
ð2:5Þ
for z P c, where
ûr� ¼
1

2l
ðznA1 þ A2Þezn;

r̂z� ¼ f½2ð1� mÞ � zn�A1 � A2gezn; r̂rz� ¼ f½zn� ð1� 2mÞ�A1 þ A3gezn;

ûrþ ¼
1

2l
ðznA3 þ A4Þe�zn; ûzþ ¼

1

2l
½ðjþ znÞA3 þ A4�e�zn;

r̂zþ ¼ �f½2ð1� mÞ þ zn�A3 þ A4ge�zn; r̂rzþ ¼ �f½ð1� 2mÞ þ zn�A3 þ A4ge�zn:

ð2:6Þ
To derive the boundary conditions at the plane z = c for different singularities, the following existing solu-
tions will be used. The Galerkin vectors (g1,g2,g3) expressed in Cartesian coordinates (x1,x2,x3) for different
singularities are (Mindlin and Cheng, 1950a; Yu and Sanday, 1991a)
g1 ¼ g2 ¼ 0; g3 ¼ R; ð2:7Þ
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for the point force in the z-direction,
g1 ¼ g2 ¼ 0; g3 ¼ R;z; ð2:8Þ
for the double forces in the z-direction,
g1 ¼ R;1; g2 ¼ R;2; g3 ¼ 0; ð2:9Þ
for sum of the double forces in the x1-direction and x2-direction where R,i = oR/oxi, i = 1, 2, and
g1 ¼ g2 ¼ 0; g3 ¼ log½R� ðz� cÞ�; ð2:10Þ
for a center of dilatation where
R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� cÞ2

q
:

The relationship between the displacement and Galerkin vectors (Mindlin, 1936) is
ui ¼
1

2l
½2ð1� mÞgi;jj � gk;ki�; ð2:11Þ
where the repeated suffix indicates summation over the values 1, 2, 3. The stress components can be obtained
from (2.11) using Hooke’s law. Coefficients Ai in (2.6) are obtained by substituting (2.7)–(2.10) into (2.11), and
using the integral form (Gradshteyn and Ryzhik, 1980)
1

R
¼
Z 1

0

eðz�cÞnJ 0ðnrÞdn; z 6 c;

¼
Z 1

0

e�ðz�cÞnJ 0ðnrÞdn; z P c:
ð2:12Þ
Substituting the coefficients Ai just obtained into (2.4)–(2.6), one has the following boundary conditions at the
plane z = c.

Case A: point force in the z-direction
ûr�ðc; nÞ ¼ ûrþðc; nÞ; ûz�ðc; nÞ ¼ ûzþðc; nÞ;
r̂z�ðc; nÞ � r̂zþðc; nÞ ¼ 4ð1� mÞ; r̂rz�ðc; nÞ ¼ r̂rzþðc; nÞ;

ð2:13Þ
Case B: double forces in the z-direction
ûr�ðc; nÞ ¼ ûrþðc; nÞ; ûz�ðc; nÞ � ûzþðc; nÞ ¼
2ð1� 2mÞ

l
n;

r̂z�ðc; nÞ ¼ r̂zþðc; nÞ; r̂rz�ðc; nÞ � r̂rzþðc; nÞ ¼ 4mn;
ð2:14Þ
Case C: double forces in the r-direction (sum of the double forces in the x1- and x2-directions)
ûr�ðc; nÞ ¼ ûrþðc; nÞ; ûz�ðc; nÞ ¼ ûzþðc; nÞ;
r̂z�ðc; nÞ ¼ r̂zþðc; nÞ; r̂rz�ðc; nÞ � r̂rzþðc; nÞ ¼ �4ð1� mÞn;

ð2:15Þ
Case D: center of dilatation
ûr�ðc; nÞ ¼ ûrþðc; nÞ; ûz�ðc; nÞ � ûzþðc; nÞ ¼
1

l
n;

r̂z�ðc; nÞ ¼ r̂zþðc; nÞ; r̂rz�ðc; nÞ � r̂rzþðc; nÞ ¼ �2n:
ð2:16Þ
The relationships between the displacements due to the center of dilatation, uij(gcd), and the sum of three dou-
ble forces in the x1-, x2-, and x3-directions, uij (gmm), are
uijðgmmÞ ¼ 2ð1� 2mÞuijðgcdÞ: ð2:17Þ
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Some of these boundary conditions could be obtained using a different approach. For Case A, the displace-
ment components ur and uz, and the shear stress rrz are continuous at the plane z = c. The normal stress rz is
discontinuous at the point where the point force is applied, and the surface integral of the normal traction
ðrz� � rzþÞ should be equal to the point forcefz, i.e.,
2p
Z 1

0

ðrz� � rzþÞr dr ¼ fz: ð2:18Þ
Eq. (2.18) can be expressed as (Pekeris, 1955)
rz�ðr; cÞ � rzþðr; cÞ ¼ lim
e!0

f ðe; rÞ; ð2:19Þ
where
f ðe; rÞ ¼ 4ð1� mÞ
Z 1

0

e�enJ 0ðrnÞndn; ð2:20Þ
and e is the infinitesimal distance in the z-direction between points (r,z+) and (r,z-). Without loss of generality
and to simplify the expression, the magnitude of fz is assumed to be 8p(1 � m). Substituting (2.20) into (2.19),
one obtains (2.13). The same result has been obtained by Sneddon (1951) with a different approach. For Case
C, the displacement components ur and uz, and the normal stress rz are continuous at the plane z = c. The
shear stress rrz is discontinuous, and the discontinuity can be expressed as
rrz�ðr; cÞ � rrzþðr; cÞ ¼
o

or
f ð0; rÞ; ð2:21Þ
which gives the boundary conditions (2.15). By using the relationship (2.17), the sum of (2.14) and (2.15) gives
the boundary conditions (2.16) for Case D.

It can be easily shown that the elastic response due to elastic singularities in bimaterials can be derived using
the boundary conditions (2.13)–(2.16). As shown in Fig. 1b, the two half-spaces are perfectly bonded together.
The shear modulus and Poisson’s ratios for half-space N are lN and mN (N = 1,2), respectively. The singularity
is at point (0,c) in half-space 1. The boundary conditions on plane z = c for four axisymmetric nuclei of strain
are given in (2.13)–(2.16) where ur�, uz�, rz�, rrz�, ur+, uz+, rz+ and rrz+ are replaced by ur1�, uz1�, rz1�, rrz1�,
ur1+, uz1+, rz1+ and rrz1+, respectively. The boundary conditions at the interface z = 0 are
ur1�ðr; 0Þ ¼ ur2ðr; 0Þ; uz1�ðr; 0Þ ¼ uz2ðr; 0Þ;
rz1�ðr; 0Þ ¼ rz2ðr; 0Þ; rrz1�ðr; 0Þ ¼ rrz2ðr; 0Þ:

ð2:22Þ
The harmonic functions in (2.1) are
w1� ¼
Z 1

0

ðA11enz þ A12e�nzÞJ 0ðrnÞdn; u1� ¼
Z 1

0

ðA13enz þ A14e�nzÞn�1J 0ðrnÞdn; ð2:23Þ
for 0 6 z 6 c in half-space 1,
w1þ ¼
Z 1

0

A15e�nzJ 0ðrnÞdn; u1þ ¼
Z 1

0

A16e�nzn�1J 0ðrnÞdn; ð2:24Þ
for z P c in half-space 1, and
w2 ¼
Z 1

0

A21enzJ 0ðrnÞdn; u2 ¼
Z 1

0

A22enzn�1J 0ðrnÞdn; ð2:25Þ
for z 6 0 in half-space 2. The functions Aji(n) are obtained by solving the simultaneous equations obtained by
substituting (2.23)–(2.25) into (2.1), (2.13)–(2.16) and (2.22). The elastic solutions obtained by substituting
these Aji(n) into (2.23)–(2.25) are the same as those obtained using the Galerkin vectors method (Yu and San-
day, 1991a). Using the center of dilatation as an example, the coefficients Aji(n) obtained by solving the simul-
taneous equations are
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A11 ¼ A21 ¼ 0; A12 ¼ A15 ¼ 2ðl1 � l2Þb0ne�cn;

A13 ¼ �ne�cn; A14 ¼ �j1ðl1 � l2Þb0ne�cn;

A16 ¼ �necn � j1ðl1 � l2Þb0ne�cn; A22 ¼ �4ð1� m1Þl2b0ne�cn;

ð2:26Þ
where
b0 ¼
1

l1 þ j1l2

; j1 ¼ 3� 4m1: ð2:27Þ
Substituting (2.26) into (2.23)–(2.25) and (2.2), one has
ur1þ ¼ �
1

2l1

Z 1

0

½ecn þ ðl1 � l2Þb0ðj1 � 2znÞe�cn�e�znJ 1ðnrÞndn;

uz1þ ¼ �
1

2l1

Z 1

0

½ecn � ðl1 � l2Þb0ðj1 þ 2znÞe�cn�e�znJ 0ðnrÞndn;
ð2:28Þ
for z P c,
ur1� ¼ �
1

2l1

Z 1

0

½ezn þ ðl1 � l2Þb0ðj1 � 2znÞe�zn�e�cnJ 1ðnrÞndn;

uz1� ¼
1

2l1

Z 1

0

½ezn þ ðl1 � l2Þb0ðj1 þ 2znÞe�zn�e�cnJ 0ðnrÞndn;
ð2:29Þ
for 0 6z 6 c, and
ur2 ¼ �2ð1� m1Þb0

Z 1

0

eðz�cÞnJ 1ðnrÞndn;

uz2 ¼ 2ð1� m1Þb0

Z 1

0

eðz�cÞnJ 0ðnrÞndn;
ð2:30Þ
for z 6 0.
The Galerkin vectors for a center of dilatation in a bimaterial with perfect bonding are (Yu and Sanday,

1991a)
gI
1 ¼ gI

2 ¼ 0; gI
3 ¼ �/I þ ðl1 � l2Þb0½ð1� 4mÞ/II þ 2zuII �; ð2:31Þ
and
gII
1 ¼ gII

2 ¼ 0; gII
3 ¼ �4ð1� mÞl2b0/

I ; ð2:32Þ
for half-space 1 and 2, respectively, where
/I ¼ log½RI � ðz� cÞ�; /II ¼ log½RII þ ðzþ cÞ�; uII ¼ 1

RII ;

RI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðz� cÞ2

q
; RII ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðzþ cÞ2

q
:

ð2:33Þ
The relationship between the displacement and Galerkin vectors is
uL
i ¼

1

2l
½2ð1� mÞgL

i;jj � gL
k;ki�; L ¼ I ; II : ð2:34Þ
By substituting (2.31)–(2.33) into (2.34) and using the relationship (2.12), one has the same results as given in
(2.28)–(2.30).

3. Multilayered solids

The method presented in the previous section will now be extended to multilayered solids. The problems
treated here are those of an elastic multilayered solid consisting of N homogeneous and isotropic layers sand-
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wiched between two semi-infinite solids as shown in Fig. 2. The shear modulus, Poisson’s ratio and thickness
of the jth layer are lj, mj and hj, respectively. The elastic singularity is at the point (0,c) in the nth layer where
the origin of the coordinate system is set on the top surface of this layer. Using a similar approach to the infi-
nite solids, the Papkovich–Neuber functions uj(r,z) and wj(r,z) are used. The displacement and stress compo-
nents are
2ljurj ¼ �zwj;r � uj;r; 2ljuzj ¼ kjwj � zwj;z � uj;z;

rrj ¼ 2mjuj;z � zuj;rr � wj;rr; rhj ¼ 2muj;z � z
1

r
uj;r �

1

r
wj;r;

rzj ¼ 2ð1� mjÞwj;z � zwj;zz � uj;zz; rrzj ¼ ð1� 2mjÞwj;r � zwj;rz � uj;rz;

ð3:1Þ
where
j ¼ 1; 2; . . . ;N ; and jj ¼ 3� 4mj: ð3:2Þ
The harmonic functions uj(r,z), wj(r,z) are expressed in terms of the unknown functions Aji(n) as
wj ¼
Z 1

0

ðAj1enz þ Aj2e�nzÞJ 0ðrnÞdn;

uj ¼
Z 1

0

ðAj3enz þ Aj4e�nzÞn�1J 0ðrnÞdn;
ð3:3Þ
for j = 1,2, . . . ,n � 1,n + 1, . . . ,N. To satisfy the boundary condition that the displacements and their deriv-
atives (in the two semi-infinite solids 1 and N (h1 = hN =1)) vanish for z! ±1, one has
A12 ¼ A14 ¼ AN1 ¼ AN3 ¼ 0: ð3:4Þ
The functions uj(r,z) and wj(r,z) for j = n are
h1

hn−1

hn

hn+1

hN

hj

r

z

0

(0,c)

μ ,ν jj

×−
•

Fig. 2. A multilayered solid with an elastic singularity at the point (0,c).
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wn� ¼
Z 1

0

ðAn1�enz þ An2�e�nzÞJ 0ðrnÞdn;

un� ¼
Z 1

0

ðAn3�enz þ An4�e�nzÞn�1J 0ðrnÞdn;
ð3:5Þ
for 0 6 z 6 c, and
wnþ ¼
Z 1

0

ðAn1þenz þ An2þe�nzÞJ 0ðrnÞdn;

unþ ¼
Z 1

0

ðAn3þenz þ An4þe�nzÞn�1J 0ðrnÞdn;
ð3:6Þ
for c 6 z 6 hn. Substituting (3.3) into (3.1), one has for j = 1,2, . . . ,n � 1,n + 1, . . . ,N,
urj ¼
Z 1

0

ûrjðz; nÞJ 1ðrnÞdn; uzj ¼
Z 1

0

ûzjðz; nÞJ 0ðrnÞdn;

rzj ¼
Z 1

0

r̂zjðz; nÞJ 0ðrnÞndn; rrj ¼
Z 1

0

r̂rjðz; nÞJ 1ðrnÞndn;
ð3:7Þ
where
ûrj ¼
1

2lj
½ðznAj1 þ Aj3Þenz þ ðznAj2 þ Aj4Þe�nz�;

ûzj ¼
1

2lj
f½ðjj � znÞAj1 � Aj3�enz þ ½ðjj þ znÞAj2 þ Aj4�e�nzg;

r̂zj ¼ f½2ð1� mjÞ � zn�Aj1 � Aj3genz � f½2ð1� mjÞ þ zn�Aj2 þ Aj4ge�nz;

r̂rzj ¼ f½zn� ð1� 2mjÞ�Aj1 þ Aj3genz � f½znþ ð1� 2mjÞ�Aj2 þ Aj4ge�nz:

ð3:8Þ
For j = n, from (3.1), (3.5) and (3.6), one has
urn� ¼
Z 1

0

ûrn�ðz; nÞJ 1ðrnÞdn; uzn� ¼
Z 1

0

ûzn�ðz; nÞJ 0ðrnÞdn;

rzn� ¼
Z 1

0

r̂zn�ðz; nÞJ 0ðrnÞndn; rrn� ¼
Z 1

0

r̂rn�ðz; nÞJ 1ðrnÞndn;
ð3:9Þ
where
ûrn� ¼
1

2ln
½ðznAn1� þ An3�Þenz þ ðznAn2� þ An4�Þe�nz�;

ûzn� ¼
1

2ln
f½ðjn � znÞAn1� � An3��enz þ ½ðjn þ znÞAn2� þ An4��e�nzg;

r̂zn� ¼ f½2ð1� mnÞ � zn�An1� � An3�genz � f½2ð1� mnÞ þ zn�An2� þ An4�ge�nz;

r̂rzn� ¼ f½zn� ð1� 2mnÞ�An1� þ An3�genz � f½znþ ð1� 2mnÞ�An2� þ An4�ge�nz:

ð3:10Þ
In (3.9) and (3.10), the subscript ‘‘+’’ is for c 6 z 6 hn and the subscript ‘‘�’’ is for 0 6 z 6 c.
For layers perfectly bonded together, the boundary conditions at the interfaces z = zj, 0 6 r 61 between

layer j and layer j + 1 are
urjðr; zjÞ ¼ urjþ1ðr; zjÞ; uzjðr; zjÞ ¼ uzjþ1ðr; zjÞ;
rzjðr; zjÞ ¼ rzjþ1ðr; zjÞ; rrzjðr; zjÞ ¼ rrzjþ1ðr; zjÞ;

ð3:11Þ
where
zj ¼
Xj

k¼1

hk: ð3:12Þ
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If, the layers are not perfectly bonded together, the boundary conditions can be described differently as
given for the imperfect interface models; such as the free sliding model (e.g., Ghahremani, 1980; Mura
and Furuhashi, 1984), the linear spring model (e.g., Aboudi, 1987; Hashin, 1991; Lipton and Vernescu,
1996; Shen et al., 2000) and the dislocation-like model (e.g., Yu, 1998; Yu et al., 2002; Pan, 2003; Duan
et al., 2005).

The boundary conditions in the nth layer where the elastic singularity is located are given in (2.13)–(2.16) by
replacing ur�, uz�, rz�, rrz�, ur+, uz+, rz+ and rrz+ with urn�, uzn�, rzn�, rrzn� , urn+, uzn+, rzn+ and rrzn+,
respectively. By substituting (3.7) into boundary conditions (3.11), and substituting (3.9) into any one of
the boundary conditions (2.13)–(2.16), a set of 4(N + 1) linear simultaneous algebraic equations of unknown
Aji(n) are obtained, which can be solved symbolically by commercially available software such as MATHEM-

ATICA. The elastic deformation due to these nuclei of strain can then be computed by substituting Aji(n) into
(3.7)–(3.10). The formulation of the problem is now complete for each of the four axisymmetric elastic singu-
larities in a multilayered solid. Examples of practically important applications of these singularities are
presented in the following sections.

4. Point defects

The interaction between a point defect and the interface in a solid has been studied extensively because
it plays an important role in material behavior related to diffusion, oxidation and corrosion. In continuum
mechanics, the point defect is approximated by a center of dilatation. In the case where a planar, uniform
elastic layer is bonded to an elastic semi-infinite solid (with different elastic properties), the problem has
been studied by Dundurs and Stippes (1966), Bacon (1972) and Yu et al. (1996) using the method of Han-
kel transforms (Sneddon, 1951). The solution for a center of dilation also plays an important role in ther-
mal stress analysis. A general method for the analysis of thermal stresses developed by Goodier (1937) for
an infinite solid is based on the integration of properly weighted centers of dilatation over the volume
occupied by the body (Boley and Weiner, 1960; Dundurs and Guell, 1965). By using Galerkin vectors,
Mindlin and Cheng (1950b) extended the theory to a semi-infinite solid and Yu and coworkers
(Yu et al., 1992; Yu and Sanday, 1992, 1993) extended the method to a bimaterial, a plate, and a layer
sandwiched between two half-spaces.

The elastic deformation caused by a point defect in a planar, elastic layer perfectly bonded to a semi-infinite
solid will be given in this section. It should be noted that this method could be easily extended to a multilayer
system as described in Section 3. As shown in Fig. 3, solid 1 is a free space where l1 = m1 = 0, solid 2 is the
layer with thickness h2 = h, and solid 3 is the substrate where h3 =1 . The point defect is at the point (0,c) in
the layer. Letting N = 3, n = 2 and j = 2, 3 in (3.1)–(3.12), and substituting ûr�; ûz�; . . . ; r̂zþ; r̂rzþ in (2.17) by
ûr2�; ûz2�; . . . ; r̂z2þ; r̂rz2þ, one has the simultaneous algebraic equations, given in Appendix A for the unknown
coefficients A2i+, A2i�, A32 and A34 . The solution of the simultaneous Eqs. (A.1)–(A.10) is
r
0

c
μ2 ,ν2

μ ν3

h

z

,3

Fig. 3. An elastic layer of thickness h attached to a semi-infinite substrate with a point defect or an infinitesimal prismatic dislocation loop
at the point (0,c).
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A21� ¼ 2ðb� 1Þ½ðj2 � j3bÞe2cn þ ð1þ j3bÞðe2cn � 2hnÞe2hn�ne�cn=D0;

A22� ¼ �2ð1þ j3bÞ½ð1� bÞð1þ 2hne2cnÞ þ ðj2 þ bÞe2hn�neð2h�cÞn=D0;

A23� ¼ fðb� 1Þ½j2ðj2 � j3bÞ þ ð1þ j3bÞðj2 � 2hnÞe2hn�e2cn

þ ð1þ j3bÞ½ð1� bÞð1þ 2j2hnÞ þ ðj2 þ bÞe2hn�e2hngne�cn=D0;

A24� ¼ fðb� 1Þ½ðj2 � j3bÞ þ ð1� 2j2hnÞð1þ j3bÞe2hn�e2cn

þ ð1þ j3bÞ½ð1� bÞðj2 þ 2hnÞ þ j2ðj2 þ bÞe2hn�e2hngne�cn=D0;

A21þ ¼ 2ðb� 1Þ½ðj2 � j3bÞe2cn þ ð1þ j3bÞðe2cn � 2hnÞe2hn�ne�cn=D0;

A22þ ¼ 2ð1þ j3bÞ½ðb� 1Þð1þ 2hne2cnÞ � ðj2 þ bÞe2hn�neð2h�cÞn=D0;

A23þ ¼ f½2ðj2 � 2hnÞhn� j2
2 þ 2b3bðj2 þ 2j2hn� 4h2n2Þ þ j3b

2ð1� 2j2hnþ 4h2n2Þ�e2hn

þ ðb� 1Þ½ð1þ j3bÞðj2 � 2hnÞe2ðcþhÞn þ ðj2 � j3bÞð1þ j2e2cnÞ�gne�cn=D0;

A24þ ¼ f½2ðj2 þ 2hnÞhnþ j2
2 � 2b3bðj2 � 2j2hn� 4h2n2Þ � j3b

2ð1þ 2j2hnþ 4h2n2Þ�e2cn

þ ð1þ j3bÞ½j2ðj2 þ bÞe2hn þ ðj2 þ bÞe2ðcþhÞn � ðb� 1Þðj2 þ 2hnÞ�gneð2h�cÞn=D0;

A32 ¼ 8a2½ðb� 1Þð1þ 2hne2cnÞ � ðj2 þ bÞe2hn�ne�ðc�2hÞn=D0;

A34 ¼ 4a2fð1þ j3bÞe2ðcþhÞn � ½j3b� j2 þ 2ðb� 1Þðj3 þ 2hnÞhn�e2cn

þ ½j3ðj2 þ bÞ þ 4ðb2 � b3bÞhn�e2hn � ðb� 1Þðj3 þ 2hnÞgne�ðc�2hÞn=D0; ð4:1Þ
where
D0 ¼ ðb� 1Þðj2 � j3bÞ � 2½c1 � 2b2b3b� j3b
2 þ 2ð1� bÞð1þ j3bÞh2n2�e2hn � ðbþ j2Þð1þ j3bÞe4hn; ð4:2Þ

b ¼ l2

l3

; c1 ¼ 5� 12m2 þ 8m2
2: ð4:3Þ
The solution for the problem is obtained by substituting (4.1) into (3.7)–(3.10). For a thin film, one would have
l3 = m3 = 0, A32 = A34 = 0, and the boundary conditions become (A.1)–(A.6), (A.9) and (A.10) given in
Appendix A.
5. Infinitesimal prismatic dislocation loops

Over the past few decades, studies of dislocations and their effect on materials properties have been greatly
expanded. For example, dislocation loops have been shown to have a great effect on dopant diffusion in prea-
morphized silicon and on electronics device performance (Skarlatos et al., 2006). It also affects void growth in
the ductile fracture of materials at room temperature (Ahn et al., 2006). The elastic solution for an infinites-
imal dislocation loop lying in its glide plane was first obtained by Nabarro (1951). Bacon and Groves (1969)
provided the solution for an infinitesimal dislocation loop in an isotropic, semi-infinite elastic medium. For
elastic interactions between dislocations and surface layers, the first analytical work was accomplished by
Head (1953a) for a screw dislocation near a layer coated on a half-space using the analog between electrostatic
image treatments and those of elasticity. The elastic field for a screw dislocation traversing a plate has been
given by Eshelby (1979). Chu (1982) provided a solution for a screw dislocation in a two-phase thin film of
equal thickness in each phase. And recently, Wang (1999) solved the problem of screw dislocations in a
two-phase, thin film of equal thickness in each phase. The elastic stress field due to an edge dislocation in a
bimaterial was also first investigated by Head (1953b) and re-examined by Dundurs and Sendeckyj (1965),
and Mura (1968). The elastic fields for an edge dislocation in the substrate and in the film of a film/substrate
system have been given by Weeks et al. (1968) and Lee and Dundurs (1973), respectively. By linear superpo-
sition of the solutions for the elastic singularities, Yu and Sanday (1991b, 1994) provided the solutions for a
dislocation line, and a dislocation loop of arbitrary shape, orientation and Burgers vector. By extending their
method, double forces in the z-direction and center of dilatation will be used to obtain the elastic solution for a
prismatic loop traversing the layer with Burger vector in the z-direction. The elastic field of an edge dislocation
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can be obtained by integrating the result of the prismatic loop over the surface of the cut formally used to
generate the dislocation (Nabarro, 1951).

Consider an infinitesimal prismatic loop at the point (0,c) in layer n with a Burgers vector bz, and the sur-
face of the cut formally used to generate the dislocation loop is dSz. The elastic displacement due to this infin-
itesimal loop is the linear superposition of the field due to the double forces in the z-direction uij (gzz) and due
to the center of dilatation uij(gc) (Yu and Sanday, 1991b)
urj ¼ ½urjðgzzÞ � 2mjurjðgcdÞ�QdSz;

uzj ¼ ½uzjðgzzÞ � 2mjuzjðgcdÞ�QdSz;
ð5:1Þ
where j = 1,2, . . . ,N, and
Q ¼ lnbz

4pð1� mnÞ
: ð5:2Þ
We will again illustrate this method by using the dislocation loop in a layer, which is perfectly bonded to a
semi-infinite substrate (Fig. 3). In addition to the elastic displacements urj(gcd) for a center of dilation (4.1), the
solution urj(gzz) for the double forces in the z-direction are also needed. The simultaneous equations needed for
the double forces in the z-direction are obtained by substituting (A.4) and (A.6) (in Appendix A) into (2.15),
thus
½ðj2 � cnÞA21� � A23��enc þ ½ðj2 þ cnÞA22� þ A24��e�nc

� ½ðj2 � cnÞA21þ � A23þ�enc � ½ðj2 þ cnÞA22þ þ A24þ�e�nc ¼ 4ð1� 2m2Þn;
ð5:3Þ
for û2z�ðr; cÞ � û2zþðr; cÞ ¼ 2ð1� 2m2Þn=l2, and
½ðcn� b2ÞA21� þ A23��ecn � ½ðcnþ b2ÞA22� þ A24��e�cn

� ½ðcn� b2ÞA21þ þ A23þ�ecn þ ½ðcnþ b2ÞA22þ þ A224þ�e�nc ¼ 4m2n;
ð5:4Þ
for r̂rz2�ðr; cÞ � r̂rz2þðr; cÞ ¼ 4m2n. The coefficients for the double forces in the z-direction obtained by solving
the simultaneous Eqs. (5.3), (5.4), (A.1)–(A.3), (A.5) and (A.7)–(A.10) are
A21� ¼ fðb� 1Þðj2 � j3bÞð1� 4m2 � 2cnÞe2cn þ ðb� 1Þð1þ j3bÞ½1� 4m2 þ 2ðh� cÞn�e2ðcþhÞn

� ½ðj2 þ bÞðj2 � j3bÞ � 2ðb� 1Þð1þ j3bÞð1� 4m2 � 2ðh� cÞnÞhn�e2hn

� ðj2 þ bÞð1þ j3bÞe4hngne�cn=D0;

A22� ¼ fðb� 1Þðj2 � j3bÞe2cn þ ½2ðb� 1Þð1þ j3bÞð1� 4m2 þ 2ðh� cÞnÞhn

� ðj2 þ bÞðj2 � j3bÞ�e2ðcþhÞn þ ðb� 1Þð1þ j3bÞð1� 4m2 � 2ðh� cÞnÞe2hn

� ðj2 þ bÞð1þ j3bÞð1� 4m2 þ 2cnÞe4hngne�cn=D0;

A23� ¼ fðb� 1Þðj2 � j3bÞðc3 þ j2cnÞe2cn þ ½j2 � 2c4b3bþ a3j3b
2

þ ð1� bÞð1þ j3bÞðcþ 2c3h� 2j2ðh� cÞhnÞn�e2ðcþhÞngne�cn=D0;

A24� ¼ fð1� bÞðj2 � j3bÞð1þ cnÞe2cn þ ½c5 � 2c2b3b� j3b
2

þ ð1� bÞð1þ j3bÞðð1� 2j3hnÞcnþ 2ðc3 þ j2hnÞhnÞ�e2ðcþhÞn

� ½j2 � 2c4b3bþ c3j3b
2 þ ð1� bÞð1þ j3bÞð2hþ 2h2n� j2c� 2chnÞn�e2hn

þ ðj2 þ bÞð1þ j3bÞðc3 þ j2cnÞe4hngne�cn=D0;

A21þ ¼ ðb� 1Þfðj2 � j3bÞ½ð1� 4m2 � 2cnÞe2cn � 1� þ ð1þ j3bÞ½1� 4m2 þ 2ðh� cÞn�e2ðcþhÞn

� ð1þ j3bÞ½1þ 2ð1� 4m2 þ 2cnÞhn�e2hngne�cn=D0;
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A22þ ¼ ð1þ j3bÞfðb� 1Þ½1� 4m2 � 2ðh� cÞn� � ðb� 1Þ½1� 2ð1� 4m2 � 2cnÞhn�e2cn

þ ðj2 þ bÞe2ðcþhÞn � ðj2 þ bÞð1� 4m2 þ 2cnÞe2hngneð2h�cÞn=D0;

A23þ ¼ fð1� bÞðj2 � j3bÞ½1� cn� ðc3 � j2cnÞe2cn� þ ½j2 � 2c4b3bþ c3j3b
2

þ ð1� bÞð1þ j3bÞðj2c� 2hþ 2ðh� cÞhnÞn�e2ðcþhÞn þ ½c6 � j3bþ 2c4b3b

� 2ð1� bÞð1þ j3bÞð2chn� j2cþ ð1� 4m2ÞhÞhn2 � ðj2
2c� 2ð1� bÞð1þ j3bÞc3h

� bðj3bþ 2b3j2ÞcÞn�e2hngne�cn=D0;

A24þ ¼ �f½j2 þ c3j3b
2 � 2c4b3b� ð1� bÞð1þ j3bÞðj2 � 2ð1þ ðh� cÞnÞhnÞ�ecn

þ ½c6 � j3b
2 þ 2c4b3bþ 2ð1� bÞð1þ j3bÞðj2c� ð1� 4m2 � 2cnÞhÞhn2

þ ððj2 þ bÞðj2 � j3bÞc� 2c3ð1� bÞð1þ j3bÞhÞn�e3cn

þ ð1þ cnÞ½j2 þ 2ð5� 6m3 � 2m2j3Þbþ j3b
2�eð3cþ2hÞn

� ðj2 þ bÞð1þ j3bÞðc3 þ j2cnÞeðcþ2hÞngne2ðh�cÞn=D0;

A32 ¼ 4a2fðb� 1Þ½1� 4m2 � 2ðh� cÞn� � ðj2 þ bÞð1� 4m2 þ 2cnÞe2hn

� ðb� 1Þ½1� 2ð1� 4m2Þhnþ 4chn2�e2cn þ ðj2 þ bÞe2ðcþhÞngneð2h�cÞn=D0;

A34 ¼ 4a2f2ðm2j3b� 2m2b3 � m3Þ � ð1� bÞ½2ðb3 þ 2m2Þh� j3c�nþ 2ð1� bÞðc� hÞhn2

� ½4a2 � 2m3j2 þ 2m2j2bþ ð1þ j3bÞcnþ 2ðb2 � b3bÞhn�e2ðcþhÞn

þ ½4ðb� 1Þch2n3 � 2ð1� bÞðj3c� ð1� 4m2ÞhÞhn2 þ ðj3b� j2Þcnþ 2ðb� 1Þð2m2j3 � b3Þhn

þ 2ðm2j3b� 4m2a2 þ m3Þ�e2cn þ ½2ð2� 3m3 � ð4þ bÞm2j3 þ 4m2
2j3Þ þ j3ðj2 þ bÞcn

þ ðb2 � b3bÞð2ð1� 4m2Þ þ 4cnÞhn�e2hngneð2h�cÞn=D0; ð5:5Þ
where
c2 ¼5� 14m2 þ 8m2
2; c3 ¼ 1� 8m2 þ 8m2

2; c4 ¼ 3� 10m2 þ 8m2
2;

c5 ¼13� 52m2 þ 72m2
2 � 32m3

2; c6 ¼ �3þ 28m2 � 56m2
2 þ 32m3

2;
D0 and b are given in (4.2) and (4.3), respectively. For a thin film, one would have l3 = m3 = 0, A32 = A34 = 0,
and the boundary conditions become (5.3), (5.4), (A.1)–(A.3), (A.5), (A.9) and (A.10).

From (4.1), the coefficients needed in (3.3)–(3.5) for the complete solution are
A2i� ¼ ½A2i�ðgzzÞ � 2m2A2i�ðgcdÞ�QdSz; ði ¼ 1; 2; 3; 4Þ;
A3i� ¼ ½A3iðgzzÞ � 2m2A3iðgcdÞ�QdSz; ði ¼ 2; 4Þ;

ð5:6Þ
where A2i±(gzz) and A3i(gzz) are for the double forces in the z-direction as given in (5.5), and A2i± (gcd) and
A3i(gcd) are for the center of dilatation as given in (4.1). The elastic field in the solids due to a straight edge
dislocation, or a prismatic dislocation loop with finite area can be obtained by integrating the results given
in (5.1) for the infinitesimal dislocation loop over the surface of the cut that generates the dislocation. For
an edge dislocation at x1 = x2 = 0, x3 = c with Burgers vector bz and dislocation line vector parallel to the
x2-direction, the surface of the cut is the half plane 0 6 x1 61, �1 6 x2 61. The elastic displacement
due to this edge dislocation can be found by integrating (5.1) over dSz = dx01dx02 from x01 = 0 to 1 and from
x02 = �1 to 1, where r in the solution for the infinitesimal dislocation loop is replaced byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x01Þ

2 þ ðx2 � x02Þ
2

q
. Similarly, for a prismatic loop with area S and Burgers vector bz, the solution is ob-

tained by integrating (5.1) over the surface area S.

6. Summary

A method is proposed for solving some axisymmetric problems in multilayered solids. The boundary
conditions for the point force in the z-direction, the double forces in the z-direction, the double forces in
the r-direction, and the centers of dilatation are derived. These boundary conditions are then used to derive
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the elastic response in multilayered solids. The unknown coefficients for the solution are expressed in terms of
a set of simultaneous linear algebraic equations. As examples of this method, the elastic responses of point
defects and dislocation loops are presented for a layer perfectly bonded to a semi-infinite substrate. For more
than one layer, bonded to the semi-infinite solid, the expression for the solution is too long to be presented
here. However, by using symbolic mathematics software such as MATHEMATICA, solving the simultaneous
linear algebraic equations becomes straight forward.
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Appendix A. Boundary conditions for centers of dilatation

By substituting (3.8) and (3.10) into (2.16) and (3.11), one has
2a2ðA21� � A22�Þ � A23� � A24� ¼ 0; ðA:1Þ
for r̂z2�ðr; 0Þ ¼ 0,
b2ðA21� þ A2�Þ � A23� þ A24� ¼ 0; ðA:2Þ
for r̂rz2�ðr; 0Þ ¼ 0;
ðcnA21� þ A23�Þenc þ ðcnA22� þ A24�Þe�nc

¼ ðcnA21þ þ A23þÞenc þ ðcnA22þ þ A24þÞe�nc;
ðA:3Þ
for ûr2�ðr; cÞ ¼ ûr2þðr; cÞ,
½ðj2 � cnÞA21� � A23��enc þ ½ðj2 þ cnÞA22� þ A24��e�nc

� ½ðj2 � cnÞA21þ � A23þ�enc � ½ðj2 þ cnÞA22þ þ A24þ�e�nc ¼ 2n;
ðA:4Þ
for û2z�ðr; cÞ � û2zþðr; cÞ ¼ n=l2,
½ð2a2 � cnÞA21� � A23��ecn � ½ð2a2 þ cnÞA22� þ A24��e�cn

¼ ½ð2a2 � cnÞA21þ � A23þ�ecn � ½ð2a2 þ cnÞA22þ þ A24þ�e�cn;
ðA:5Þ
for r̂2z�ðr; cÞ ¼ r̂2zþðr; cÞ,
½ðcn� b2ÞA21� þ A23��ecn � ½ðcnþ b2ÞA22� þ A24��e�cn

� ½ðcn� b2ÞA21þ þ A23þ�ecn þ ½ðcnþ b2ÞA22þ þ A224þ�e�nc ¼ �2n;
ðA:6Þ
for r̂rz2�ðr; cÞ � r̂rz2þðr; cÞ ¼ �2n,
ðhnA21þ þ A23þÞenh þ ðhnA22þ þ A24þÞe�nh ¼ l2

l3

ðhnA32 þ A34Þe�hn; ðA:7Þ
for ûr2þðr; hÞ ¼ ûr3ðr; hÞ,
½ðj2 � hnÞA21þ � A23þ�enh þ ½ðj2 þ hnÞA22þ þ A24þ�e�nh

¼ l2

l3

½ðj3 þ hnÞA32 þ A34�e�hn;
ðA:8Þ
for ûz2þðr; hÞ ¼ ûz3ðr; hÞ,
½ð2a2 � hnÞA21þ � A23þ�enh � ½ð2a2 þ hnÞA22þ þ A24þ�e�nh

¼ �½ð2a3 þ hnÞA32 þ A34�e�nh;
ðA:9Þ
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for r̂z2þðr; hÞ ¼ r̂z3ðr; hÞ,

½ðhn� b2ÞA21þ þ A23þ�enh � ½ðhnþ b2ÞA22þ þ A24þ�e�nh

¼ �½ðb3 þ hnÞA32 þ A34�e�nh;
ðA:10Þ
for r̂rz2þðr; hÞ ¼ r̂rz3ðr; hÞ, where
ji ¼ 3� 4mi; ai ¼ 1� mi; bi ¼ 1� 2mi: ðA:11Þ
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